Design and Performance Analysis of Perovskites Unidimensional Photonic Crystal-Based Biosensors for Extracellular Vesicles Detection: A Numerical Investigation
Abstract
:1. Introduction
2. Theoretical Formulation and Proposed Design of the Biosensors
3. Numerical Results and Discussion
3.1. Optical Characteristics of the 1D PC-Based Biosensor
3.2. Performance of the 1D PC-Based Biosensors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Doghmosh, N.; Taya, S.A.; Upadhyay, A.; Olaimat, M.M.; Colak, I. Enhancement of optical visible wavelength region selective reflector for photovoltaic cell applications using a ternary photonic crystal. Optik 2021, 243, 167491. [Google Scholar] [CrossRef]
- Saleki, Z. Nonlinear control of switchable wavelength-selective absorption in a one-dimensional photonic crystal including ultrathin phase transition material-vanadium dioxide. Sci. Rep. 2022, 12, 10715. [Google Scholar] [CrossRef]
- Hajivandi, J.; Holcomb, M.; Kurt, H. Directional emission of the edge states from the photonic topological structure composed of two-dimensional honeycomb photonic crystals. J. Opt. 2021, 50, 371–380. [Google Scholar] [CrossRef]
- Li, M.; Liang, H.; Luo, R.; He, Y.; Lin, Q. High-Q 2D lithium niobate photonic crystal slab nanoresonators. Laser Photonics Rev. 2019, 13, 1800228. [Google Scholar] [CrossRef]
- Chang, B.; Zhou, C.; Tarekegne, A.T.; Yang, Y.; Zhao, D.; Jensen, F.; Hübner, J.; Jansen, H. Large area three-dimensional photonic crystal membranes: Single-run fabrication and applications with embedded planar defects. Adv. Opt. Mater. 2019, 7, 1801176. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Xue, Y.L.; Wang, R.; Kong, R. Area scalable and period manipulable three-dimensional optically induced photorefractive photonic periodic crystal or aperiodic quasicrystal. Superlattices Microstruct. 2020, 140, 106446. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Q.; Liu, Y.; Cheng, B.; Cheng, B.; Zhang, D. Ultrafast three-dimensional tunable photonic crystal. Appl. Phys. Lett. 2003, 83, 2518–2520. [Google Scholar] [CrossRef]
- Farzin, B.Z.; Ardebili, S.B.S.; Kim, J.S.; Kang, T.I. Investigating the slow light in a 2D heterostructure photonic crystal composed of circular rods and holes in the square lattices. Phys. Scr. 2022, 98, 015510. [Google Scholar] [CrossRef]
- Aravindakshan, N.; Eftekhari, E.; Tan, S.H.; Li, X.; St John, J.; Nguyen, N.T.; Zhao, H.; Zhao, D.; Li, Q. Ensembles of photonic beads: Optical properties and enhanced light—Matter interactions. Adv. Opt. Mater. 2020, 8, 1901537. [Google Scholar] [CrossRef]
- Elshahat, S.; Abood, I.; Esmail, M.S.M.; Ouyang, Z.; Lu, C. One-dimensional topological photonic crystal mirror heterostructure for sensing. Nanomaterials 2021, 11, 1940. [Google Scholar] [CrossRef]
- Trabelsi, Y.; Belhadj, W.; Ben Ali, N.; Aly, A.H. Theoretical study of tunable optical resonators in periodic and quasiperiodic one-dimensional photonic structures incorporating a nematic liquid crystal. Photonics 2021, 8, 150. [Google Scholar] [CrossRef]
- Gadhwal, R.; Kaushik, P.; Devi, A. A review on 1D photonic crystal based reflective optical limiters. Crit. Rev. Solid State Mater. Sci. 2023, 48, 93–111. [Google Scholar] [CrossRef]
- Habli, O.; Bouazzi, Y.; Kanzari, M. Gas sensing using one-dimensional photonic crystal nanoresonators. Prog. Electromagn. Res. C 2019, 92, 251–263. [Google Scholar] [CrossRef] [Green Version]
- Sayed, H.; Al-Dossari, M.; Ismail, M.A.; Abd El-Gawaad, N.S.; Aly, A.H. Theoretical Analysis of Optical Properties for Amorphous Silicon Solar Cells with Adding Anti-Reflective Coating Photonic Crystals. Photonics 2022, 9, 813. [Google Scholar] [CrossRef]
- Anttu, N.; Mäntynen, H.; Sorokina, A.; Turunen, J.; Sadi, T.; Lipsanen, H. Applied electromagnetic optics simulations for nanophotonics. J. Appl. Phys. 2021, 129, 131102. [Google Scholar] [CrossRef]
