Negative Linear Compressibility of Formate Crystals from the Viewpoint of Quantum Electronic Pressure
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Features of Linear Compressibility of the Formate Crystals at Hydrostatic Compression
3.2. Analysis of the Quantum Electronic Pressure in Crystals under External Compression
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cairns, A.B.; Goodwin, A.L. Negative linear compressibility. Phys. Chem. Chem. Phys. 2015, 17, 20449–20465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nye, J.F. Physical Properties of Crystals: Their Representation by Tensors and Matrices; Clarendon Press: Oxford, UK, 1985. [Google Scholar]
- Miller, W.; Evans, K.E.; Marmier, A. Negative linear compressibility in common materials. Appl. Phys. Lett. 2015, 106, 231903–2319034. [Google Scholar] [CrossRef] [Green Version]
- Baughman, R.H.; Stafstrom, S.; Cui, C.; Dantas, S.O. Materials with negative compressibilities in one or more dimensions. Science 1998, 279, 1522–1524. [Google Scholar] [CrossRef] [PubMed]
- Baughman, R.H. Auxetic materials: Avoiding the shrink. Nature 2003, 425, 667. [Google Scholar] [CrossRef] [PubMed]
- Evans, K.E.; Alderson, A. Auxetic Materials: Functional Materials and Structures from Lateral Thinking! Adv. Mater. 2000, 12, 617–628. [Google Scholar] [CrossRef]
- Formosa, J.P.; Cauchi, R.; Grima, J.N. Carbon allotropes exhibiting negative linear compressibility. Phys. Status Solidi B 2015, 252, 1656–1663. [Google Scholar] [CrossRef]
- Grima, J.N.; Attard, D.; Caruana-Gauci, R.; Gatt, R. Negative linear compressibility of hexagonal honeycombs and related systems. Scr. Mater. 2011, 65, 565–568. [Google Scholar] [CrossRef]
- Barnes, D.L.; Miller, W.; Evans, K.E.; Marmier, A. Modelling negative linear compressibility in tetragonal beam structures. Mech. Mater. 2012, 46, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Colmenero, F.; Timón, V. Extreme negative mechanical phenomena in the zinc and cadmium anhydrous metal oxalates and lead oxalate dihydrate. J. Mater. Sci. 2020, 55, 218–236. [Google Scholar] [CrossRef]
- Colmenero, F.; Jiang, X.; Li, X.; Li, Y.; Lin, Z. Negative area compressibility in silver oxalate. J. Mater. Sci. 2021, 56, 269–277. [Google Scholar] [CrossRef]
- Colmenero, F. Silver Oxalate: Mechanical Properties and Extreme Negative Mechanical Phenomena. Adv. Theory Simul. 2019, 2, 1900040. [Google Scholar] [CrossRef]
- Colmenero, F. Negative area compressibility in oxalic acid dihydrate. Mater. Lett. 2019, 245, 25–28. [Google Scholar] [CrossRef]
- Colmenero, F. Mechanical properties of anhydrous oxalic acid and oxalic acid dihydrate. Phys. Chem. Chem. Phys. 2019, 21, 2673–2690. [Google Scholar] [CrossRef]
- Colmenero, F. Anomalous mechanical behavior of the deltic, squaric and croconic cyclic oxocarbon acids. Mater. Res. Express 2019, 6, 045610. [Google Scholar] [CrossRef]
- Colmenero, F. Addendum: Anomalous mechanical behavior of the deltic, squaric and croconic cyclic oxocarbon acids. Mater. Res. Express 2019, 6, 069401. [Google Scholar] [CrossRef]
- Colmenero, F.; Timón, V. ZIF-75 under Pressure: Negative Linear Compressibility and Pressure-Induced Instability. Appl. Sci. 2022, 12, 10413. [Google Scholar] [CrossRef]
- Ghosh, P.S.; Ponomareva, I. Negative Linear Compressibility in Organic–Inorganic Hybrid Perovskite [NH2NH3]X(HCOO)3 (X = Mn, Fe, Co). J. Phys. Chem. Lett. 2022, 13, 3143–3149. [Google Scholar] [CrossRef]
- Colmenero, F.; Lobato, Á.; Timón, V. Mechanical Characterization of Anhydrous Microporous Aluminophosphate Materials: Tridimensional Incompressibility, Ductility, Isotropy and Negative Linear Compressibility. Solids 2022, 3, 457–499. [Google Scholar] [CrossRef]
