RETRACTED: The Effect of Treatment Temperature on Microstructure and Mechanical Behavior of a Fine-Grained YSZ–NiO(Ni) Anode Material
Abstract
:1. Introduction
1.1. Importance of Studying Electrodes of Solid Oxide Fuel Cells
1.2. Studying the Harmful Effects of the Cyclic Redox Process on Microstructure of SOFC Materials
1.3. The Ways to Improve Redox Stability of SOFC Materials
1.4. The Use of Redox Treatment for Improvement of SOFC Performance
2. Materials and Methods
3. Results
3.1. Evolution of Microstructure at a Temperature of 600 °C
3.2. Evolution of Microstructure at a Temperature of 800 °C
4. Discussion
4.1. Microstructure Related Changes in Fracture Micromechanisms
4.2. A Vickers Indentation Test for Evaluating Materials Workability
5. Conclusions
- Redox treatment at 600 °C positively affects flexural strength, microhardness, fracture toughness, and electrical conductivity of YSZ–NiO(Ni) anode cermets.
- In contrast, this treatment at 800 °C causes the formation of a gradient microstructure. Lateral cracks are initiated on the “near-surface layer/specimen core” interfaces under mechanical loading that causes a significant decrease in flexural strength of the material. The inner layer of the cermet has unsatisfactory electrical conductivity.
- The mode of redox treatment at 600 °C for 4 h in Ar–5% H2/air atmosphere can be regarded as promising for preconditioning YSZ–NiO anode ceramics, as materials in this mode exhibited the best physical, mechanical, and microstructural characteristics. Significant residual compressive stresses that arose as a result of the treatment contributed to an increase in flexural strength of the material compared to the other reduced cermets (the values of flexural strength and relative strength were 127 ± 4 MPa and 96 ± 2.5%, respectively), while electrical conductivity was provided at a comparatively high level (7 × 105 S/m). High flexural strength of this cermet was also substantiated in terms of a pronounced fracture relief exhibiting crack growth along boundaries of agglomerates consisting of fine nickel and zirconia particles. This material also has an advantage in terms of microhardness and fracture toughness (0.75 GPa and 2.82 MPa·m1/2, respectively, under the indentation load of 9.81 N) over those redox-treated at 800 °C (0.68–0.71 GPa and 2.80–2.81 MPa·m1/2, respectively).
- The above experimental data and performed analyses verify the feasibility of redox technique in appropriate modes for preconditioning Ni-containing SOFC anode materials rather than using a traditional one-time reduction process.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_frontmatter.pdf (accessed on 31 January 2023).
- Golkhatmi, S.Z.; Asghar, M.I.; Lund, P.D. A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools. Renew. Sustain. Energy Rev. 2022, 161, 112339. [Google Scholar] [CrossRef]
- Boldrin, P.; Brandon, N.P. Progress and outlook for solid oxide fuel cells for transportation applications. Nat. Catal. 2019, 2, 571–577. [Google Scholar] [CrossRef]
- Jacobson, A.J. Materials for solid oxide fuel cells. Chem. Mater. 2010, 22, 660–674. [Google Scholar] [CrossRef]
