Microstructure Effects on the Machinability of AM-Produced Superalloys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Workpiece Materials for Investigation
2.2. Microstructure Analysis
2.3. Microhardness Measurements
2.4. Porosity Measurements
2.5. Mechanical Properties of the AM Material
2.6. Experimental Plan for Machining
2.7. Machine and Tool Set-Up for Experiments
2.8. Chip Samples Images
3. Results and Discussion
3.1. Analysis of Cutting and Feed Forces
3.2. Coefficient of Friction between Chip and Tool
3.3. Analysis of Chip Morphology
3.4. Microstructures of the IN718 Materials
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AM | Additive manufacturing |
WR | Wrought tube |
Dry | Coolant not applied |
Cool | Coolant applied |
L-PBF | Laser Melting Powder Bed Fusion |
EBSD | Electron Back Scattered Diffraction |
Vc | Cutting speed |
f | Feed rate (Feed/rev) |
Ft | Measured main cutting force (N) |
Ff | Measured feed force (N) |
Ftc | Cutting force (N) |
Fte | Flank edge friction force (N) |
Ffc | Feed force (N) |
Ffe | Normal flank edge force (N) |
ktc | Gradient of Ftc with respect to f obtained by linear regression |
kfc | Gradient of Ffc with respect to f obtained by linear regression |
µrake | Friction between tool rake face and chip |
µflank | Friction between tool flank and workpiece |
k | Fitting constants in power law equation |
n | Exponent in power law equation |
ave | Average or mean |
σ | Standard deviation |
CoV | σ/mean |
References
- Ezugwu, E.O. Key improvements in the machining of difficult-to-cut aerospace superalloys. Int. J. Mach. Tools Manuf. 2005, 45, 1353–1367. [Google Scholar] [CrossRef]
- Siemens Additive Manufacturing: Siemens Uses Innovative Technology to Produce Gas Turbines. Available online: https://press.siemens.com/global/en/feature/additive-manufacturing-siemens-uses-innovative-technology-produce-gas-turbines (accessed on 23 June 2023).
- GENERAL ELECTRIC. Aviation and Aerospace Industry. GE Addit 2023. Available online: https://www.ge.com/additive/additive-manufacturing/industries/aviation-aerospace (accessed on 23 June 2023).
- Ezugwu, E.O.; Bonney, J.; Yamane, Y. An overview of the machinability of aeroengine alloys. J. Mater. Process. Technol. 2003, 134, 233–253. [Google Scholar] [CrossRef]
- Kaynak, Y. Evaluation of machining performance in cryogenic machining of Inconel 718 and comparison with dry and MQL machining. Int. J. Adv. Manuf. Technol. 2014, 72, 919–933. [Google Scholar] [CrossRef]
- Rahman, M.; Seah, W.K.H.; Teo, T.T. The machinability of inconel 718. J. Mater. Process. Technol. 1997, 63, 199–204. [Google Scholar] [CrossRef]
- Ezugwu, E.O.; Wang, Z.M.; Machado, A.R. The machinability of nickel-based alloys: A review. J. Mater. Process. Technol. 1999, 86, 1–16. [Google Scholar]
- Kaynak, Y.; Tascioglu, E. Finish machining-induced surface roughness, microhardness and XRD analysis of selective laser melted Inconel 718 alloy. Procedia CIRP 2018, 71, 500–504. [Google Scholar] [CrossRef]
- Wood, P.; Díaz-álvarez, A.; Díaz-Álvarez, J.; Miguélez, M.H.; Rusinek, A.; Gunputh, U.F.; Williams, G.; Bahi, S.; Sienkiewicz, J.; Płatek, P. Machinability of INCONEL718 alloy with a porous microstructure produced by laser melting powder bed fusion at higher energy densities. Materials 2020, 13, 5730. [Google Scholar] [CrossRef]
