Synthesis, Structure, and Characterizations of a Heterobimetallic Heptanuclear Complex [Pb2Co5(acac)14]
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Measurements
2.2. General Synthetic Procedures
2.3. X-ray Crystallographic Procedures
3. Results and Discussion
3.1. Synthesis and Properties of [Pb2Co5(acac)14] and [PbCo(acac)4]
3.2. Single Crystal Structure of [Pb2Co5(acac)14]
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Navulla, A.; Tsirlin, A.A.; Abakumov, A.M.; Shpanchenko, R.V.; Zhang, H.; Dikarev, E.V. Fluorinated Heterometallic β-Diketonates as Volatile Single-Source Precursors for the Synthesis of Low-Valent Mixed-Metal Fluorides. J. Am. Chem. Soc. 2011, 133, 692–694. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yang, J.-H.; Shpanchenko, R.V.; Abakumov, A.M.; Hadermann, J.; Clérac, R.; Dikarev, E.V. New Class of Single-Source Precursors for the Synthesis of Main Group-Transition Metal Oxides: Heterobimetallic Pb-Mn Beta-Diketonates. Inorg. Chem. 2009, 48, 8480–8488. [Google Scholar] [CrossRef]
- Lieberman, C.M.; Navulla, A.; Zhang, H.; Filatov, A.S.; Dikarev, E.V. Mixed-Ligand Approach to Design of Heterometallic Single-Source Precursors with Discrete Molecular Structure. Inorg. Chem. 2014, 53, 4733–4738. [Google Scholar] [CrossRef] [PubMed]
- Chrétien, A.; Samouël, M. Magnetische Eigenschaften der Verbindungen BaMF4 und Pb2MF6 (M = Mn, Fe, Co, Ni, Cu, Zn). Monatshefte Für Chemie. 1972, 103, 17–23. [Google Scholar] [CrossRef]
- Grenier, J.; Pouchard, M.; Hagenmuller, P. Caractérisations physiques du ferrites de plomb Pb2Fe2O5. Rev. Chim. Miner. 1977, 14, 515–522. [Google Scholar]
- Vreshch, V.D.; Yang, J.-H.; Zhang, H.; Filatov, A.S.; Dikarev, E.V. Monomeric Square-Planar Cobalt(II) Acetylacetonate: Mystery or Mistake? Inorg. Chem. 2010, 49, 8430–8434. [Google Scholar] [CrossRef]
- Krisyuk, V.V.; Urkasym Kyzy, S.; Rybalova, T.V.; Baidina, I.A.; Korolkov, I.V.; Chizhov, D.L.; Bazhin, D.N.; Kudyakova, Y.S. Isomerization as a Tool to Design Volatile Heterometallic Complexes with Methoxy-Substituted β-Diketonates. J. Coord. Chem. 2018, 71, 2194–2208. [Google Scholar] [CrossRef]
- Krisyuk, V.V.; Baidina, I.A.; Basova, T.V.; Bulusheva, L.G.; Igumenov, I.K. Self-assembly of Coordination Polymers from Volatile Pd II and Pb II Β-diketonate Derivatives through Metallophilic Interactions: Self-Assembly of Coordination Polymers from PdIIand Pb II β-Diketonates. Eur. J. Inorg. Chem. 2013, 2013, 5738–5745. [Google Scholar] [CrossRef]
- Krisyuk, V.V.; Baidina, I.A.; Kryuchkova, N.A.; Logvinenko, V.A.; Plyusnin, P.E.; Korolkov, I.V.; Zharkova, G.I.; Turgambaeva, A.E.; Igumenov, I.K. Volatile Heterometallics: Structural Diversity of Pd–Pb β-Diketonates and Correlation with Thermal Properties. Dalton Trans. 2017, 46, 12245–12256. [Google Scholar] [CrossRef]
- Lieberman, C.M.; Barry, M.C.; Wei, Z.; Rogachev, A.Y.; Wang, X.; Liu, J.-L.; Clérac, R.; Chen, Y.-S.; Filatov, A.S.; Dikarev, E.V. Position Assignment and Oxidation State Recognition of Fe and Co Centers in Heterometallic Mixed-Valent Molecular Precursors for the Low-Temperature Preparation of Target Spinel Oxide Materials. Inorg. Chem. 2017, 56, 9574–9584. [Google Scholar] [CrossRef]
- Maryunina, K.; Fokin, S.; Ovcharenko, V.; Romanenko, G.; Ikorskii, V. Solid Solutions: An Efficient Way to Control the Temperature of Spin Transition in Heterospin Crystals MxCu1−x(Hfac)2L (M = Mn, Ni, Co; L = nitronyl Nitroxide). Polyhedron 2005, 24, 2094–2101. [Google Scholar] [CrossRef]
