Phononic Crystal Coupled Mie Structure for Acoustic Amplification
Abstract
:1. Introduction
2. Model Structural Design
3. Theoretical Analysis
3.1. Phononic Crystal Frequency Band Characterization
3.2. Mechanism of the Mies
4. Simulation Analysis of Models
4.1. Analysis of the Acoustic Energy Harvesting Performance of PC Point Defect, Mies, and PC-Mies
4.2. Analysis of the Effect of the Angle of the Mies in the PC Point Defects on the Sound Field Gain
4.3. Analysis of the Effect of the Location of the Mies in the PC Point Defects on the Sound Field Gain
5. Experimental Investigation of Harmonic Signal Detection
6. Conclusions
- (1)
- The PC-Mie structure exhibits superior sound pressure enhancement performance when compared to either PC defect state structure or Mies. The pressure amplitude can be amplified over 700 times within the PC-Mies. This characteristic helps overcome the detection limits of traditional acoustic sensing systems.
- (2)
- The capacity to amplify sound pressure amplitude is contingent upon the angle and location of the Mies at the center. The sound pressure detected by the probe inside the Mies increases as its position approaches the center of the localized sound field. Conversely, as the position of the Mies diverges from the center of the localized sound field, the sound pressure detected by the probe inside the structure decreases.
- (3)
- Through testing and numerical calculations, it is found that the PC-Mie structure has a narrower bandwidth, making it more frequency-selective. Moreover, the resonant frequency of the Mies can be controlled by adjusting its model characteristics, thereby affecting the operating frequency of the PC-Mie structure. This property favors the structure as a superior adjustable bandpass amplifier for practical applications.
- (4)
- Finally, the experiments verify that the PC-Mie structure can be used as an enhanced acoustic device or sensor for detecting harmonic signals, making it easier to detect weak signals. Although the acoustic enhancement and directional sensing of the PC-Mie structure may be limited by the narrow resonant frequency in practical applications, it is still applicable to most emergency sound detections. Acoustic device designed based on the coupling concept also opens up a new prospect for achieving high sensitivity and adjustability in acoustic sensing.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miniaci, M.; Gliozzi, A.S.; Morvan, B.; Krushynska, A.; Bosia, F.; Scalerandi, M.; Pugno, N.M. Proof of Concept for an Ultrasensitive Technique to Detect and Localize Sources of Elastic Nonlinearity Using Phononic Crystals. Phys. Rev. Lett. 2017, 118, 214301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danawe, H.; Okudan, G.; Ozevin, D.; Tol, S. Conformal gradient-index phononic crystal lens for ultrasonic wave focusing in pipe-like structures. Appl. Phys. Lett. 2020, 117, 021906. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.P.; Dong, X.T.; Wang, H.Z. An attention-guided convolution neural network for denoising of distributed acoustic sensing-vertical seismic profile data. Geophys. Prospect. 2023, 71, 914–930. [Google Scholar] [CrossRef]
- Lu, W.; Zhang, S.; Wang, R.X.; Xu, B.Q.; Yilmaz, M.; Zhang, W.D. Theoretical and Simulation Studies on Designing a Phase-Reversal-Based Broadband CMUT With Flat Passband and Improved Noise Rejections for SHM. IEEE Sens. J. 2022, 22, 21527–21539. [Google Scholar] [CrossRef]
- Papila, M.; Haftka, R.T.; Nishida, T.; Sheplak, M. Piezoresistive microphone design Pareto optimization: Tradeoff between sensitivity and noise floor. J. Microelectromech. Syst. 2006, 15, 1632–1643. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, W.; Yang, Y.; Wang, R.; Zhang, G.; Xu, B.; Yilmaz, M.; Zhang, W. In-Plane-Sensing Analysis of Comb-Like Capacitive Micro-Machined Ultrasonic Transducers (CMUTs) Using Analytical Small-Signal Model and FEM. IEEE Sens. J. 2023, 23, 11498–11511. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Zhao, D.L.; Yan, Z.M.; Sun, W.P.; Guo, P.C.; Tan, T. Reprogrammable acoustic metamaterials for multiband energy harvesting. Eng. Struct. 2023, 288, 116207. [Google Scholar] [CrossRef]