- Zamudio-García, J.; Caizán-Juanarena, L.; Porras-Vázquez, J.M.; Losilla, E.R.; Marrero-López, D. A review on recent advances and trends in symmetrical electrodes for solid oxide cells. J. Power Sources 2022, 520, 230852. [Google Scholar] [CrossRef]
- Connor, P.A.; Yue, X.; Savaniu, C.D.; Price, R.; Triantafyllou, G.; Cassidy, M.; Kerherve, G.; Payne, D.J.; Maher, R.C.; Cohen, L.F.; et al. Tailoring SOFC electrode microstructures for improved performance. Adv. Energy Mater. 2018, 8, 1800120. [Google Scholar] [CrossRef]
- Vasyliv, B.D.; Podhurska, V.Y.; Ostash, O.P.; Vira, V.V. Effect of a hydrogen sulfide-containing atmosphere on the physical and mechanical properties of solid oxide fuel cell materials. In Nanochemistry, Biotechnology, Nanomaterials, and Their Applications; Fesenko, O., Yatsenko, L., Eds.; Springer International Publishing AG: Cham, Switzerland, 2018; Volume 214, pp. 475–485. [Google Scholar] [CrossRef]
- Bertei, A.; Ruiz-Trejo, E.; Kareh, K.; Yufit, V.; Wang, X.; Tariq, F.; Brandon, N.P. The fractal nature of the three-phase boundary: A heuristic approach to the degradation of nanostructured solid oxide fuel cell anodes. Nano Energy 2017, 38, 526–536. [Google Scholar] [CrossRef]
- Romaniv, O.M.; Vasyliv, B.D. Some features of formation of the structural strength of ceramic materials. Mater. Sci. 1998, 34, 149–161. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Yamamoto, T.; Yasumoto, K.; Mugikura, Y. Degradation analysis of SOFC stack performance: Investigation of cathode sulfur poisoning due to contamination in air. ECS Trans. 2017, 78, 2347–2354. [Google Scholar] [CrossRef]
- Jacobs, R.; Mayeshiba, T.; Booske, J.; Morgan, D. Material discovery and design principles for stable, high activity perovskite cathodes for solid oxide fuel cells. Adv. Energ. Mater. 2018, 8, 1702708. [Google Scholar] [CrossRef]
- Bianco, M.; Linder, M.; Larring, Y.; Greco, F.; Van Herle, J. Lifetime issues for solid oxide fuel cell interconnects. In Solid Oxide Fuel Cell Lifetime and Reliability; Brandon, N.P., Ruiz-Trejo, E., Boldrin, P., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 121–144. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, Y.; Lu, J.; Gao, L.; Zhang, F.; Chen, J.; Omran, M.; Chen, G. Effect of sintering time on the microstructure and stability of Al2O3–ZrO2 composite powders under microwave-assisted sintering. Ceram. Int. 2023, 49, 8993–8999. [Google Scholar] [CrossRef]
- Sanchez, I.; Axinte, D.; Liao, Z.; Gavalda-Diaz, O.; Smith, R. The effect of high strain rate impact in Yttria stabilized zirconia. Mater. Des. 2023, 229, 111908. [Google Scholar] [CrossRef]
- Jung, J.-M.; Kim, G.-N.; Koh, Y.-H.; Kim, H.-E. Manufacturing and characterization of dental crowns made of 5-mol% yttria stabilized zirconia by digital light processing. Materials 2023, 16, 1447. [Google Scholar] [CrossRef]
- Mayinger, F.; Buser, R.; Laier, M.; Schönhoff, L.M.; Kelch, M.; Hampe, R.; Stawarczyk, B. Impact of the material and sintering protocol, layer thickness, and thermomechanical aging on the two-body wear and fracture load of 4Y-TZP crowns. Clin. Oral Investig. 2022, 26, 6617–6628. [Google Scholar] [CrossRef]