- Jiang, D.; Wen, T.; Song, H.; Jiang, Z.; Li, C.; Liu, K.; Yang, W.; Mao, H.-K.; Wang, Y. Intrinsic Zero-Linear and Zero-Area Compressibilities over an Ultrawide Pressure Range within a Gear-Spring Structure. CCS Chem. 2022, 4, 3246–3253. [Google Scholar] [CrossRef]
- Fu, Z.; Yang, Z.; Yang, X.; Wang, K.; Zou, B. Multiple responses of 1,6-diphenyl-1,3,5-hexatriene to mechanical stimulation: Emission enhancement, piezochromism and negative linear compressibility. Chem. Sci. 2023, 14, 4817–4823. [Google Scholar] [CrossRef]
- Jiang, D.; Wen, T.; Guo, Y.; Liang, J.; Jiang, Z.; Li, C.; Liu, K.; Yang, W.; Wang, Y. Reentrant Negative Linear Compressibility in MIL-53(Al) over an Ultrawide Pressure Range. Chem. Mater. 2022, 34, 2764–2770. [Google Scholar] [CrossRef]
- Yuan, S.; Wang, L.; Zhu, S.-c.; Liu, F.; Zhang, D.; Prakapenka, V.B.; Tkachev, S.; Liu, H. Negative linear compressibility in Se at ultra-high pressure above 120 GPa. IUCrJ 2022, 9, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Burger, N.; Fuess, H.; Mason, S.A. Neutron diffraction of [alpha]-calcium formate at 100 and 296 K. Acta Crystallogr. Sect. B 1977, 33, 1968–1970. [Google Scholar] [CrossRef]
- Watanabe, T.; Matsui, M. A redetermination of the crystal structures of α-calcium formate, α-strontium formate and barium formate by X-ray analyses. Acta Crystallogr. Sect. B 1978, 34, 2731–2736. [Google Scholar] [CrossRef]
- Matsui, M.; Watanabe, T.; Kamijo, N.; Lapp, R.L.; Jacobson, R.A. The structures of calcium formate β-Ca(HCOO)2 and δ-Ca(HCOO)2, and the tetragonal mixed crystals Ca(HCOO)2-Sr(HCOO)2. Acta Crystallogr. Sect. B 1980, 36, 1081–1086. [Google Scholar] [CrossRef]
- Weber, G. The structure of anhydrous cadmium formate. Acta Crystallogr. Sect. B 1980, 36, 1947–1949. [Google Scholar] [CrossRef]
- Fuess, H.; Bats, J.W.; Dannohl, H.; Meyer, H.; Schweig, A. Comparison of observed and calculated densities. XII. Deformation density in complex anions. II. Experimental and theoretical densities in sodium formate. Acta Crystallogr. Sect. B 1982, 38, 736–743. [Google Scholar] [CrossRef]
- Heyns, A.M. The effect of pressure on the Raman spectra of solids. III. Sodium formate, NaHCOO. J. Chem. Phys. 1986, 84, 3610–3616. [Google Scholar] [CrossRef]
- Hamann, S.D.; Spinner, E.E. The Effect of Pressure on the Infrared Spectra of the Formates of the Alkali and Alkaline Earth Metals. Aust. J. Chem. 1977, 30, 957–970. [Google Scholar] [CrossRef]
- Kang, L.; Li, S.; Wang, B.; Li, X. The effect of high pressure on the structure and stability of sodium formate: Probed by in situ synchrotron X-ray diffraction technique. Solid State Commun. 2019, 289, 67–70. [Google Scholar] [CrossRef]
- Tsirelson, V.G.; Stash, A.I.; Tokatly, I.V. Bonding in molecular crystals from the local electronic pressure viewpoint. Mol. Phys. 2016, 114, 1260–1269. [Google Scholar] [CrossRef] [Green Version]
- Tsirelson, V.G.; Stash, A.I.; Tokatly, I.V. Quantum pressure focusing in solids: A reconstruction from experimental electron density. Acta Crystallogr. Sect. B 2019, 75, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Bader, R.F.W.; Beddall, P.M. Virial Field Relationship for Molecular Charge Distributions and the Spatial Partitioning of Molecular Properties. J. Chem. Phys. 1972, 56, 3320–3329. [Google Scholar] [CrossRef]
- Rogers, C.L.; Rappe, A.M. Geometric formulation of quantum stress fields. Phys. Rev. B 2002, 65, 224117. [Google Scholar] [CrossRef] [Green Version]
- Bartashevich, E.; Sobalev, S.; Matveychuk, Y.; Tsirelson, V. Variations of quantum electronic pressure under the external compression in crystals with halogen bonds assembled in Cl3-, Br3-, I3-synthons. Acta Crystallogr. Sect. B 2020, B76, 514–523. [Google Scholar] [CrossRef]
- Bartashevich, E.V.; Sobalev, S.A.; Matveychuk, Y.V.; Tsirelson, V.G. Simulation of the compressibility of isostructural halogen containing crystals on macro- and microlevels. J. Struct. Chem. 2021, 62, 1607–1620. [Google Scholar] [CrossRef]