- Zhu, J.; Christensen, J.; Jung, J.; Martin-Moreno, L.; Yin, X.; Fok, L.; Zhang, X.; Garcia-Vidal, F.J. A holey-structured metamaterial for acoustic deep-subwavelength imaging. Nat. Phys. 2011, 7, 52–55. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.J.; Xue, S.W.; Yin, Y.H.; Hao, Z.L.; Zhou, Y.Y.; Chen, H.Y. Acoustic super-resolution imaging based on solid immersion 3D Maxwell’s fish-eye lens. Appl. Phys. Lett. 2022, 120, 192202. [Google Scholar] [CrossRef]
- Dahmani, H.; Smagin, N.; Campistron, P.; Carlier, J.; Toubal, M.; Nongaillard, B. One-channel time reversal focusing of ultra-high frequency acoustic waves on a MEMS. Appl. Phys. Lett. 2023, 122, 102201. [Google Scholar] [CrossRef]
- Zangeneh-Nejad, F.; Fleury, R. Acoustic Analogues of High-Index Optical Waveguide Devices. Sci. Rep. 2018, 8, 10401. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.H.; Wu, T.T. Propagation of surface acoustic waves through sharply bent two-dimensional phononic crystal waveguides using a finite-difference time-domain method. Phys. Rev. B 2006, 74, 174305. [Google Scholar] [CrossRef]
- Dai, H.Q.; Liu, T.T.; Xia, B.Z.; Yu, D.J. Quasilossless acoustic transmission in an arbitrary pathway of a network. Phys. Rev. B 2017, 95, 054109. [Google Scholar] [CrossRef] [Green Version]
- Comandini, G.; Khodr, C.; Ting, V.P.; Azarpeyvand, M.; Scarpa, F. Sound absorption in Hilbert fractal and coiled acoustic metamaterials. Appl. Phys. Lett. 2022, 120, 061902. [Google Scholar] [CrossRef]
- Zhao, X.S.; Han, J.N.; Yang, P.; Zhao, R.R. Research on High-Efficiency Transmission Characteristics of Multi-Channel Breast Ultrasound Signals Based on Graphene Structure. Crystals 2021, 11, 507. [Google Scholar] [CrossRef]
- Gric, T. Tunable terahertz structure based on graphene hyperbolic metamaterials. Opt. Quantum Electron. 2019, 51, 202. [Google Scholar] [CrossRef]
- Othman, M.A.K.; Guclu, C.; Capolino, F. Graphene–dielectric composite metamaterials: Evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition. J. Nanophotonics 2013, 7, 073089. [Google Scholar] [CrossRef] [Green Version]
- Iorsh, I.V.; Mukhin, I.S.; Shadrivov, I.V.; Belov, P.A.; Kivshar, Y.S. Hyperbolic metamaterials based on multilayer graphene structures. Phys. Rev. B 2013, 87, 075416. [Google Scholar] [CrossRef] [Green Version]
- Othman, M.A.; Guclu, C.; Capolino, F. Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption. Opt. Express 2013, 21, 7614–7632. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.C.; Liu, C.H.; Liu, C.H.; Zhang, S.Y.; Marder, S.R.; Narimanov, E.E.; Zhong, Z.H.; Norris, T.B. Realization of mid-infrared graphene hyperbolic metamaterials. Nat. Commun. 2016, 7, 10568. [Google Scholar] [CrossRef] [Green Version]
- Page, J.H.; Sukhovich, A.; Yang, S.; Cowan, M.L.; Van Der Biest, F.; Tourin, A.; Fink, M.; Liu, Z.; Chan, C.T.; Sheng, P. Phononic crystals. Phys. Status Solidi (B) 2004, 241, 3454–3462. [Google Scholar] [CrossRef]
- Liang, Z.X.; Li, J.S. Extreme Acoustic Metamaterial by Coiling Up Space. Phys. Rev. Lett. 2012, 108, 114301. [Google Scholar] [CrossRef]
- Kushwaha, M.S.; Halevi, P.; Dobrzynski, L.; Djafari-Rouhani, B. Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 1993, 71, 2022–2025. [Google Scholar] [CrossRef]
- Ji, H.L.; Liang, Y.K.; Qiu, J.H.; Cheng, L.; Wu, Y.P. Enhancement of vibration based energy harvesting using compound acoustic black holes. Mech. Syst. Signal Process. 2019, 132, 441–456. [Google Scholar] [CrossRef]
- Chen, T.G.; Jiao, J.R.; Yu, D.J. Strongly coupled phononic crystals resonator with high energy density for acoustic enhancement and directional sensing. J. Sound Vib. 2022, 529, 116911. [Google Scholar] [CrossRef]
- Yang, A.C.; Lu, C.J.; Wu, F.Y.; Wu, Y.; Zhu, L.; Pei, M.L.; Liu, P.; Li, M.; Dai, X.M. Extremely-huge wave localization in coupled multilayer heterogeneous phononic crystal resonators. Appl. Phys. Express 2019, 12, 017001. [Google Scholar] [CrossRef]
