Electromagnetically Induced Transparency Analog of Asymmetric Perovskite Metamaterial in the THz Spectral Region
Abstract
:1. Introduction
2. Structure Design and Numerical Model
3. Result and Discussion
3.1. EIT-like Effect
3.2. Slow-Light Effect
3.3. Refractive-Index Sensing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yen, T.J.; Padilla, W.J.; Fang, N.; Vier, D.C.; Smith, D.R.; Pendry, J.B.; Basov, D.N.; Zhang, X. Terahertz Magnetic Response from Artificial Materials. Science 2004, 303, 1494–1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, N.; Langguth, L.; Weiss, T.; Kastel, J.; Fleichhauer, M.; Pfau, T.; Giessen, H. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 2009, 8, 758–762. [Google Scholar] [CrossRef] [PubMed]
- Ju, L.; Geng, B.; Horng, J.; Girit, C.; Martin, M.; Hao, Z.; Bechtel, H.A.; Liang, X.; Zettl, A.; Shen, Y.R.; et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Naontechnol. 2011, 6, 630–634. [Google Scholar] [CrossRef] [PubMed]
- Koschny, T.; Kafesaki, M.; Economou, E.N.; Soukoulis, C.M. Effective medium theory of left-handed materials. Phys. Rev. Lett. 2009, 8, 107402. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Ren, Z.; Wei, J.; Lee, C. Reconfigurable terahertz metamaterials: From fundamental principles to advanced 6G applications. iScience 2022, 25, 103799. [Google Scholar] [CrossRef]
- Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 2007, 1, 97–105. [Google Scholar] [CrossRef]
- Lee, S.H.; Choi, M.; Kim, T.T.; Lee, S.; Liu, M.; Yin, X.; Choi, H.K.; Lee, S.S.; Choi, C.G.; Choi, S.Y.; et al. Switching terahertz waves with gate-controlled active graphene metamaterials. Nat. Mater. 2012, 11, 936–941. [Google Scholar] [CrossRef] [Green Version]
- Vendik, I.B.; Vendik, O.G.; Odit, M.A.; Kholodnyak, D.V.; Zubko, S.P.; Sitnikova, M.F.; Turalchuk, P.A.; Zemlyakov, K.N.; Munina, I.V.; Kozlov, D.S.; et al. Tunable Metamaterials for Controlling THz Radiation. IEEE Trans. Terahertz Sci. Technol. 2012, 2, 538–549. [Google Scholar] [CrossRef]
- Hu, X.; Zheng, D.; Lin, Y.-S. Actively tunable terahertz metamaterial with single-band and dual-band switching characteristic. Appl. Phys. 2020, 126, 110. [Google Scholar] [CrossRef]
- Zhu, L.; Li, H.; Dong, L.; Zhou, W.; Rong, M.; Zhang, X.; Guo, J. Dual-band electromagnetically induced transparency (EIT) terahertz metamaterial sensor. Opt. Mater. Express 2021, 11, 2109–2121. [Google Scholar] [CrossRef]
- Hu, H.; Qi, B.; Zhao, Y.; Zhang, X.; Wang, Y.; Huang, X. A graphene-based THz metasurface sensor with air-spaced structure. Front. Phys. 2022, 10, 990126. [Google Scholar] [CrossRef]
- Wang, Q.; Gao, B.; Raglione, M.; Wang, H.; Li, B.; Toor, F.; Arnold, M.A.; Ding, H. Design, Fabrication, and Modulation of THz Bandpass Metamaterials. Laser Photonics Rev. 2019, 13, 1900071. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Xing, Y.; Kanhere, O.; Ju, S.; Madanayake, A.; Mandal, S.; Alkhateeb, A.; Trichopoulos, G. Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond. IEEE Access 2019, 7, 78729–78757. [Google Scholar] [CrossRef]
- Yang, Y.; Shutler, A.; Grischkowsky, D. Measurement of the transmission of the atmosphere from 0.2 to 2 THz. Opt. Express 2011, 19, 8830–8838. [Google Scholar] [CrossRef] [PubMed]
- Harris, S.E.; Field, J.E.; Imamoglu, A. Nonlinear Optical Processes Using Electromagnetically Induced Transparency. Phys. Rev. Lett. 1990, 64, 1107–1110. [Google Scholar] [CrossRef]
