Density Functional Theory Study of Electronic Structure and Optical Properties of Ln3+-Doped γ-Bi2MoO6 (Ln=Gd, Ho, Yb)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Model
2.2. Computational Details
3. Results and Discussion
3.1. SCF Structure Converges
3.2. Electronic Structure Information
3.2.1. Band Structure
3.2.2. Density of Electronic States
3.2.3. Differential Charge Density
3.3. Optical Structure Information
3.3.1. Complex Dielectric Constant
3.3.2. Complex Refractive Index and Birefringence
3.3.3. Reflectivity and Absorption Coefficient
3.3.4. Energy Loss Function
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gan, X.R.; Lei, D.Y. Plasmonic-metal/2D-semiconductor hybrids for photodetection and photocatalysis in energy-related and environmental processes. Coord. Chem. Rev. 2022, 469, 214665. [Google Scholar] [CrossRef]
- Hong, J.Y.; Cho, K.H.; Presser, V.; Su, X. Recent advances in wastewater treatment using semiconductor photocatalysts. Curr. Opin. Green Sustain. Chem. 2022, 36, 100644. [Google Scholar] [CrossRef]
- Keene, J.D.; Freymeyer, N.J.; McBride, J.R.; Rosenthal, S.J. Ultrafast spectroscopy studies of carrier dynamics in semiconductor nanocrystals. Iscience 2022, 25, 103831. [Google Scholar] [CrossRef]
- Verma, A.; Pala, R.G. Practical semiconductor physics perspective of materials photoelectrochemistry. Curr. Opin. Electrochem. 2022, 36, 101160. [Google Scholar] [CrossRef]
- Kumaravel, V.; Mathew, S.; Bartlett, J.; Pillai, S.C. Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances. Appl. Catal. B 2019, 244, 1021–1064. [Google Scholar] [CrossRef]
- Katal, R.; Masudy-Panah, S.; Tanhaei, M.; Farahani, M.H.D.A.; Hu, J.Y. A review on the synthesis of the various types of anatase TiO2 facets and their applications for photocatalysis. Chem. Eng. J. 2020, 384, 123384. [Google Scholar] [CrossRef]
- Ji, X.Y.; Sun, K.; Liu, Z.K.; Liu, X.H.; Dong, W.K.; Zuo, X.T.; Shao, R.W.; Tao, J. Identification of Dynamic Active Sites Among Cu Species Derived from MOFs@CuPc for Electrocatalytic Nitrate Reduction Reaction to Ammonia. Nano-Micro Lett. 2023, 15, 110. [Google Scholar] [CrossRef]
- Hessien, M. Recent progress in zinc oxide nanomaterials and nanocomposites: From synthesis to applications. Ceram. Int. 2022, 48, 22609–22628. [Google Scholar] [CrossRef]
- Zhang, T.; Li, M.; Chen, J.; Wang, Y.; Miao, L.; Lu, Y.; He, Y. Multi-component ZnO alloys: Bandgap engineering, hetero-structures, and optoelectronic devices. Mat. Sci. Eng. R 2022, 147, 100661. [Google Scholar] [CrossRef]
- Dong, J.T.; Shao, T.T.; Zhang, F.C. First-principle study of CO sensing properties on Pt-doped SnO2(1 1 0) surface with oxygen defect. Chem. Phys. 2023, 565, 111739. [Google Scholar] [CrossRef]
- Ramaraj, S.G.; SKS, S.K.; Zhang, F.C.; Liu, X.H.; Kong, C.Y. First-Principles Calculations to Investigate Coupling Fe Doping with Oxygen Vacancies in Stannic Oxide and Their Physical Properties. J. Phys. Chem. C 2023, 127, 13414–13427. [Google Scholar] [CrossRef]
- Ma, H.C.; Zhao, F.Y.; Li, M.; Wang, P.Y.; Fu, Y.H.; Wang, G.W.; Liu, X.H. Construction of hollow binary oxide heterostructures by Ostwald ripening for superior photoelectrochemical removal of reactive brilliant blue KNR dye. Adv. Powder Mater. 2023, 2, 100117. [Google Scholar] [CrossRef]
