Phase-Only Liquid-Crystal-on-Silicon Spatial-Light-Modulator Uniformity Measurement with Improved Classical Polarimetric Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basic Polarimetric Method
2.2. Reflections on the LCoS Cover Glass
2.3. Theory and Analysis with Un-Modulated Front Reflection
2.4. Theory and Analysis with Double-Modulated Back Reflection
2.5. Retrieving LCoS Uniformity from the Data Affected by Back Reflection
3. Results
3.1. Results of the Front Reflection
3.2. Results of the Back Reflection
3.3. Results of the LCoS Uniformity Retrieving
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Lazarev, G.; Chen, P.-J.; Strauss, J.; Fontaine, N.; Forbes, A. Beyond the Display: Phase-Only Liquid Crystal on Silicon Devices and Their Applications in Photonics [Invited]. Opt. Express 2019, 27, 16206–16249. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-M.P.; Yang, J.-P.; Yen, H.-T.; Hsu, Z.-N.; Huang, Y.; Wu, S.-T. Pursuing High Quality Phase-Only Liquid Crystal on Silicon (LCoS) Devices. Appl. Sci. 2018, 8, 2323. [Google Scholar] [CrossRef] [Green Version]
- Tong, Y.; Pivnenko, M.; Chu, D. Improvements of Phase Linearity and Phase Flicker of Phase-Only LCoS Devices for Holographic Applications. Appl. Opt. 2019, 58, G248–G255. [Google Scholar] [CrossRef] [PubMed]
- Liebmann, M.; Valverde, J.; Kerbstadt, F. Wavefront Compensation for Spatial Light Modulators Based on Twyman-Green Interferometry. In Proceedings of the Advances in Display Technologies XI, Bellingham, WA, USA, 5 March 2021; Volume 11708, pp. 142–149. [Google Scholar]
- Zeng, Z.; Li, Z.; Fang, F.; Zhang, X. Phase Compensation of the Non-Uniformity of the Liquid Crystal on Silicon Spatial Light Modulator at Pixel Level. Sensors 2021, 21, 967. [Google Scholar] [CrossRef] [PubMed]
- Otón, J.; Ambs, P.; Millán, M.S.; Pérez-Cabré, E. Multipoint Phase Calibration for Improved Compensation of Inherent Wavefront Distortion in Parallel Aligned Liquid Crystal on Silicon Displays. Appl. Opt. 2007, 46, 5667–5679. [Google Scholar] [CrossRef]
- Bing, Z.; Yuntian, T.; Lili, X.; Qiong, W. The Vibration Isolation Technologies of Load in Aviation and Navigation. Int. J. Multimed. Ubiquitous Eng. 2015, 10, 19–26. [Google Scholar] [CrossRef]
- Gong, W.; Li, A.; Huang, C.; Che, H.; Feng, C.; Qin, F. Effects and Prospects of the Vibration Isolation Methods for an Atomic Interference Gravimeter. Sensors 2022, 22, 583. [Google Scholar] [CrossRef]
- Charrière, F.; Kühn, J.; Colomb, T.; Montfort, F.; Cuche, E.; Emery, Y.; Weible, K.; Marquet, P.; Depeursinge, C. Characterization of Microlenses by Digital Holographic Microscopy. Appl. Opt. 2006, 45, 829–835. [Google Scholar] [CrossRef] [Green Version]
- Márquez, A.; Martínez, F.J.; Gallego, S.; Ortuño, M.; Francés, J.; Beléndez, A.; Pascual, I. Classical Polarimetric Method Revisited to Analyse the Modulation Capabilities of Parallel Aligned Liquid Crystal on Silicon Displays. In Proceedings of the Optics and Photonics for Information Processing VI, Bellingham, WA, USA, 15 October 2012; Volume 8498, pp. 179–189. [Google Scholar]
- Martínez, F.J.; Márquez, A.; Gallego, S.; Frances, J.; Pascual, I. Extended Linear Polarimeter to Measure Retardance and Flicker: Application to Liquid Crystal on Silicon Devices in Two Working Geometries. OE 2014, 53, 014105. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Wu, S.; Nie, J.; Yang, H. Uncertainty in the Phase Flicker Measurement for the Liquid Crystal on Silicon Devices. Photonics 2021, 8, 307. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, H.; Robertson, B.; Redmond, M.; Pivnenko, M.; Collings, N.; Crossland, W.A.; Chu, D. Diffraction Based Phase Compensation Method for Phase-Only Liquid Crystal on Silicon Devices in Operation. Appl. Opt. 2012, 51, 3837–3846. [Google Scholar] [CrossRef]