- Reis, S.G.; Del Águila-Sánchez, M.A.; Guedes, G.P.; Ferreira, G.B.; Novak, M.A.; Speziali, N.L.; López-Ortiz, F.; Vaz, M.G.F. Synthesis, Crystal Structures and Magnetic Behaviour of Four Coordination Compounds Constructed with a Phosphinic Amide-TEMPO Radical and [M(Hfac)2] (M = Cu(II), Co(II) and Mn(II)). Dalton Trans. 2014, 43, 14889–14901. [Google Scholar] [CrossRef] [PubMed]
- Maxim, C.; Matni, A.; Geoffroy, M.; Andruh, M.; Hearns, N.G.R.; Clérac, R.; Avarvari, N. C3 Symmetric Tris(Phosphonate)-1,3,5-Triazine Ligand: Homopolymetallic Complexes and Its Radical Anion. New J. Chem. 2010, 34, 2319. [Google Scholar] [CrossRef]
- Dikarev, E.V.; Zhang, H.; Li, B. Heterometallic Bismuth-Transition Metal Homoleptic Beta-Diketonates. J. Am. Chem. Soc. 2005, 127, 6156–6157. [Google Scholar] [CrossRef]
- Hubert-Pfalzgraf, L.G. Some Trends in the Design of Homo- and Heterometallic Molecular Precursors of High-Tech Oxides. Inorg. Chem. Commun. 2003, 6, 102–120. [Google Scholar] [CrossRef]
- Jones, A.C.; Aspinall, H.C.; Chalker, P.R. Molecular Design of Improved Precursors for the MOCVD of Oxides Used in Microelectronics. Surf. Coat. Technol. 2007, 201, 9046–9054. [Google Scholar] [CrossRef]
- Weiss, F.; Audier, M.; Bartasyte, A.; Bellet, D.; Girardot, C.; Jimenez, C.; Kreisel, J.; Pignard, S.; Salaun, M.; Ternon, C. Multifunctional Oxide Nanostructures by Metal-Organic Chemical Vapor Deposition (MOCVD). Pure Appl. Chem. 2009, 81, 1523–1534. [Google Scholar] [CrossRef]
- Nikoloski, A.N.; Nicol, M.J. Addition of Cobalt to Lead Anodes Used for Oxygen Evolution—A Literature Review. Miner. Process. Extr. Met. Rev. 2009, 31, 30–57. [Google Scholar] [CrossRef]
- Felder, A.; Prengaman, R.D. Lead Alloys for Permanent Anodes in the Nonferrous Metals Industry. Jom 2006, 58, 28–31. [Google Scholar] [CrossRef]
- Nikoloski, A.N.; Barmi, M.J. Novel Lead–Cobalt Composite Anodes for Copper Electrowinning. Hydrometallurgy 2013, 137, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, I.; Stefanov, Y.; Noncheva, Z.; Petrova, M.; Dobrev, T.; Mirkova, L.; Vermeersch, R.; Demaerel, J.-P. Insoluble Anodes Used in Hydrometallurgy. Hydrometallurgy 2000, 57, 109–124. [Google Scholar] [CrossRef]
- Barmi, M.J.; Nikoloski, A.N. Electrodeposition of Lead–Cobalt Composite Coatings Electrocatalytic for Oxygen Evolution and the Properties of Composite Coated Anodes for Copper Electrowinning. Hydrometallurgy 2012, 129–130, 59–66. [Google Scholar] [CrossRef]
- Tobosque, P.; Maril, M.; Maril, Y.; Camurri, C.; Delplancke, J.L.; Delplancke, M.P.; Rodríguez, C.A.; Carrasco, C. Electrodeposition of Lead–Cobalt Anodes: The Effect of Electrolyte PH on Film Properties. J. Electrochem. Soc. 2017, 164, D621–D625. [Google Scholar] [CrossRef]
- Isakhani-Zakaria, M.; Allahkaram, S.R.; Ramezani-Varzaneh, H.A. Evaluation of Corrosion Behaviour of Pb-Co3O4 Electrodeposited Coating Using EIS Method. Corros. Sci. 2019, 157, 472–480. [Google Scholar] [CrossRef]
- Roy, S.; Majumder, S.B. Recent Advances in Multiferroic Thin Films and Composites. J. Alloys Compd. 2012, 538, 153–159. [Google Scholar] [CrossRef]
- Xing, Y.T.; Micklitz, H.; Herrera, W.T.; Rappoport, T.G.; Baggio-Saitovitch, E. Superconducting Transition in Pb/Co Nanocomposites: Effect of Co Volume Fraction and External Magnetic Field. Eur. Phys. J. B 2010, 76, 353–357. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.T.; Micklitz, H.; Rappoport, T.G.; Milošević, M.V.; Solórzano-Naranjo, I.G.; Baggio-Saitovitch, E. Spontaneous Vortex Phases in Superconductor-Ferromagnet Pb-Co Nanocomposite Films. Phys. Rev. B Condens. Matter Mater. Phys. 2008, 78, 224524. [Google Scholar] [CrossRef] [Green Version]
- SAINT, version 2017.3-0; Part of Bruker APEX3 Software Package; Bruker AXS: Billerica, MA, USA, 2017.