- Xie, A.; Wang, J.J.; Zhang, C.; Cheng, S.Y. Single crystal to polycrystal: Enhanced dielectric loss and electromagnetic wave absorption of MoO2 ceramic at Gigahertz. Ceram. Int. 2022, 48, 29715–29721. [Google Scholar] [CrossRef]
- Aguirre, T.G.; Cramer, C.L.; Mitchell, D.J. Review of additive manufacturing and densification techniques for the net- and near net-shaping of geometrically complex silicon nitride components. J. Eur. Ceram. Soc. 2022, 42, 735–743. [Google Scholar] [CrossRef]
- Liu, J.J.; Fu, W.; Liao, Y.L.; Fan, J.J.; Xiang, Q.J. Recent advances in crystalline carbon nitride for photocatalysis. J. Mater. Sci. Technol. 2021, 91, 224–240. [Google Scholar] [CrossRef]
- Xiong, H.F.; Mao, W.W.; Wang, R.; Liu, S.A.; Zhang, N.F.; Song, L.H.; Yang, D.R.; Pi, X.D. Characterizations on the doping of single-crystal silicon carbide. Mater. Today Phys. 2022, 29, 100906. [Google Scholar] [CrossRef]
- Dabhane, H.; Ghotekar, S.; Tambade, P.; Pansambal, S.; Murthy, H.C.A.; Oza, R.; Medhane, V. A review on environmentally benevolent synthesis of CdS nanoparticle and their applications. Environ. Chem. Ecotox. 2021, 3, 209–219. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, B.H.; Tang, Y.; Wang, C.Y.; Zhao, F.Q.; Zeng, B.Z. Recent advances in bismuth oxyhalide-based functional materials for photoelectrochemical sensing. Trac-Trend Anal. Chem. 2020, 131, 116020. [Google Scholar] [CrossRef]
- Vinoth, S.; Ong, W.-J.; Pandikumar, A. Defect engineering of BiOX (X = Cl, Br, I) based photocatalysts for energy and environmental applications: Current progress and future perspectives. Coord. Chem. Rev. 2022, 464, 214541. [Google Scholar] [CrossRef]
- Liu, X.T.; Gu, S.N.; Zhao, Y.J.; Zhou, G.W.; Li, W.J. BiVO4, Bi2WO6 and Bi2MoO6 photocatalysis: A brief review. J. Mater. Sci. Technol. 2020, 56, 45–68. [Google Scholar] [CrossRef]
- Wu, L.; Hu, J.; Sun, C.; Jiao, F.P. Construction of Z-scheme CoAl-LDH/Bi2MoO6 heterojunction for enhanced photocatalytic degradation of antibiotics in natural water bodies. Process Saf. Environ. 2022, 168, 1109–1119. [Google Scholar] [CrossRef]
- Rodríguez-Girón, J.S.; Hernández-Uresti, D.B.; Obregón, S.; Juárez-Ramírez, I.; Sánchez-Martínez, D. One-step microwave-assisted hydrothermal synthesis of α-Bi2Mo3O12 without surfactants at low temperature for their application in tetracycline photodegradation. Mater. Today Commun. 2022, 33, 104695. [Google Scholar] [CrossRef]
- Shetty, M.; Murthy, M.; Shastri, M.; Sindhusree, M.; Nagaswarupa, H.P.; Shivaramu, P.D.; Rangappa, D. Hydrothermally synthesized Bi2MoO6/Reduced Graphene Oxide composite as anodes for lithium-ion batteries. Ceram. Int. 2019, 45, 24965–24970. [Google Scholar] [CrossRef]
- Zhao, Y.N.; Yi, G.Y.; Kang, W.W.; Hou, Q.L.; Xing, B.L.; Huang, G.G.; Dong, H.X.; Zhang, C.X.; Zhang, Y.L. N-doped carbon dots modified Bi2MoO6 microspheres as anode materials for high performance aqueous rechargeable nickel//bismuth batteries. Appl. Surf. Sci. 2023, 614, 156191. [Google Scholar] [CrossRef]
- Seevakan, K.; Manikandan, A.; Devendran, P.; Slimani, Y.; Baykal, A.; Alagesan, T. Structural, magnetic and electrochemical characterizations of Bi2Mo2O9 nanoparticle for supercapacitor application. J. Magn. Magn. Mater. 2019, 486, 165254. [Google Scholar] [CrossRef]
- He, J.; Yang, Z.Q.; Wang, Z.Q.; Fang, R.M.; Gu, L.L.; Yan, Y.F.; Ran, J.Y. Systematic study of H2 production from photothermal reforming of α-cellulose over atomically thin Bi2MoO6. Energy Convers. Manag. 2023, 277, 116605. [Google Scholar] [CrossRef]