- Boller, K.J.; Imamoglu, A.; Harris, S.E. Observation of Electromagnetically Induced Transparency. Phys. Rev. Lett. 1991, 66, 2593–2596. [Google Scholar] [CrossRef] [Green Version]
- Field, J.E.; Hahn, K.H.; Harris, S.E. Observation of Electromagnetically Induced Transparency in Collisionally Broadened Lead Vapor. Phys. Rev. Lett. 1991, 67, 3062–3065. [Google Scholar] [CrossRef]
- Gao, E.; Liu, Z.; Li, H.; Xu, H.; Zhang, Z.; Luo, X.; Xiong, C.; Liu, C.; Zhang, B.; Zhou, F. Dynamically tunable dual plasmon-induced transparency and absorption based on a single-layer patterned graphene metamaterial. Opt. Express 2019, 27, 13884–13894. [Google Scholar] [CrossRef]
- Totsuka, K.; Kobayashi, N.; Tomita, M. Slow light in coupled resonator-induced transparency. Phys. Rev. Lett. 2007, 98, 213904. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Weiss, T.; Mesch, M.; Langguth, L.; Eigenthaler, U.; Hirscher, M.; Sonnichsen, C.; Giessen, H. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett. 2010, 10, 1103–1107. [Google Scholar] [CrossRef]
- Zhang, S.; Genov, D.A.; Wang, Y.; Liu, M.; Zhang, X. Plasmonic-induced transparency in metamaterials. Phys. Rev. Lett. 2008, 101, 047401. [Google Scholar] [CrossRef] [Green Version]
- Tassin, P.; Zhang, L.; Koschny, T.; Economou, E.N.; Soukoulis, C.M. Low-loss metamaterials based on classical electromagnetically induced transparency. Phys. Rev. Lett. 2009, 102, 053901. [Google Scholar] [CrossRef] [Green Version]
- Kurter, C.; Tassin, P.; Zhang, L.; Koschny, T.; Zhuravel, A.P.; Ustinov, A.V.; Anlage, S.M.; Soukoulis, C.M. Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial. Phys. Rev. Lett. 2011, 107, 043901. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Wu, L.; Jia, X.; Xie, C.; Peng, K. Quantum entanglement among multiple memories for continuous variables. Adv. Quantum Technol. 2021, 4, 2100071. [Google Scholar] [CrossRef]
- Dantan, A.; Bramati, A.; Pinard, M. Atomic quantum memory: Cavity versus single-pass schemes. Phys. Rev. A 2005, 71, 043801. [Google Scholar] [CrossRef] [Green Version]
- Safavi-Naeini, A.H.; Mayer Alegre, T.P.; Chan, J.; Eichenfield, M.; Winger, M.; Lin, Q.; Hill, J.T.; Chang, D.E.; Painter, O. Electromagnetically induced transparency and slow light with optomechanics. Nature 2011, 472, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Ruseckas, J.; Lee, C.; Kudriasov, V.; Chang, K.; Cho, H.; Juzeliunas, G.; Yu, I. Experimental demonstration of spinor slow light. Nat. Commun. 2014, 5, 5542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Y.; Qiao, T.; Zhang, F.; Fu, Q.; Dong, J.; Kong, B.; Li, H. An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency. Sci. Rep. 2017, 7, 40441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutherland, B.R.; Sargent, E.H. Perovskite photonic sources. Nat. Photonics 2016, 10, 295–302. [Google Scholar] [CrossRef]
- Innocenti, R.D.; Lin, H.; Navarro-Cía, M. Recent progress in terahertz metamaterial modulators. Nanophotonics 2022, 11, 1485–1514. [Google Scholar]
- Ghosh, D.; Welch, E.; Neukirch, A.J.; Zakhidov, A.; Tretiak, S. Polarons in halide perovskites: A perspective. J. Phys. Chem. Lett. 2020, 11, 3271–3286. [Google Scholar] [CrossRef] [PubMed]
- Leijtens, T.; Stranks, S.D.; Eperon, G.E.; Lindblad, R.; Johansson, E.M.J.; McPherson, I.J.; Rensmo, H.; Ball, J.M.; Lee, M.M.; Snaith, H.J. Electronic properties of meso-superstructured and planar organometal halide perovskite film: Charge trapping, photodoping, and carrier mobility. ACS Nano 2014, 8, 7147. [Google Scholar] [CrossRef] [PubMed]