- Renjie, J.I.; Zheng, Q.; Yonghong, L.I.U.; Hui, J.I.N.; Zhang, F.; Shenggui, L.I.U.; Baokun, W.A.N.G.; Shuaichen, L.U.; Baoping, C.A.I.; Xiaopeng, L.I. Effect of grain refinement on cutting force of difficult-to-cut metals in ultra-precision machining. Chin. J. Aeronaut. 2022, 35, 484–493. [Google Scholar]
- Hou, J.Z.; Zhao, Z.L.; Yan, G.M. Effect of grain refinement on machining performance of superalloy K4169. Met. Funct. Mater. 2007, 14, 11–14. [Google Scholar]
- Yang, F.H.; Zhao, Z.L.; Yan, G.M. Comparative study on machining properties of superalloy K4169 with different grain sizes. Mech. Des. Manuf. 2007, 201, 102–104. [Google Scholar]
- Wood, P.; Rusinek, A.; Platek, P.; Janiszewski, J.; Sienkiewicz, J.; Gunputh, U.F.; Rajkowski, K.; Miguélez, M.H. High strain rate effect on tensile ductility and fracture of AM fabricated Inconel 718 with voided microstructures. Mater. Des. 2021, 208, 109908. [Google Scholar] [CrossRef]
- Wang, Z.; Guan, K.; Gao, M.; Li, X.; Chen, X.; Zeng, X. The microstructure and mechanical properties of deposited-IN718 by selective laser melting. J. Alloys Compd. 2012, 513, 518–523. [Google Scholar] [CrossRef]
- Ni, M.; Chen, C.; Wang, X.; Wang, P.; Li, R.; Zhang, X.; Zhou, K. Anisotropic tensile behavior of in situ precipitation strengthened Inconel 718 fabricated by additive manufacturing. Mater. Sci. Eng. A 2017, 701, 344–351. [Google Scholar] [CrossRef]
- Trosch, T.; Strößner, J.; Völkl, R.; Glatzel, U. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting. Mater. Lett. 2016, 164, 428–431. [Google Scholar]
- Choi, J.P.; Shin, G.H.; Yang, S.; Yang, D.Y.; Lee, J.S.; Brochu, M.; Yu, J.H. Densification and microstructural investigation of Inconel 718 parts fabricated by selective laser melting. Powder Technol. 2017, 310, 60–66. [Google Scholar] [CrossRef]
- Sangid, M.D.; Book, T.A.; Naragani, D.; Rotella, J.; Ravi, P.; Finch, A.; Kenesei, P.; Park, J.S.; Sharma, H.; Almer, J.; et al. Role of heat treatment and build orientation in the microstructure sensitive deformation characteristics of IN718 produced via SLM additive manufacturing. Addit. Manuf. 2018, 22, 479–496. [Google Scholar]
- Zhang, D.; Niu, W.; Cao, X.; Liu, Z. Effect of standard heat treatment on the microstructure and mechanical properties of selective laser melting manufactured Inconel 718 superalloy. Mater. Sci. Eng. A 2015, 644, 32–40. [Google Scholar] [CrossRef]
- Deng, D.; Peng, R.L.; Brodin, H.; Moverare, J. Microstructure and mechanical properties of Inconel 718 produced by selective laser melting: Sample orientation dependence and effects of post heat treatments. Mater. Sci. Eng. A 2018, 713, 294–306. [Google Scholar]
- Mostafa, A.; Rubio, I.P.; Brailovski, V.; Jahazi, M.; Medraj, M. Structure, texture and phases in 3D printed IN718 alloy subjected to homogenization and HIP treatments. Metals 2017, 7, 196. [Google Scholar] [CrossRef] [Green Version]
- Fayed, E.M.; Saadati, M.; Shahriari, D.; Brailovski, V.; Jahazi, M.; Medraj, M. Effect of homogenization and solution treatments time on the elevated-temperature mechanical behavior of Inconel 718 fabricated by laser powder bed fusion. Sci. Rep. 2021, 11, 2020. [Google Scholar] [CrossRef]
- Renishaw. Data Sheet—In718-0405 Powder for Additive Manufacturing (AM250) 2017. Available online: https://www.renishaw.com/resourcecentre/en/details/Data-sheet-In718-0405-powder-for-additive-manufacturing--94192?lang=English (accessed on 3 January 2023).