- Wu, X.L.; Ng, Y.H.; Wen, X.M.; Chung, H.Y.; Wong, R.J.; Du, Y.; Dou, S.X.; Amal, R.; Scott, J. Construction of a Bi2MoO6:Bi2Mo3O12 heterojunction for efficient photocatalytic oxygen evolution. Chem. Eng. J. 2018, 353, 636–644. [Google Scholar] [CrossRef]
- Ono, T.; Utsumi, K.; Tsukamoto, S.; Tamaru, H.; Kataoka, M.; Noguchi, F. Roles of bulk γ(L)-Bi2MoO6 and surface β-Bi2Mo2O9 in the selective catalytic oxidation of C3H6. J. Mol. Catal. A-Chem. 2010, 318, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.C.; Lee, H.; Kim, H.; Chung, Y.M.; Kim, T.J.; Lee, S.J.; Oh, S.H.; Kim, Y.S.; Song, I.K. A synergistic effect of α-Bi2Mo3O12 and γ-Bi2MoO6 catalysts in the oxidative dehydrogenation of C4 raffinate-3 to 1,3-butadiene. J. Mol. Catal. A-Chem. 2007, 271, 261–265. [Google Scholar] [CrossRef]
- Wu, K.D.; Chai, H.F.; Xu, K.C.; Debliquy, M.; Zhang, C. Effect of {010} crystal facets of Bi2MoO6 and 1D/2D heterostructures for conductometric room temperature NH3 gas sensors. Sens. Actuat. B-Chem. 2023, 376, 132983. [Google Scholar] [CrossRef]
- Kulkarni, A.K.; Tamboli, M.S.; Nadargi, D.Y.; Sethi, Y.A.; Suryavanshi, S.S.; Ghule, A.V.; Kale, B.B. Bismuth molybdate (α-Bi2Mo3O12) nanoplates via facile hydrothermal and its gas sensing study. J. Solid State Chem. 2020, 318, 113978. [Google Scholar] [CrossRef]
- Yu, H.B.; Jiang, L.B.; Wang, H.; Huang, B.B.; Yuan, X.Z.; Huang, J.H.; Zhang, J.; Zeng, G.M. Modulation of Bi(2)MoO(6)-Based Materials for Photocatalytic Water Splitting and Environmental Application: A Critical Review. Small 2019, 15, e1901008. [Google Scholar] [CrossRef]
- Chankhanittha, T.; Nanan, S. Visible-light-driven photocatalytic degradation of ofloxacin (OFL) antibiotic and Rhodamine B (RhB) dye by solvothermally grown ZnO/Bi2MoO6 heterojunction. J. Colloid Interface Sci. 2021, 582, 412–427. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Lv, C.; Sun, J.; Hong, W.; Xing, W.; Qiang, L.; Chen, G.; Jin, X. High-efficiency Fe-Mediated Bi2MoO6 nitrogen-fixing photocatalyst: Reduced surface work function and ameliorated surface reaction. Appl. Catal. B 2019, 256, 117781. [Google Scholar] [CrossRef]
- Yu, C.; Wu, Z.; Liu, R.; Dionysiou, D.D.; Yang, K.; Wang, C.; Liu, H. Novel fluorinated Bi2MoO6 nanocrystals for efficient photocatalytic removal of water organic pollutants under different light source illumination. Appl. Catal. B 2017, 209, 1–11. [Google Scholar] [CrossRef]
- Li, H.; Li, W.; Gu, S.; Wang, F.; Liu, X.; Ren, C. Forming oxygen vacancies inside in lutetium-doped Bi2MoO6 nanosheets for enhanced visible-light photocatalytic activity. Mol. Catal. 2017, 433, 301–312. [Google Scholar] [CrossRef]
- Alemi, A.A.; Kashfi, R.; Shabani, B. Preparation and characterization of novel Ln (Gd3+, Ho3+ and Yb3+)-doped Bi2MoO6 with Aurivillius layered structures and photocatalytic activities under visible light irradiation. J. Mol. Catal. A-Chem. 2014, 392, 290–298. [Google Scholar] [CrossRef]
- Teller, R.G.; Brazdil, J.F.; Grasselli, R.K.; Jorgensen, J.D. The Structure of γ-Bismuth Molybdate, Bi2MoO6, by Powder Neutron Diffraction. Acta Crystallogr. 1984, 40, 2001–2005. [Google Scholar] [CrossRef]
- Theobald, F.; Laarif, A.; HEWAT, A.W. The structure of koechlinite bismuth molybdate—A controversy resolved by neutron diffraction. Ferroelectrics 1983, 56, 219–237. [Google Scholar] [CrossRef]