- Nie, W.; Tsai, H.; Asadpour, R.; Vlancon, J.-C.; Neukirch, A.J.; Gupta, G.; Crochet, J.J.; Chhowalla, M.; Tretiak, S.; Alam, M.A.; et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015, 347, 522. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.S.; Noh, J.H.; Jeon, N.J.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234. [Google Scholar] [CrossRef]
- Gu, J.; Singh, R.; Liu, X.; Zhang, X.; Ma, Y.; Zhang, S.; Maier, S.A.; Tian, Z.; Azad, A.K.; Chen, H.T.; et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun. 2012, 3, 1151. [Google Scholar] [CrossRef] [Green Version]
- Green, M.A.; Ho-Baillie, A.; Snaith, H.J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514. [Google Scholar] [CrossRef]
- Shao-He, L.; Jiu-Sheng, L. Terahertz modulator a using CsPbBr3 perovskite quantum dots heterostructure. Appl. Phys. B 2018, 124, 224. [Google Scholar] [CrossRef]
- Hong, W.K.; Jiu-Sheng, H.L.; Quan, Y.J. Sensitive terahertz free space modulator using CsPbBr3 perovskite quantum dots-embedded metamaterial. J. Infrared Millim. Terahertz Waves 2020, 41, 557–567. [Google Scholar] [CrossRef]
- Zhou, J.; Hu, Y.; Jiang, T.; Ouyang, H.; Li, H.; Sui, Y.; Hao, H.; You, J.; Zheng, X.; Xu, Z.; et al. Ultrasensitive polarization-dependent terahertz modulation in hybrid perovskites plasmon-induced transparency devices. Photonics Res. 2019, 7, 994–1002. [Google Scholar] [CrossRef]
- Caputo, M.; Cefarin, N.; Radivo, A.; Demitri, N.; Gigli, L.; Plaisier, J.R.; Panighel, M.; Di Santo, G.; Moretti, S.; Giglia, A.; et al. Electronic structure of MAPbI3 and MAPbCl3: Importance of band alignment. Sci. Rep. 2019, 9, 15159. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Lv, L.F.; Shen, J.L. Ultrafast terahertz modulation characteristics of organolead halide perovskite films revealed by time-resolved terahertz spectroscopy. J. Infrared Millim. Waves 2018, 37, 523. [Google Scholar]
- Manjappa, M.; Srivastava, Y.K.; Solanki, A.; Kumar, A.; Sum, T.C.; Singh, R. Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices. Adv. Mater. 2017, 29, 1605881. [Google Scholar] [CrossRef]
- Cong, C.; Srivastava, Y.K.; Solanki, A.; Sum, T.C.; Singh, R. Perovskite as a platform for active flexible metaphotonic devices. ACS Photonics 2017, 4, 1595–1601. [Google Scholar] [CrossRef]
- Shcherbakov-Wu, W.; Sercel, P.C.; Krieg, F.; Kovalenko, M.V.; Tisdale, W.A. Temperature-Independent Dielectric Constant in CsPbBr3 Nanocrystals Revealed by Linear Absorption Spectroscopy. J. Phys. Chem. Lett. 2021, 12, 8088–8095. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.; Huang, L.; Hong, W.; Liu, T.; Luan, J.; Liu, W.; Lai, J.; Li, H. Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial. Nanoscale 2018, 10, 19517–19523. [Google Scholar] [CrossRef] [PubMed]
- Fleischhauer, M.; Imamoglu, A.; Marangos, J.P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 2005, 77, 633. [Google Scholar] [CrossRef] [Green Version]
- Vafapour, Z. Slowing down light using terahertz semiconductor metamaterial for dual-band thermally tunable modulator applications. Appl. Opt. 2018, 57, 722–729. [Google Scholar] [CrossRef]
- Zhu, L.; Meng, F.; Dong, L.; Wu, Q.; Che, B.-J.; Gao, J.; Fu, J.-H.; Zhang, K.; Yang, G.-H. Magnetic metamaterial analog of electromagnetically induced transparency and absorption. J. Appl. Phys. 2015, 117, 17D146. [Google Scholar] [CrossRef]