- Li, Y.; Sun, H.; Song, J.; Zhang, Z.; Lan, H.; Tian, L.; Xie, K. Effect of two-step sintering on the mechanical and electrical properties of 5YSZ and 8YSZ ceramics. Materials 2023, 16, 2019. [Google Scholar] [CrossRef] [PubMed]
- Aziz, A.J.A.; Baharuddin, N.A.; Somalu, M.R.; Muchtar, A. Review of composite cathodes for intermediate-temperature solid oxide fuel cell applications. Ceram. Int. 2020, 46, 23314–23325. [Google Scholar] [CrossRef]
- Li, Q.-L.; Jiang, Y.-Y.; Wei, Y.-R.; Swain, M.V.; Yao, M.-F.; Li, D.-S.; Wei, T.; Jian, Y.-T.; Zhao, K.; Wang, X.-D. The influence of yttria content on the microstructure, phase stability and mechanical properties of dental zirconia. Ceram. Int. 2022, 48, 5361–5368. [Google Scholar] [CrossRef]
- Golkhatmi, S.Z.; Asghar, M.I.; Lund, P.D. Development and characterization of highly stable electrode inks for low-temperature ceramic fuel cells. J. Power Sources 2022, 552, 232263. [Google Scholar] [CrossRef]
- Huang, W.; Qiu, H.; Zhang, Y.; Zhang, F.; Gao, L.; Omran, M.; Chen, G. Microstructure and phase transformation behavior of Al2O3–ZrO2 under microwave sintering. Ceram. Int. 2023, 49, 4855–4862. [Google Scholar] [CrossRef]
- Romaniv, O.M.; Zalite, I.V.; Simin’kovych, V.M.; Tkach, O.N.; Vasyliv, B.D. Effect of the concentration of zirconium dioxide on the fracture resistance of Al2O3–ZrO2 ceramics. Mater. Sci. 1996, 31, 588–594. [Google Scholar] [CrossRef]
- Fan, L.; Zhu, B.; Su, P.C.; He, C. Nanomaterials and technologies for low temperature solid oxide fuel cells: Recent advances, challenges and opportunities. Nano Energy 2018, 45, 148–176. [Google Scholar] [CrossRef]
- Nonaka, K.; Teramae, M.; Pezzotti, G. Evaluation of the effect of high-speed sintering on the properties of 5 mol% yttria stabilized dental zirconia sintered bodies. Materials 2022, 15, 5685. [Google Scholar] [CrossRef]
- Kulyk, V.; Duriagina, Z.; Vasyliv, B.; Vavrukh, V.; Kovbasiuk, T.; Lyutyy, P.; Vira, V. The effect of sintering temperature on the phase composition, microstructure, and mechanical properties of yttria-stabilized zirconia. Materials 2022, 15, 2707. [Google Scholar] [CrossRef]
- Tu, B.; Yin, Y.; Zhang, F.; Su, X.; Lyu, X.; Cheng, M. High performance of direct methane-fuelled solid oxide fuel cell with samarium modified nickel-based anode. Int. J. Hydrog. Energy 2020, 45, 27587–27596. [Google Scholar] [CrossRef]
- Vasyliv, B.; Kulyk, V.; Duriagina, Z.; Mierzwinski, D.; Kovbasiuk, T.; Tepla, T. Estimation of the effect of redox treatment on microstructure and tendency to brittle fracture of anode materials of YSZ–NiO(Ni) system. East. Eur. J. Enterp. Technol. 2020, 6, 61–71. [Google Scholar] [CrossRef]
- Sciazko, A.; Komatsu, Y.; Yokoi, R.; Shimura, T.; Shikazono, N. Effects of mass fraction of La0.9Sr0.1Cr0.5Mn0.5O3-δ and Gd0.1Ce0.9O2-δ composite anodes for nickel free solid oxide fuel cells. J. Eur. Ceram. Soc. 2022, 42, 1556–1567. [Google Scholar] [CrossRef]
- He, A.; Gong, J.; Onishi, J.; Shikazono, N. Three-dimensional topology optimization of Ni-YSZ anode for solid oxide fuel cells via multiphase level-set method. Nano Energy 2022, 103, 107817. [Google Scholar] [CrossRef]