- Elzen, A.F.; Rieck, G.D. Redeterrnination of the Structure of Bi2MoO6, Koeehlinite. Acta Cryst. 1973, B29, 2436. [Google Scholar] [CrossRef]
- Hafner, J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond. J. Comput. Chem. 2008, 29, 2044–2078. [Google Scholar] [CrossRef] [PubMed]
- Ernzerhof, M.; Scuseria, G.E. Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 1999, 110, 5029–5036. [Google Scholar] [CrossRef] [Green Version]
- Wang, V.; Xu, N.; Liu, J.C.; Tang, G.; Geng, W.T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033. [Google Scholar] [CrossRef]
- Hinuma, Y.; Pizzi, G.; Kumagai, Y.; Oba, F.; Tanaka, I. Band structure diagram paths based on crystallography. Comput. Mater. Sci. 2016, 128, 140–184. [Google Scholar] [CrossRef] [Green Version]
- Togo, A.; Tanaka, I. Spglib: A software library for crystal symmetry search. arXiv 2018, arXiv:1808.01590. [Google Scholar]
- Ziati, M.; Bekkioui, N.; Ez-Zahraouy, H. Correlation between carrier mobility and effective mass in Sr2RuO4–xFx (x = 2) under uniaxial strain using the Yukawa screened PBE0 hybrid functional. J. Phys. Chem. Solids 2022, 161, 110409. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Dai, W.W. Structural, electronic, and optical properties of ECU-doped BiOX (X = F, Cl, Br, I): A DFT+U study. Inorg. Chem. 2014, 53, 13001–13011. [Google Scholar] [CrossRef]
- Ma, T.X.; Yang, C.M.; Guo, L.; Soomro, R.A.; Wang, D.J.; Xu, B.; Fu, F. Refining electronic properties of Bi2MoO6 by In-doping for boosting overall nitrogen fixation via relay catalysis. Appl. Catal. B 2023, 330, 122643. [Google Scholar] [CrossRef]
- Arif, M.; Zhang, M.; Qiu, B.; Yao, J.C.; Bu, Q.X.; Ali, A.; Muhmood, T.; Hussian, I.; Liu, X.H.; Zhou, B.J.; et al. Synergistic effect of ultrathin thickness and surface oxygen vacancies in high-efficiency Ti-mediated Bi2MoO6 for immense photocatalytic nitrofurantoin degradation and Cr(VI) reduction. Appl. Surf. Sci. 2021, 543, 148816. [Google Scholar] [CrossRef]
- Liu, S.C.; Qin, Y.X.; Xie, J. Tuning reactivity of Bi(2)MoO(6) nanosheets sensors toward NH(3) via Ag doping and nanoparticle modification. J. Colloid Interface Sci. 2022, 625, 879–889. [Google Scholar] [CrossRef]
- Dai, R.; Zhang, L.; Ning, J.; Wang, W.; Wu, Q.; Yang, J.; Zhang, F.; Wang, J.A. New insights into tuning BiOBr photocatalysis efficiency under visible-light for degradation of broad-spectrum antibiotics: Synergistic calcination and doping. J. Alloys Compd. 2021, 887, 161481. [Google Scholar] [CrossRef]
- Botas, A.M.P. New Frontiers in Novel Optical Materials and Devices. Coatings 2022, 12, 856. [Google Scholar] [CrossRef]
- Martin, P.C.; Sum, R. Kramers-Kronig Relations, and Transport Coefficients in Charged Systems. Phys. Rev. 1967, 161, 143–155. [Google Scholar] [CrossRef]
- Habib, H.; Zhao, W.J.; Mir, S.; Ma, L.; Tian, G.J. Strongly enhanced infrared absorption of HfSe2 monolayer by lanthanide doping: A first-principles study. Results Phys. 2023, 48, 106415. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Ohulchanskyy, T.Y.; Chen, G.Y. Lanthanide-Doped Near-Infrared Nanoparticles for Biophotonics. Adv. Mater. 2020, 33, 2000678. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.B.; Qattan, I.A.; Jaoude, M.A.; Abedrabbo, S. First-principles DFT study of structural, electronic and optical properties of Cu-doped TiO2 (112) surface for enhanced visible-light photocatalysis. Comput. Mater. Sci. 2023, 218, 111952. [Google Scholar] [CrossRef]