- Palo, E.; Daskalakis, K.S. Prospects in Broadening the Application of Planar Solution-Based Distributed Bragg Reflectors. Adv. Mater. Interfaces 2023, 2202206. [Google Scholar] [CrossRef]
- Bertucci, S.; Megahd, H.; Dodero, A.; Fiorito, S.; Di Stasio, F.; Patrini, M.; Comoretto, D.; Lova, P. Mild Sol–Gel Conditions and High Dielectric Contrast: A Facile Processing toward Large-Scale Hybrid Photonic Crystals for Sensing and Photocatalysis. ACS Appl. Mater. Interfaces 2022, 14, 19806–19817. [Google Scholar] [CrossRef]
- Malekovic, M.; Urann, M.; Steiner, U.; Wilts, B.D.; Kolle, M. Soft photonic fibers for colorimetric solvent vapor sensing. Adv. Opt. Mater. 2020, 8, 2000165. [Google Scholar] [CrossRef]
- Segovia-Chaves, F. Transmittance spectrum of a defective one-dimensional photonic crystal with a protein solution. Optik 2021, 231, 166408. [Google Scholar] [CrossRef]
- Aly, A.H.; Mohamed, D.; Mohaseb, M.A.; Abd El-Gawaad, N.S.; Trabelsi, Y. Biophotonic sensor for the detection of creatinine concentration in blood serum based on 1D photonic crystal. RSC Adv. 2020, 10, 31765–31772. [Google Scholar] [CrossRef] [PubMed]
- El Mouncharih, A.; Takassa, R.; Farkad, O.; Tchenka, A.; Elfatouaki, F.; Ibnouelghazi, E.A.; Abouelaoualim, D. One-dimensional photonic crystal-based biosensor for the detection of glucose concentration in human urine. J. Nanophotonics. 2023, 17, 026007. [Google Scholar]
- Inan, H.; Poyraz, M.; Inci, F.; Lifson, M.A.; Baday, M.; Cunningham, B.T.; Demirci, U. Photonic crystals: Emerging biosensors and their promise for point-of-care applications. Chem. Soc. Rev. 2017, 46, 366–388. [Google Scholar] [CrossRef] [Green Version]
- Panda, A.; Pukhrambam, P.D.; Wu, F.; Belhadj, W. Graphene-based 1D defective photonic crystal biosensor for real-time detection of cancer cells. Eur. Phys. J. Plus 2021, 136, 809. [Google Scholar] [CrossRef]
- Aly, A.H.; Zaky, Z.A. Ultra-sensitive photonic crystal cancer cells sensor with a high-quality factor. Cryogenics 2019, 104, 102991. [Google Scholar] [CrossRef]
- Bijalwan, A.; Singh, B.K.; Rastogi, V. Analysis of one-dimensional photonic crystal-based sensor for detection of blood plasma and cancer cells. Optik 2021, 226, 165994. [Google Scholar] [CrossRef]
- Abohassan, K.M.; Ashour, H.S.; Abadla, M.M. A 1D photonic crystal-based sensor for detection of cancerous blood cells. Opt. Quantum Electron. 2021, 53, 1–14. [Google Scholar] [CrossRef]
- Maas, S.L.; Breakefield, X.O.; Weaver, A.M. Extracellular vesicles: Unique intercellular delivery vehicles. Trends Cell Biol. 2017, 27, 172–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Van Der Pol, E.; Arafa, A.; Thapa, I.; Britton, C.J.; Kosti, J.; Song, S.; Joshi, V.B.; Erickson, R.M.; Ali, H.; et al. Calibration and standardization of extracellular vesicle measurements by flow cytometry for translational prostate cancer research. Nanoscale 2022, 14, 9781–9795. [Google Scholar] [CrossRef] [PubMed]
- De Rond, L.; Libregts, S.F.W.M.; Rikkert, L.G.; Hau, C.M.; Van Der Pol, E.; Nieuwland, R.; Van Leeuwen, T.G.; Coumans, F.A.W. Refractive index to evaluate staining specificity of extracellular vesicles by flow cytometry. J. Extracell. Vesicles 2019, 8, 1643671. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Lei, J.; Wang, L.; Zhang, J.; Liu, Y. TiO2 inverse opal photonic crystals: Synthesis, modification, and applications-A review. Alloys Compd. 2018, 769, 740–757. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, G.; Cao, T.; Mishra, R.; Ravichandran, J. Modeling temperature, frequency, and strain effects on the linear electro-optic coefficients of ferroelectric oxides. J. Appl. Phys. 2022, 131, 163101. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, B.; Wang, Y.S.; Qin, Z.; Ke, S.H. First-principles investigation of the ferroelectric, piezoelectric and nonlinear optical properties of LiNbO3-type ZnTiO3. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarei Moghadam, R.; Omrany, A.H.; Taherkhani, M.; Shokrian, F. Fabrication of multi-layer antireflection coating consisting of ZnS and MgF2. Prog. Physi. Appl. Mater. 2021, 1, 7–13. [Google Scholar]