- Wood, T.; Ivey, D.G. Chapter 4-The impact of redox cycling on solid oxide fuel cell lifetime. In Solid Oxide Fuel Cell Lifetime and Reliability; Brandon, N.P., Ruiz-Trejo, E., Boldrin, P., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 51–77. [Google Scholar] [CrossRef]
- Tikekar, N.; Armstrong, T.; Virkar, A. Reduction and reoxidation kinetics of nikel-based SOFC anodes. J. Electrochem. Soc. 2006, 153, A654–A663. [Google Scholar] [CrossRef]
- Sarantaridis, D.; Atkinson, A. Redox cycling of Ni-based solid oxide fuel cell anodes: A review. Fuel Cells 2007, 3, 246–258. [Google Scholar] [CrossRef]
- Sun, B.; Rudkin, R.A.; Atkinson, A. Effect of thermal cycling on residual stress and curvature of anode-supported SOFCs. Fuel Cells 2009, 6, 805–813. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, B.; Tu, B.; Dong, Y.; Cheng, M. Redox cycling of Ni–YSZ anode investigated by TRP technique. Solid State Ion. 2005, 176, 2193–2199. [Google Scholar] [CrossRef]
- Faes, A.; Nakajo, A.; Hessler-Wyser, A.; Dubois, D.; Brisse, A.; Modena, S.; Van Herle, J. RedOx study of anode-supported solid oxide fuel cell. J. Power Sources 2009, 193, 55–64. [Google Scholar] [CrossRef]
- Wood, A.; Waldbillig, D. Preconditioning Treatment to Enhance Redox Tolerance of Solid Oxide Fuel Cells. U.S. Patent 8,029,946 B2, 4 October 2011. [Google Scholar]
- Waldbillig, D.; Wood, A.; Ivey, D.G. Electrochemical and microstructural characterization of the redox tolerance of solid oxide fuel cell anodes. J. Power Sources 2005, 145, 206–215. [Google Scholar] [CrossRef]
- Li, J.; Zhu, R.; Yuan, J.; Lu, X.; Zhao, S.; Xu, M.; Huang, J.; Tu, Y.; Jiang, J.; Deng, L.; et al. Phase stability, microstructure and mechanical properties of nanostructured yttria stabilized zirconia coatings subjected to moisture degradation. Ceram. Int. 2022, 48, 31800–31810. [Google Scholar] [CrossRef]
- Mack, J.B.; Pennell, S.M.; Dunand, D.C. Microstructural evolution of lamellar Fe-25Ni foams during steam-hydrogen redox cycling. Acta Mater. 2022, 237, 118148. [Google Scholar] [CrossRef]
- Pennell, S.; Dunand, D. Effects of bridging fibers on the evolution of lamellar architecture during H2/H2O redox cycling of Fe-foams. Acta Mater. 2023, 243, 118543. [Google Scholar] [CrossRef]
- Wang, M.; Li, N.; Wang, Z.; Chen, C.; Zhan, Z. Electrochemical performance and redox stability of solid oxide fuel cells supported on dual-layered anodes of Ni–YSZ cermet and Ni–Fe alloy. Int. J. Hydrog. Energy 2022, 47, 5453–5461. [Google Scholar] [CrossRef]
- Chang, H.; Chen, H.; Yang, G.; Shi, J.; Zhou, W.; Bai, J.; Wang, Y.; Li, S.D. Enhanced coking resistance of Ni cermet anodes for solid oxide fuel cells based on methane on-cell reforming by a redox-stable double-perovskite Sr2MoFeO6-δ. Int. J. Energy Res. 2018, 43, 2527–2537. [Google Scholar] [CrossRef]
- Lv, H.; Huang, Z.; Zhang, G.; Chen, T.; Wang, S. A new design of metal supported micro-tubular solid oxide fuel cell with sandwich structure. Int. J. Hydrog. Energy 2022, 47, 33420–33428. [Google Scholar] [CrossRef]