- Jamal, M.; Shahriyar, N.S.; Sharif, A. Effects of transition metal (Fe, Co & Ni) doping on structural, electronic and optical properties of CuO: DFT + U study. Chem. Phys. 2021, 545, 111160. [Google Scholar]
- Jing, H.J.; Peng, Y.M.; Ma, Z.J.; Li, J.; He, C.; Wu, K.C. V-doping in a potential nonlinear optical material Sr2Nb2O7 for increasing the SHG response: A first-principles study. Chem. Phys. Lett. 2018, 708, 117–122. [Google Scholar] [CrossRef]
- Ning, J.; Dai, R.; Wu, Q.; Zhang, L.; Shao, T.T.; Zhang, F.C. Density Functional Theory Study of Infrared Nonlinear Optical Crystal ZnGeP2. J. Nanoelectron. Optoelectron. 2021, 16, 1544–1553. [Google Scholar] [CrossRef]
- Sohrabi, L.; Boochani, A.; Taghavi, A. The effect of substituting Cobalt into graphene-like InAs on its optical properties: A DFT study. Optik 2022, 271, 170194. [Google Scholar] [CrossRef]
- Lahourpour, F.; Boochani, A.; Parhizgar, S.S.; Elahi, S.M. Structural, electronic and optical properties of graphene-like nano-layers MoX2(X:S,Se,Te): DFT study. J. Theor. Appl. Phys. 2019, 13, 191–201. [Google Scholar] [CrossRef] [Green Version]
Photocatalysts | Lattice Parameters [37] (EXP)/(Å) | Lattice Parameters (DFT)/(Å) | Average Relative Error/(%) | ||||
---|---|---|---|---|---|---|---|
a | b | c | a | b | c | ||
BMO | 5.465 | 5.510 | 16.179 | 5.654 | 5.676 | 16.371 | 2.552 |
0.25 Gd-BMO | 5.460 | 5.500 | 16.177 | 5.652 | 5.661 | 16.350 | 2.504 |
0.50 Gd-BMO | 5.459 | 5.487 | 16.152 | 5.639 | 5.656 | 16.224 | 2.273 |
0.25 Ho-BMO | 5.438 | 5.513 | 16.194 | 5.651 | 5.693 | 16.399 | 2.806 |
0.50 Ho-BMO | 5.429 | 5.498 | 16.180 | 5.649 | 5.679 | 16.366 | 2.829 |
0.25 Yb-BMO | 5.465 | 5.488 | 16.191 | 5.646 | 5.667 | 16.376 | 2.577 |
0.50 Yb-BMO | 5.421 | 5.498 | 16.180 | 5.629 | 5.644 | 16.392 | 2.598 |
Photocatalysts | Band Gap [37] (EXP)/(eV) | Band Gap (DFT)/(eV) | Relative Error/(%) |
---|---|---|---|
BMO | 2.53 | 2.435 | 3.755 |
0.50 Gd-BMO | 2.49 | 2.407 | 3.334 |
0.50 Ho-BMO | 2.43 | 2.368 | 2.551 |
0.50 Yb-BMO | 2.36 | 2.268 | 3.893 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Liu, G.; Shi, H.; Wu, Q.; Xue, S.; Shao, T.; Zhang, F.; Liu, X. Density Functional Theory Study of Electronic Structure and Optical Properties of Ln3+-Doped γ-Bi2MoO6 (Ln=Gd, Ho, Yb). Crystals 2023, 13, 1158. https://doi.org/10.3390/cryst13081158
Zhang B, Liu G, Shi H, Wu Q, Xue S, Shao T, Zhang F, Liu X. Density Functional Theory Study of Electronic Structure and Optical Properties of Ln3+-Doped γ-Bi2MoO6 (Ln=Gd, Ho, Yb). Crystals. 2023; 13(8):1158. https://doi.org/10.3390/cryst13081158
Chicago/Turabian StyleZhang, Bohang, Gaihui Liu, Huihui Shi, Qiao Wu, Suqin Xue, Tingting Shao, Fuchun Zhang, and Xinghui Liu. 2023. "Density Functional Theory Study of Electronic Structure and Optical Properties of Ln3+-Doped γ-Bi2MoO6 (Ln=Gd, Ho, Yb)" Crystals 13, no. 8: 1158. https://doi.org/10.3390/cryst13081158
APA StyleZhang, B., Liu, G., Shi, H., Wu, Q., Xue, S., Shao, T., Zhang, F., & Liu, X. (2023). Density Functional Theory Study of Electronic Structure and Optical Properties of Ln3+-Doped γ-Bi2MoO6 (Ln=Gd, Ho, Yb). Crystals, 13(8), 1158. https://doi.org/10.3390/cryst13081158