- Yang, A.C.; Li, P.; Wen, Y.M.; Lu, C.J.; Peng, X.; Zhang, J.T.; He, W. Enhanced Acoustic Energy Harvesting Using Coupled Resonance Structure of Sonic Crystal and Helmholtz Resonator. Appl. Phys. Express 2013, 6, 127101. [Google Scholar] [CrossRef]
- Gao, D.; Zeng, X.; Liu, X.; Han, K.J. Resonant Modes of One-Dimensional Metamaterial Containing Helmholtz Resonators with Point Defect. J. Mod. Phys. 2017, 8, 1737–1747. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Hou, Z.; Liu, Z.; Liu, Y.J.P.L.A. Point defect states in two-dimensional phononic crystals. Phys. Lett. A 2001, 292, 198–202. [Google Scholar] [CrossRef]
- Zhu, H.; Semperlotti, F.J.A.A. Metamaterial based embedded acoustic filters for structural applications. AIP Adv. 2013, 3, 092121. [Google Scholar] [CrossRef]
- He, Y.; Wu, F.; Yao, Y.; Zhang, X.; Mu, Z.; Yan, S.; Cheng, C. Effect of defect configuration on the localization of phonons in two-dimensional phononic crystals. Phys. Lett. A 2013, 377, 889–894. [Google Scholar] [CrossRef]
- Qi, S.; Oudich, M.; Li, Y.; Assouar, B.J.A.P.L. Acoustic energy harvesting based on a planar acoustic metamaterial. Appl. Phys. Lett. 2016, 108, 114905. [Google Scholar] [CrossRef]
- Oudich, M.; Li, Y. Tunable Sub-wavelength Acoustic Energy Harvesting with Metamaterial Plate. J. Phys. D Appl. Phys. 2017, 50, 315104. [Google Scholar] [CrossRef]
- Sun, H.X.; Fang, X.; Ge, Y.; Ren, X.D.; Yuan, S.Q. Acoustic focusing lens with near-zero refractive index based on coiling-up space structure. Acta Phys. Sin. 2017, 66, 244301. [Google Scholar] [CrossRef]
- Zhang, T.; Bok, E.; Tomoda, M.; Matsuda, O.; Guo, J.; Liu, X.; Wright, O.B. Compact acoustic metamaterial based on the 3D Mie resonance of a maze ball with an octahedral structure. Appl. Phys. Lett. 2022, 120, 161701. [Google Scholar] [CrossRef]
- Jia, Y.R.; Luo, Y.C.; Wu, D.J.; Wei, Q.; Liu, X.J. Enhanced Low-Frequency Monopole and Dipole Acoustic Antennas Based on a Subwavelength Bianisotropic Structure. Adv. Mater. Technol. 2020, 5, 1900970. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Ji, W.Q.; Wu, D.J.; Cheng, Y.; Liu, X.J. Plasmon-exciton couplings in Al-CuCl nanoshells and the effects of oxidation. Opt. Commun. 2017, 389, 310–313. [Google Scholar] [CrossRef]
- Zhu, X.; Liang, B.; Kan, W.; Peng, Y.; Cheng, J. Deep-Subwavelength-Scale Directional Sensing Based on Highly Localized Dipolar Mie Resonances. Phys. Rev. Appl. 2016, 5, 054015. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, H.; Reilly, M.; Bae, H.; Yu, M. Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials. Nat. Commun. 2014, 5, 5247. [Google Scholar] [CrossRef] [Green Version]
- Munday, J.N.; Bennett, C.B.; Robertson, W.M. Band gaps and defect modes in periodically structured waveguides. J. Acoust. Soc. Am. 2002, 112, 1353–1358. [Google Scholar] [CrossRef]
- Zheng, K.; Li, T.L.; Su, Z.Q.; Zhang, B. Sparse Elitist Group Lasso Denoising in Frequency Domain for Bearing Fault Diagnosis. IEEE Trans. Ind. Inform. 2021, 17, 4681–4691. [Google Scholar] [CrossRef]
- Li, Q.C.; Ding, X.X.; He, Q.B.; Huang, W.B.; Shao, Y.M. Manifold Sensing-Based Convolution Sparse Self-Learning for Defective Bearing Morphological Feature Extraction. IEEE Trans. Ind. Inform. 2021, 17, 3069–3078. [Google Scholar] [CrossRef]
Parameters | a | t | H | R1 | R2 | c | e | ||
Values (mm/deg) | 2.45 | 1 | 90 | 8.6 | 26 | 2.1 | 16.1 | 100 | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Hao, G.; Yang, W.; Zhao, X. Phononic Crystal Coupled Mie Structure for Acoustic Amplification. Crystals 2023, 13, 1196. https://doi.org/10.3390/cryst13081196
Han J, Hao G, Yang W, Zhao X. Phononic Crystal Coupled Mie Structure for Acoustic Amplification. Crystals. 2023; 13(8):1196. https://doi.org/10.3390/cryst13081196
Chicago/Turabian StyleHan, Jianning, Guodong Hao, Wenying Yang, and Xinsa Zhao. 2023. "Phononic Crystal Coupled Mie Structure for Acoustic Amplification" Crystals 13, no. 8: 1196. https://doi.org/10.3390/cryst13081196
APA StyleHan, J., Hao, G., Yang, W., & Zhao, X. (2023). Phononic Crystal Coupled Mie Structure for Acoustic Amplification. Crystals, 13(8), 1196. https://doi.org/10.3390/cryst13081196