- Senouci, K.; Mansour, D.; Abderrahmane, A. Electro-optic properties of one-dimensional (1D) nonlinear perfect photonic crystals based on Lithium tantalate layer. Optik 2022, 265, 169537. [Google Scholar] [CrossRef]
- Singh, S.; Remeika, J.P.; Potopowicz, J.R. Nonlinear optical properties of ferroelectric lead titanate. Appl. Phys. Lett. 1972, 20, 135–137. [Google Scholar] [CrossRef]
- Cho, H.; Lee, D.; Hong, S.; Kim, H.; Jo, K.; Kim, C.; Yoon, I. Surface Modification of ZrO2 Nanoparticles with TEOS to Prepare Transparent ZrO2@SiO2-PDMS Nanocomposite Films with Adjustable Refractive Indices. Nanomaterials 2022, 12, 2328. [Google Scholar] [CrossRef]
- Shakoury, R.; Khanlary, M.R.; Sadeghi, M.; Kamali, S.H. Ion beam assisted electron gun deposition of MgF2 thin films: Effects of Argon ion bombardment on the optical and morphological properties. Vakuum Forschung und Praxis 2022, 34, 36–40. [Google Scholar] [CrossRef]
- Erdbrügger, U.; Blijdorp, C.J.; Bijnsdorp, I.V.; Borràs, F.E.; Burger, D.; Bussolati, B.; Byrd, J.B.; Clayton, A.; Dear, J.W.; Falcón-Pérez, J.M.; et al. Urinary extracellular vesicles: A position paper by the Urine Task Force of the International Society for Extracellular Vesicles. J. Extracell. Vesicles 2021, 10, e12093. [Google Scholar] [CrossRef]
- Sung, P.S.; Huang, T.F.; Hsieh, S.L. Extracellular vesicles from CLEC2-activated platelets enhance dengue virus-induced lethality via CLEC5A/TLR2. Nat. Commun. 2019, 10, 2402. [Google Scholar] [CrossRef] [Green Version]
- Marimpietri, D.; Airoldi, I.; Faini, A.C.; Malavasi, F.; Morandi, F. The role of extracellular vesicles in the progression of human neuroblastoma. Int. J. Mol. Sci. 2021, 22, 3964. [Google Scholar] [CrossRef]
- Parimala Devi, M.; Awasthi, S.K.; Alipour-Banaei, H.; Nambi, R. Refractive index EV sensor based on conventional and mirror image 1D defective photonic crystal designs: Theoretical study. J. Comput. Electron. 2022, 21, 1404–1415. [Google Scholar] [CrossRef]
- Matar, Z.S.; Al-Dossari, M.; Awasthi, S.K.; Abd El-Gawaad, N.S.; Hanafy, H.; Amin, R.M.; Fathy, M.I.; Aly, A.H. Theoretical Study on Polycarbonate-Based One-Dimensional Ternary Photonic Structures from Far-Ultraviolet to Near-Infrared Regions of Electromagnetic Spectrum. Crystals 2022, 12, 642. [Google Scholar] [CrossRef]
- He, L.; Özdemir, Ş.K.; Zhu, J.; Kim, W.; Yang, L. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat. Nanotechnol. 2011, 6, 428–432. [Google Scholar] [CrossRef] [Green Version]
Fresh Urinary EV | Activated Platelet EV | Neuroblastoma EV | Blood EV | |
---|---|---|---|---|
508.3 | 510.4 | 510.7 | 511.3 | |
4958 | 4742 | 4697 | 4619 | |
Q factor | 6663 | 6424 | 6373 | 6284 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abderrahmane, A.; Senouci, K.; Hachemi, B.; Ko, P.J. Design and Performance Analysis of Perovskites Unidimensional Photonic Crystal-Based Biosensors for Extracellular Vesicles Detection: A Numerical Investigation. Crystals 2023, 13, 945. https://doi.org/10.3390/cryst13060945
Abderrahmane A, Senouci K, Hachemi B, Ko PJ. Design and Performance Analysis of Perovskites Unidimensional Photonic Crystal-Based Biosensors for Extracellular Vesicles Detection: A Numerical Investigation. Crystals. 2023; 13(6):945. https://doi.org/10.3390/cryst13060945
Chicago/Turabian StyleAbderrahmane, Abdelkader, Khaled Senouci, Belkacem Hachemi, and Pil Ju Ko. 2023. "Design and Performance Analysis of Perovskites Unidimensional Photonic Crystal-Based Biosensors for Extracellular Vesicles Detection: A Numerical Investigation" Crystals 13, no. 6: 945. https://doi.org/10.3390/cryst13060945
APA StyleAbderrahmane, A., Senouci, K., Hachemi, B., & Ko, P. J. (2023). Design and Performance Analysis of Perovskites Unidimensional Photonic Crystal-Based Biosensors for Extracellular Vesicles Detection: A Numerical Investigation. Crystals, 13(6), 945. https://doi.org/10.3390/cryst13060945