- Pitassi, D.; Savoia, E.; Fontanari, V.; Molinari, A.; Luchin, V.; Zappini, G.; Benedetti, M. Finite Element Thermal Analysis of Metal Parts Additively Manufactured via Selective Laser Melting. Finite Elem. Method—Simul. Numer. Anal. Solut. Tech. 2018, 113, 114. [Google Scholar]
- Beausir, B.; Fundenberger, J.-J. Analysis Tools for Electron and X-ray DIFFRACTION, ATEX—Software; Université de Lorraine: Metz, Frence, 2017. [Google Scholar]
- Díaz-Álvarez, J.; Díaz-Álvarez, A.; Miguélez, H.; Cantero, J. Finishing Turning of Ni Superalloy Haynes 282. Metals 2018, 8, 843. [Google Scholar]
- Díaz-Álvarez, A.; Díaz-Álvarez, J.; Cantero, J.L.; Miguélez, H. Sustainable high-speed finishing turning of haynes 282 using carbide tools in dry conditions. Metals 2019, 9, 989. [Google Scholar] [CrossRef] [Green Version]
- Venten. Cimvantage. CIMVANTAGE 31-48—POOLSÜNTEETILISE EMULSIOONI KONTSENTRAAT, 200L. Available online: https://www.venten.ee/cimvantage-31-48-poolsunteetilise-emulsiooni-kontsentraat-200l-13973.html (accessed on 2 July 2023).
- Altintas, Y. Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012; ISBN 9781107001480. [Google Scholar]
- Grzesik, W.; Rech, J. Influence of machining conditions on friction in metal cutting process—A review. Mechanik 2019, 92, 242–248. [Google Scholar] [CrossRef] [Green Version]
- Pearson, S.R.; Shipway, P.H.; Abere, J.O.; Hewitt, R.A.A. The effect of temperature on wear and friction of a high strength steel in fretting. Wear 2013, 303, 622–631. [Google Scholar] [CrossRef]
- Recht, R.F. Catastrophic Thermoplastic Shear. J. Appl. Mech. 1964, 31, 189–193. [Google Scholar] [CrossRef]
- Mills, B.; Redford, A.H. The Assessment of Machinability BT—Machinability of Engineering Materials; Mills, B., Redford, A.H., Eds.; Springer: Dordrecht, The Netherlands, 1983; pp. 33–58. ISBN 978-94-009-6631-4. [Google Scholar]
- Miguélez, M.H.; Soldani, X.; Molinari, A. Analysis of adiabatic shear banding in orthogonal cutting of Ti alloy. Int. J. Mech. Sci. 2013, 75, 212–222. [Google Scholar]
- Molinari, A.; Soldani, X.; Miguélez, M.H. Adiabatic shear banding and scaling laws in chip formation with application to cutting of Ti-6Al-4V. J. Mech. Phys. Solids 2013, 61, 2331–2359. [Google Scholar] [CrossRef]
- Rahman, M.F. Stress and Strain Distributions during Machining of Ti-6Al-4V at Ambient and Cryogenic Temperatures. Master’s Thesis, University of Windsor, Windsor, ON, Canada, 2014. [Google Scholar]
- Bermingham, M.J.; Kirsch, J.; Sun, S.; Palanisamy, S.; Dargusch, M.S. New observations on tool life, cutting forces and chip morphology in cryogenic machining Ti-6Al-4V. Int. J. Mach. Tools Manuf. 2011, 51, 500–511. [Google Scholar]
- Subramanian, S.V.; Gekonde, H.O.; Zhu, G.; Zhang, X. Role of Microstructural Softening Events in Metal Cutting. Mach. Sci. Technol. 2002, 6, 353–364. [Google Scholar]