- Matveychuk, Y.V.; Bartashevich, E.V.; Skalyova, K.K.; Tsirelson, V.G. Quantum electronic pressure and crystal compressibility for magnesium diboride under simulated compression. Mater. Today Commun. 2021, 26, 101952. [Google Scholar] [CrossRef]
- Dovesi, R.; Erba, A.; Orlando, R.; Zicovich-Wilson, C.M.; Civalleri, B.; Maschio, L.; Rérat, M.; Casassa, S.; Baima, J.; Salustro, S.; et al. Quantum-mechanical condensed matter simulations with CRYSTAL. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1360. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. Sect. B 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Dou, Y.; Egdell, R.G.; Law, D.S.L.; Harrison, N.M.; Searle, B.G. An experimental and theoretical investigation of the electronic structure of CdO. J. Phys. Condens. Matter 1998, 10, 8447–8458. [Google Scholar] [CrossRef] [Green Version]
- Vilela Oliveira, D.; Laun, J.; Peintinger, M.F.; Bredow, T. BSSE-correction scheme for consistent gaussian basis sets of double- and triple-zeta valence with polarization quality for solid-state calculations. J. Comput. Chem. 2019, 40, 2364–2376. [Google Scholar] [CrossRef]
- Laun, J.; Vilela Oliveira, D.; Bredow, T. Consistent gaussian basis sets of double- and triple-zeta valence with polarization quality of the fifth period for solid-state calculations. J. Comput. Chem. 2018, 39, 1285–1290. [Google Scholar] [CrossRef]
- Perger, W.F.; Criswell, J.; Civalleri, B.; Dovesi, R. Ab-initio calculation of elastic constants of crystalline systems with the CRYSTAL code. Comput. Phys. Commun. 2009, 180, 1753–1759. [Google Scholar] [CrossRef]
- Doll, K. Analytical stress tensor and pressure calculations with the CRYSTAL code. Mol. Phys. 2010, 108, 223–227. [Google Scholar] [CrossRef] [Green Version]
- Gaillac, R.; Coudert, F.-X. ELATE: Elastic Tensor Analysis. Available online: http://progs.coudert.name/elate (accessed on 30 June 2023).
- Mouhat, F.; Coudert, F.-X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 2014, 90, 224104. [Google Scholar] [CrossRef] [Green Version]
- Zhurko, G.A. Chemcraft—Graphical Program for Visualization of Quantum Chemistry Computations; Ivanovo, Russia. 2005. Available online: https://chemcraftprog.com (accessed on 30 June 2023).
- Bader, R.F.W. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91, 893–928. [Google Scholar] [CrossRef]
- Gatti, C.; Casassa, S. Topond14 User’s Manual; University of Torino: Torino, Italy, 2014. [Google Scholar]
- Kirzhnits, D.A. Quantum Corrections to the Thomas-Fermi Equation. J. Exp. Theor. Phys. 1957, 5, 64–72. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matveychuk, Y.V.; Sobalev, S.A.; Borisova, P.I.; Bartashevich, E.V.; Tsirelson, V.G. Negative Linear Compressibility of Formate Crystals from the Viewpoint of Quantum Electronic Pressure. Crystals 2023, 13, 1147. https://doi.org/10.3390/cryst13071147
Matveychuk YV, Sobalev SA, Borisova PI, Bartashevich EV, Tsirelson VG. Negative Linear Compressibility of Formate Crystals from the Viewpoint of Quantum Electronic Pressure. Crystals. 2023; 13(7):1147. https://doi.org/10.3390/cryst13071147
Chicago/Turabian StyleMatveychuk, Yury V., Sergey A. Sobalev, Polina I. Borisova, Ekaterina V. Bartashevich, and Vladimir G. Tsirelson. 2023. "Negative Linear Compressibility of Formate Crystals from the Viewpoint of Quantum Electronic Pressure" Crystals 13, no. 7: 1147. https://doi.org/10.3390/cryst13071147
APA StyleMatveychuk, Y. V., Sobalev, S. A., Borisova, P. I., Bartashevich, E. V., & Tsirelson, V. G. (2023). Negative Linear Compressibility of Formate Crystals from the Viewpoint of Quantum Electronic Pressure. Crystals, 13(7), 1147. https://doi.org/10.3390/cryst13071147