- Faes, A.; Hessler-Wyser, A.; Zryd, A.; Van Herle, J. A review of RedOx cycling of solid oxide fuel cell anode. Membranes 2012, 2, 585–664. [Google Scholar] [CrossRef]
- Ettler, M.; Timmermann, H.; Malzbender, J.; Weber, A.; Menzler, N.H. Durability of Ni anodes during reoxidation cycles. J. Power Sources 2010, 195, 5452–5467. [Google Scholar] [CrossRef]
- Peraldi, R.; Monceau, D.; Pieraggi, B. Correlations between growth kinetics and microstructure for scales formed by high-temperature oxidation of pure nickel. I. Morphologies and microstructures. Oxid. Met. 2002, 58, 249–273. [Google Scholar] [CrossRef]
- Mori, M.; Yamamoto, T.; Itoh, H.; Inaba, H.; Tagawa, H. Thermal expansion of nickel-zirconia anodes in solid oxide fuel cells during fabrication and operation. J. Electrochem. Soc. 1998, 145, 1374–1381. [Google Scholar] [CrossRef]
- Pihlatie, M.; Ramos, T.; Kaiser, A. Testing and improving the redox stability of Ni-based solid oxide fuel cells. J. Power Sources 2009, 193, 322–330. [Google Scholar] [CrossRef]
- Lang, M.; Raab, S.; Lemcke, M.S.; Bohn, C.; Pysik, M. Long-term behavior of a solid oxide electrolyzer (SOEC) stack. Fuel Cells 2020, 20, 690–700. [Google Scholar] [CrossRef]
- Ostash, O.P.; Vasyliv, B.D.; Podhurs’ka, V.Y.; Vasyl’ev, O.D.; Brodnikovs’kyi, E.M.; Ushkalov, L.M. Optimization of the properties of 10Sc1CeSZ–NiO composite by the redox treatment. Mater. Sci. 2011, 46, 653–658. [Google Scholar] [CrossRef]
- Vasyliv, B.D.; Podhurs’ka, V.Y.; Ostash, O.P.; Vasyl’ev, O.D.; Brodnikovs’kyi, E.M. Influence of reducing and oxidizing media on the physicomechanical properties of ScCeSZ–NiO and YSZ–NiO ceramics. Mater. Sci. 2013, 49, 135–144. [Google Scholar] [CrossRef]
- Kharchenko, Y.; Blikharskyy, Z.; Vira, V.; Vasyliv, B.D.; Podhurska, V.Y.; Kalynovskyy, A.; Korendiy, V. Nanostructural changes in a Ni/NiO cermet during high-temperature reduction and reoxidation. In Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications; Fesenko, O., Yatsenko, L., Eds.; Springer International Publishing AG: Cham, Switzerland, 2021; Volume 246, pp. 219–229. [Google Scholar] [CrossRef]
- Gere, J.M.; Timoshenko, S.P. Mechanics of Materials, 4th ed.; PWS Publishing Company: Boston, MA, USA, 1997; p. 912. [Google Scholar]
- ASTM E384-11; Standard Test Method for Knoop and Vickers Hardness of Materials. ASTM International: West Conshohocken, PA, USA, 2011. [CrossRef]
- ASTM C1327-03; Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics. ASTM International: West Conshohocken, PA, USA, 2003. [CrossRef]
- Anstis, G.R.; Chantikul, P.; Lawn, B.R.; Marshall, D.B. A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements. J. Am. Ceram. Soc. 1981, 64, 533–538. [Google Scholar] [CrossRef]
- WinCSD. A Crystal Structure Determination and Crystallographic Calculation Software. Available online: https://www.wincsd.eu/ (accessed on 20 March 2022).
- ASTM F43-99; Test Methods for Resistivity of Semiconductor Materials. ASTM International: SEMI, CA, USA, 2005. Available online: https://www.scribd.com/document/228100659/astm-F43-99 (accessed on 16 August 2022).