- SADABS, version 2017.3-0; Part of Bruker APEX3 Software Package; Bruker AXS: Billerica, MA, USA, 2017.
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Compound | Pb2Co5(acac)14 | PbCo(acac)4 |
CCDC | 2268578 | 2268579 |
Empirical formula | C70H98Co5Pb2O28 | C20H28CoPbO8 |
Formula weight | 2096.51 | 662.54 |
Temperature (K) | 100(2) | 100(2) |
Wavelength (Ǻ) | 0.49594 | 0.71073 |
Crystal system | Monoclinic | Monoclinic |
Space group | P21/c | P21/c |
a (Å) | 23.8452(6) | 8.7792(15) |
b (Å) | 10.7063(3) | 20.142(3) |
c (Å) | 16.3561(4) | 13.720(2) |
β (°) | 97.0960(10) | 91.957(2) |
V (Å3) | 4143.63(19) | 2424.8(7) |
Z | 2 | 4 |
ρcalcd (g·cm−3) | 1.680 | 1.815 |
μ (mm−1) | 1.989 | 7.657 |
F(000) | 2082 | 1284 |
Crystal size (mm3) | 0.09 × 0.07 × 0.04 | 0.16 × 0.13 × 0.10 |
θ range for data collection (°) | 1.201–19.317 | 2.321–28.277 |
Reflections collected | 129,052 | 20,649 |
Independent reflections | 10,257 [Rint = 0.0596] | 5640 [Rint = 0.0783] |
Transmission factors (min/max) | 0.7421/0.8414 | 0.6241/0.7563 |
Completeness to full θ (%) | 99.6 | 99.7 |
Data/restraints/params. | 10,257/0/490 | 5640/0/279 |
R1, a wR2 b (I > 2σ(I)) | 0.0198, 0.0533 | 0.0545/0.1296 |
R1, a wR2 b (all data) | 0.0225, 0.0542 | 0.0975/0.1496 |
Quality-of-fit c | 1.064 | 1.029 |
Single Crystal Data (−173 °C) | Solution Product Le Bail Fit (20 °C) | Solid-State Product Le Bail Fit (20 °C) | |
---|---|---|---|
Space group | P21/c | P21/c | P21/c |
a (Å) | 23.8452(6) | 23.939(3) | 23.933(8) |
b (Å) | 10.7063(3) | 10.9156(10) | 10.908(4) |
c (Å) | 16.3561(4) | 16.399(2) | 16.496(5) |
β (o) | 97.0960(10) | 96.767(11) | 97.026(13) |
V (Å3) | 4143.63(19) | 4255.5(9) | 4274(2) |
Co–Oc | Co–Oc-b | Co–Ob (cis) | Co–Ob (trans) | |
---|---|---|---|---|
Pb2Co5(acac)14 | 1.98–2.05 | 2.02–2.08 | 2.09–2.22 | 2.26 |
Co4(acac)8 | 2.00–2.03 | 2.02–2.11 | 2.09–2.20 | |
PbCo(acac)4 | 2.02–2.03 | 2.03–2.04 | 2.22–2.24 | |
PbCo(hfac)4 | 2.05 | 2.04–2.07 |
Pb–Oc | Pb–Oc-b | Pb–Ob (cis) | |
---|---|---|---|
Pb2Co5(acac)14 | 2.34–2.35 | 2.48–2.49 | 2.81–2.86 |
PbCo(acac)4 | 2.31–2.32 | 2.51–2.52 | 2.86–2.89 |
PbCo(hfac)4 | 2.32 | 2.74–2.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wei, Z.; Dikarev, E.V. Synthesis, Structure, and Characterizations of a Heterobimetallic Heptanuclear Complex [Pb2Co5(acac)14]. Crystals 2023, 13, 1089. https://doi.org/10.3390/cryst13071089
Zhang Y, Wei Z, Dikarev EV. Synthesis, Structure, and Characterizations of a Heterobimetallic Heptanuclear Complex [Pb2Co5(acac)14]. Crystals. 2023; 13(7):1089. https://doi.org/10.3390/cryst13071089
Chicago/Turabian StyleZhang, Yuxuan, Zheng Wei, and Evgeny V. Dikarev. 2023. "Synthesis, Structure, and Characterizations of a Heterobimetallic Heptanuclear Complex [Pb2Co5(acac)14]" Crystals 13, no. 7: 1089. https://doi.org/10.3390/cryst13071089
APA StyleZhang, Y., Wei, Z., & Dikarev, E. V. (2023). Synthesis, Structure, and Characterizations of a Heterobimetallic Heptanuclear Complex [Pb2Co5(acac)14]. Crystals, 13(7), 1089. https://doi.org/10.3390/cryst13071089