- Tassin, P.; Zhang, L.; Zhao, R.; Jain, A.; Koschny, T.; Soukooulis, C.M. Electromagnetically induced transparency and absorption in metamaterials: The radiating two-oscillator model and experimental confirmation. Phys. Rev. Lett. 2012, 109, 187401. [Google Scholar] [CrossRef] [Green Version]
- Meng, F.Y.; Wu, Q.; Erni, D.; Wu, K.; Lee, J.C. Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor. IEEE Trans. Microw. Theory 2012, 60, 3013–3022. [Google Scholar] [CrossRef]
- Wang, L.; Guo, X.; Zhang, Y.; Zhou, X.; Yuan, L.; Zhang, P.; Liang, S.; Lan, F.; Zeng, H.; Zhang, T.; et al. Enhanced THz EIT resonance based on the coupled electric field dropping effect within the undulated meta-surface. Nanophotonics 2019, 8, 1071–1078. [Google Scholar] [CrossRef] [Green Version]
- Yahiaoui, R.; Burrow, J.A.; Mekonen, S.M.; Sarangan, A.; Mathews, J.; Agha, I.; Searles, T.A. Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling. Phys. Rev. B 2018, 97, 155403. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.; Chen, S.; Yu, P.; Duan, X.; Xie, B.; Tian, J. Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips. Appl. Phys. Lett. 2013, 103, 203112. [Google Scholar] [CrossRef]
- Koschny, T.; Markos, P.; Economou, E.N.; Smith, D.R.; Vier, D.C.; Soukoulis, C.M. Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials. Phys. Rev. B 2005, 71, 245105. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Wei, B.Z.; Sun, C.R.; Dong, C.B.; Jian, S.S. Graphene spacer-grating-based structure to realize tunable mid-infrared narrow-band plasmonically induced transparency and slow light effect. Appl. Phys. A 2017, 123, 229–238. [Google Scholar]
- Zhang, B.; Li, H.; Xu, H.; Zhao, M.; Xiong, C.; Liu, C.; Wu, K. Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial. Opt. Express 2019, 27, 3598–3608. [Google Scholar] [CrossRef]
- Karvets, V.G.; Kabashin, A.V.; Barnes, W.L.; Grigorenko, A.N. Plasmonic surface lattice resonances: A review of properties and applications. Chem Rev. 2018, 118, 5912–5951. [Google Scholar] [CrossRef]
- Xiao, B.; Wang, Y.; Cai, W.; Xiao, L. Design and prediction of PIT devices through deep learning. Opt. Express 2022, 30, 14985–14997. [Google Scholar] [CrossRef]
- Sherry, L.J.; Chang, S.H.; Schatz, G.C.; Van Duyne, R.P.; Wiley, B.J.; Xia, Y.N. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett. 2005, 5, 2034–2038. [Google Scholar] [CrossRef]
- Cong, L.Q.; Tan, S.Y.; Yahiaoui, R.; Yan, F.P.; Zhang, W.L.; Singh, R. Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces. Appl. Phys. Lett. 2015, 106, 031107. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.-H.; Lee, B.W.; Seo, F.J. Electromagnetically Induced Transparency Analog of Asymmetric Perovskite Metamaterial in the THz Spectral Region. Crystals 2023, 13, 1090. https://doi.org/10.3390/cryst13071090
Kim T-H, Lee BW, Seo FJ. Electromagnetically Induced Transparency Analog of Asymmetric Perovskite Metamaterial in the THz Spectral Region. Crystals. 2023; 13(7):1090. https://doi.org/10.3390/cryst13071090
Chicago/Turabian StyleKim, Tae-Han, Bo Wha Lee, and Felix Jaetae Seo. 2023. "Electromagnetically Induced Transparency Analog of Asymmetric Perovskite Metamaterial in the THz Spectral Region" Crystals 13, no. 7: 1090. https://doi.org/10.3390/cryst13071090
APA StyleKim, T. -H., Lee, B. W., & Seo, F. J. (2023). Electromagnetically Induced Transparency Analog of Asymmetric Perovskite Metamaterial in the THz Spectral Region. Crystals, 13(7), 1090. https://doi.org/10.3390/cryst13071090