- Delcuse-Robert, L. Processing Effects on the Structure and Behavior of Nickel Based alloys Produced by Additive Manufacturing. Ph.D Thesis, Universite de Lorraine, Lorraine, Frence, 2021. [Google Scholar]
Element (m%) | Al | C | Co | Cr | Cu | Fe | Mn | Mo | Ni | S | Si | Ti |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ex | 0.53 | 0.053 | 0.40 | 18.3 | 0.05 | 18.6 | 0.24 | 3.04 | 52.3 | <0.002 | 0.09 | 1.10 |
AM | 0.47 | 0.053 | 0.09 | 18.4 | 0.01 | 18.0 | 0.01 | 3.08 | 53.7 | <0.003 | 0.03 | 0.95 |
Renishaw powder (0405) [23] | 0.2 to 0.8 | 0.02 to 0.05 | <1.0 | 17.0 to 21.0 | <0.3 | Balance | <0.35 | 2.8 to 3.3 | 50.0 to 55.0 | <0.015 | <0.35 | 0.65 to 1.15 |
Units | Fill Hatch | Outer Border | Inner Border | |
---|---|---|---|---|
Laser power | W | 200 | 200 | 200 |
Exposure time | µs | 70 | 50 | 70 |
Point distance | µm | 70 | 20 | 70 |
Scan speed | mm/s | 1000 | 400 | 1000 |
Energy density | J/mm3 | 74.1 | 185 | 74.1 |
Wrought Material (WR) | Additive Material (AM) | |||
---|---|---|---|---|
HRC | HV | HRC | HV | |
Maximum | 33.0 | 317 | 28.8 | 285 |
Minimum | 24.0 | 256 | 26.9 | 274 |
Standard deviation (σ) | 3.3 | 19.7 | 0.67 | 4.01 |
Arithmetic mean (m) | 29.1 | 288 | 27.7 | 279 |
Coefficient of Variation (CoV) | 0.11 | 0.07 | 0.02 | 0.01 |
Yield Strength (0.2%) (MPa) | Tensile Strength (MPa) | Elongation at Fracture (%) | |
---|---|---|---|
XYave | 738 | 1032 | 21.6 |
XYσ | 19 | 9.4 | 2.2 |
ZYave | 641 | 948 | 39.4 |
ZYσ | 20 | 19 | 1.2 |
f (mm/rev) | Vc (m/min) | |||
---|---|---|---|---|
60 | 90 | 120 | ||
Dry | 0.05 | 1 | 1 | 1 |
0.1 | 1 | 1 | 1 | |
0.15 | 1 | 1 | 1 | |
Cool | 0.05 | 1 | 1 | 1 |
0.1 | 1 | 1 | 1 | |
0.15 | 1 | 1 | 1 |
WR:Dry | AM:Dry | WR:Cool | AM:Cool | |
---|---|---|---|---|
k | 11.5 | 9.52 | 6.60 | 6.81 |
n | 0.86 | 0.80 | 0.71 | 0.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wood, P.; Díaz-Álvarez, J.; Rusinek, A.; Gunputh, U.; Bahi, S.; Díaz-Álvarez, A.; Miguélez, M.H.; Lu, Y.; Platek, P.; Sienkiewicz, J. Microstructure Effects on the Machinability of AM-Produced Superalloys. Crystals 2023, 13, 1190. https://doi.org/10.3390/cryst13081190
Wood P, Díaz-Álvarez J, Rusinek A, Gunputh U, Bahi S, Díaz-Álvarez A, Miguélez MH, Lu Y, Platek P, Sienkiewicz J. Microstructure Effects on the Machinability of AM-Produced Superalloys. Crystals. 2023; 13(8):1190. https://doi.org/10.3390/cryst13081190
Chicago/Turabian StyleWood, Paul, José Díaz-Álvarez, Alexis Rusinek, Urvashi Gunputh, Slim Bahi, Antonio Díaz-Álvarez, Maria Henar Miguélez, Yiling Lu, Pawel Platek, and Judyta Sienkiewicz. 2023. "Microstructure Effects on the Machinability of AM-Produced Superalloys" Crystals 13, no. 8: 1190. https://doi.org/10.3390/cryst13081190
APA StyleWood, P., Díaz-Álvarez, J., Rusinek, A., Gunputh, U., Bahi, S., Díaz-Álvarez, A., Miguélez, M. H., Lu, Y., Platek, P., & Sienkiewicz, J. (2023). Microstructure Effects on the Machinability of AM-Produced Superalloys. Crystals, 13(8), 1190. https://doi.org/10.3390/cryst13081190