Mode Marking | Treatment Mode (Gas Mixture Composition in vol%) | σ × 10−5 (S/m) | σf (MPa) | ||
---|---|---|---|---|---|
Mean Value | Standard Deviation | Mean Value | Standard Deviation | ||
1 | As-sintered | (*) | (*) | 132.3 | ±4.4 |
2 | Processing at 600 °C for 4 h in Ar–5% Н2 | 2.7 | ±0.4 | 111.1 | ±4.6 |
3 | Processing at 600 °C for 4 h in Н2 | 7.9 | ±0.6 | 63.5 | ±6.7 |
4 | Redox at 600 °C for 4 h in Ar–5% Н2/air | 7.0 | ±0.4 | 127.0 | ±4.0 |
5 | Redox at 600 °C for 4 h in Н2/air | 7.3 | ±0.5 | 83.3 | ±4.3 |
6 | Processing at 800 °C for 1 h in Ar–5% Н2 | 6.4 | ±0.6 | 54.2 | ±4.4 |
7 | Processing at 800 °C for 2 h in Ar–5% Н2 | 5.2 | ±0.4 | 50.3 | ±6.3 |
8 | Redox at 800 °C for 1 h in Ar–5% Н2/air | 3.4 | ±0.6 | 43.7 | ±6.6 |
Chemical Element and X-ray Series | Spectra | |||||
---|---|---|---|---|---|---|
S1 | S2 | S3 | ||||
wt% | at% | wt% | at% | wt% | at% | |
O K | 26.85 | 66.85 | 25.42 | 55.58 | 8.43 | 27.74 |
Ni K | 4.65 | 3.15 | 74.58 | 44.42 | 60.72 | 54.41 |
Y L | 7.50 | 3.36 | – | – | 3.39 | 2.01 |
Zr L | 61.00 | 26.64 | – | – | 27.46 | 15.84 |
Chemical Element and X-ray Series | Spectra | |||
---|---|---|---|---|
S4 | S5 | |||
wt% | at% | wt% | at% | |
O K | 26.17 | 66.32 | 2.50 | 8.59 |
Ni K | 3.18 | 2.19 | 97.50 | 91.41 |
Y L | 7.65 | 3.49 | – | – |
Zr L | 63.00 | 28.00 | – | – |
Chemical Element and X-ray Series | Spectra | |||
---|---|---|---|---|
S1 | S2 | |||
wt% | at% | wt% | at% | |
O K | 11.20 | 34.86 | 11.89 | 36.06 |
Ni K | 54.95 | 46.61 | 57.91 | 47.83 |
Y L | 3.55 | 1.99 | 3.14 | 1.72 |
Zr L | 30.30 | 16.54 | 27.06 | 14.39 |
Chemical Element and X-ray Series | Spectra | |||
---|---|---|---|---|
S1 | S2 | |||
wt% | at% | wt% | at% | |
O K | 24.26 | 68.54 | 3.12 | 10.64 |
Ni K | 5.92 | 3.66 | 95.34 | 88.44 |
Y L | 7.19 | 2.86 | – | – |
Zr L | 62.63 | 24.94 | 1.54 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasyliv, B.; Kulyk, V.; Duriagina, Z.; Kovbasiuk, T. RETRACTED: The Effect of Treatment Temperature on Microstructure and Mechanical Behavior of a Fine-Grained YSZ–NiO(Ni) Anode Material. Crystals 2023, 13, 944. https://doi.org/10.3390/cryst13060944
Vasyliv B, Kulyk V, Duriagina Z, Kovbasiuk T. RETRACTED: The Effect of Treatment Temperature on Microstructure and Mechanical Behavior of a Fine-Grained YSZ–NiO(Ni) Anode Material. Crystals. 2023; 13(6):944. https://doi.org/10.3390/cryst13060944
Chicago/Turabian StyleVasyliv, Bogdan, Volodymyr Kulyk, Zoia Duriagina, and Taras Kovbasiuk. 2023. "RETRACTED: The Effect of Treatment Temperature on Microstructure and Mechanical Behavior of a Fine-Grained YSZ–NiO(Ni) Anode Material" Crystals 13, no. 6: 944. https://doi.org/10.3390/cryst13060944
APA StyleVasyliv, B., Kulyk, V., Duriagina, Z., & Kovbasiuk, T. (2023). RETRACTED: The Effect of Treatment Temperature on Microstructure and Mechanical Behavior of a Fine-Grained YSZ–NiO(Ni) Anode Material. Crystals, 13(6), 944. https://doi.org/10.3390/cryst13060944