- Zhang, Z.; Jeziorska-Chapman, A.M.; Collings, N.; Pivnenko, M.; Moore, J.; Crossland, B.; Chu, D.P.; Milne, B. High Quality Assembly of Phase-Only Liquid Crystal on Silicon (LCOS) Devices. J. Display Technol. 2011, 7, 120–126. [Google Scholar] [CrossRef]
- Van Gelder, R.; Melnik, G. Uniformity Metrology in Ultra-Thin LCoS LCDs. J. Soc. Inf. Disp. 2006, 14, 233–239. [Google Scholar] [CrossRef]
- Ronzitti, E.; Guillon, M.; Sars, V.; Emiliani, V. LCoS Nematic SLM Characterization and Modeling for Diffraction Efficiency Optimization, Zero and Ghost Orders Suppression. Opt. Express 2012, 20, 17843–17855. [Google Scholar] [CrossRef]
- Dey, T.; Naughton, D. Cleaning and Anti-Reflective (AR) Hydrophobic Coating of Glass Surface: A Review from Materials Science Perspective. J. Sol-Gel. Sci. Technol. 2016, 77, 1–27. [Google Scholar] [CrossRef]
- Prado, R.; Beobide, G.; Marcaide, A.; Goikoetxea, J.; Aranzabe, A. Development of Multifunctional Sol–Gel Coatings: Anti-Reflection Coatings with Enhanced Self-Cleaning Capacity. Sol. Energy Mater. Sol. Cells 2010, 94, 1081–1088. [Google Scholar] [CrossRef]
- Thorlabs, Inc. Output Optical Properties of Beamsplitters with Angle of Incidence. Available online: https://www.thorlabs.com/images/TabImages/Beamsplitter_Lab.pdf (accessed on 17 March 2023).
- Han, Z.; Yan, B.; Qi, Y.; Wang, Y.; Wang, Y. Color Holographic Display Using Single Chip LCOS. Appl. Opt. 2019, 58, 69–75. [Google Scholar] [CrossRef]
- Wang, M.; Zong, L.; Mao, L.; Marquez, A.; Ye, Y.; Zhao, H.; Vaquero Caballero, F.J. LCoS SLM Study and Its Application in Wavelength Selective Switch. Photonics 2017, 4, 22. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; You, Z.; Chu, D. Fundamentals of Phase-Only Liquid Crystal on Silicon (LCOS) Devices. Light Sci. Appl. 2014, 3, e213. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Yang, H.; Qin, L.; Shi, Y.; Li, Q. Measuring the Relationship between Grayscale and Phase Retardation of LCoS Based on Binary Optics. SID Symp. Dig. Tech. Pap. 2020, 51, 140–143. [Google Scholar] [CrossRef]
- Donges, A. The Coherence Length of Black-Body Radiation. Eur. J. Phys. 1998, 19, 245. [Google Scholar] [CrossRef]
Phase Calculation Methods | ||
---|---|---|
Original polarimetric method [10] | ||
Our method |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Li, K. Phase-Only Liquid-Crystal-on-Silicon Spatial-Light-Modulator Uniformity Measurement with Improved Classical Polarimetric Method. Crystals 2023, 13, 958. https://doi.org/10.3390/cryst13060958
Zhang X, Li K. Phase-Only Liquid-Crystal-on-Silicon Spatial-Light-Modulator Uniformity Measurement with Improved Classical Polarimetric Method. Crystals. 2023; 13(6):958. https://doi.org/10.3390/cryst13060958
Chicago/Turabian StyleZhang, Xinyue, and Kun Li. 2023. "Phase-Only Liquid-Crystal-on-Silicon Spatial-Light-Modulator Uniformity Measurement with Improved Classical Polarimetric Method" Crystals 13, no. 6: 958. https://doi.org/10.3390/cryst13060958
APA StyleZhang, X., & Li, K. (2023). Phase-Only Liquid-Crystal-on-Silicon Spatial-Light-Modulator Uniformity Measurement with Improved Classical Polarimetric Method. Crystals, 13(6), 958. https://doi.org/10.3390/cryst13060958