A Nonlinear Gradient-Coiling Metamaterial for Enhanced Acoustic Signal Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Structural Design
2.2. Theoretical Analysis
3. Simulation Analysis
4. Experimental Validations
4.1. Pulse Signal Detection Based on NGCMs
4.2. Directional Acoustic Sensing of Harmonic Signals Based on NGCMs
5. Conclusions
- (1)
- The proposed NGCM structure can amplify the average pressure amplitude of the acoustic signal by a factor of approximately 84.7, which is superior to the Nonlinear-GAM model without the inclusion of the coiled structure.
- (2)
- Compared to conventional gradient models, NGCMs can operate at a reduced frequency without any change in volume.
- (3)
- The NGCM structure has a narrower bandwidth per slit, making the structure more frequency selective.
- (4)
- The structure has a wider angular range of acoustic response and is anisotropic, which helps NGCMs to work more efficiently in the context of localization of weak acoustic signals.
- (5)
- During the actual experimental measurements, it was found that the presence of the coiled structure in the structure delayed the arrival time at the measurement point. This paper proposes that the measurement time in the center of the gap of the NGCMs can be compensated by calculating the sound propagation time of the unilateral coiled structure with different gaps, thus reducing the error in the localization of the sound source.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shanyavskiy, A.A.; Banov, M.D. Durability diagnostics of turbine blades based on non-destructive acoustic emission testing. Procedia Struct. Integr. 2019, 23, 57–62. [Google Scholar] [CrossRef]
- Khaled, A.Y.; Ekramirad, N.; Parrish, C.A.; Eberhart, P.S.; Doyle, L.E.; Donohue, K.D.; Villanueva, R.T.; Adedeji, A.A. Non-destructive detection of codling moth infestation in apples using acoustic impulse response signals. Biosyst. Eng. 2022, 224, 68–79. [Google Scholar] [CrossRef]
- Donskoy, D.; Liu, D. Vibro-acoustic modulation baseline-free non-destructive testing. J. Sound Vib. 2021, 492, 115808. [Google Scholar] [CrossRef]
- Augereau, F.; Roque, V.; Robert, L.; Despaux, G. Non-destructive testing by acoustic signature of damage level in 304L steel samples submitted to rolling, tensile test and thermal annealing treatments. Mater. Sci. Eng. A 1999, 266, 285–294. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, G.; Wu, D.; Jia, L.; Zhang, Y.; Geng, Y.; Liu, Y.; Ren, W.; Zhang, W. High Signal-to-Noise Ratio MEMS Noise Listener for Ship Noise Detection. Remote Sens. 2023, 15, 777. [Google Scholar] [CrossRef]
- Borrelli, M.; Legare, B.; McCormack, B.; dos Santos, P.P.; Solazzo, D. Absolute Localization of Targets Using a Phase-Measuring Sidescan Sonar in Very Shallow Waters. Remote Sens. 2023, 15, 1626. [Google Scholar] [CrossRef]
- De Marco, R.; Di Nardo, F.; Lucchetti, A.; Virgili, M.; Petetta, A.; Li Veli, D.; Screpanti, L.; Bartolucci, V.; Scaradozzi, D. The Development of a Low-Cost Hydrophone for Passive Acoustic Monitoring of Dolphin’s Vocalizations. Remote Sens. 2023, 15, 1946. [Google Scholar] [CrossRef]
- García, L.; Mota, S.; Titos, M.; Martínez, C.; Segura, J.C.; Benítez, C. Fiber Optic Acoustic Sensing to Understand and Affect the Rhythm of the Cities: Proof-of-Concept to Create Data-Driven Urban Mobility Models. Remote Sens. 2023, 15, 3282. [Google Scholar] [CrossRef]
- Sun, Z.; Yang, S.; Zhang, F.; Lu, J.; Wang, R.; Ou, X.; Lei, A.; Han, F.; Cen, W.; Wei, D.; et al. A Reconstructed Method of Acoustic Logging Data and Its Application in Seismic Lithological Inversion for Uranium Reservoir. Remote Sens. 2023, 15, 1260. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Huo, G.; Li, C.; Wei, Y. Multi-Modal Multi-Stage Underwater Side-Scan Sonar Target Recognition Based on Synthetic Images. Remote Sens. 2023, 15, 1303. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, Y.; Kan, G.; Liu, B.; Zhou, X.; Zhang, X. An Inversion Method for Geoacoustic Parameters in Shallow Water Based on Bottom Reflection Signals. Remote Sens. 2023, 15, 3237. [Google Scholar] [CrossRef]
- Rahaman, A.; Park, C.H.; Kim, B. Design and characterization of a MEMS piezoelectric acoustic sensor with the enhanced signal-to-noise ratio. Sens. Actuators A Phys. 2020, 311, 112087. [Google Scholar] [CrossRef]
- Chu, H.; Li, C.; Wang, H.; Wang, J.; Tai, Y.; Zhang, Y.; Yang, F.; Benezeth, Y. A deep-learning based high-gain method for underwater acoustic signal detection in intensity fluctuation environments. Appl. Acoust. 2023, 211, 109513. [Google Scholar] [CrossRef]
- Jung, Y.H.; Hong, S.K.; Wang, H.S.; Han, J.H.; Pham, T.X.; Park, H.; Kim, J.; Kang, S.; Yoo, C.D.; Lee, K.J. Flexible Piezoelectric Acoustic Sensors and Machine Learning for Speech Processing. Adv. Mater. 2020, 32, 1904020. [Google Scholar] [CrossRef] [PubMed]
- Cha, Y.-J.; Mostafavi, A.; Benipal, S.S. DNoiseNet: Deep learning-based feedback active noise control in various noisy environments. Eng. Appl. Artif. Intell. 2023, 121, 105971. [Google Scholar] [CrossRef]
- Kantamaneni, S.; Charles, A.; Babu, T.R. Speech enhancement with noise estimation and filtration using deep learning models. Theor. Comput. Sci. 2023, 941, 14–28. [Google Scholar] [CrossRef]
- Hao, X.; Su, X.; Wang, Z.; Zhang, H.; Batushiren, A. UNetGAN: A Robust Speech Enhancement Approach in Time Domain for Extremely Low Signal-to-Noise Ratio Condition. In Proceedings of the Interspeech 2019, Graz, Austria, 15–19 September 2019; International Speech Communication Association: Baixas, France, 2019; pp. 1786–1790. [Google Scholar] [CrossRef]
- Duane, D.; Zhu, C.; Piavsky, F.; Godø, O.R.; Makris, N.C. The Effect of Attenuation from Fish on Passive Detection of Sound Sources in Ocean Waveguide Environments. Remote Sens. 2021, 13, 4369. [Google Scholar] [CrossRef]
- Khobotov, A.G.; Kalinina, V.I.; Khil’ko, A.I.; Malekhanov, A.I. Novel Neuron-like Procedure of Weak Signal Detection against the Non-Stationary Noise Background with Application to Underwater Sound. Remote Sens. 2022, 14, 4860. [Google Scholar] [CrossRef]
- Bovsunovsky, A.; Nosal, O. Highly sensitive methods for vibration diagnostics of fatigue damage in structural elements of aircraft gas turbine engines. Procedia Struct. Integr. 2022, 35, 74–81. [Google Scholar] [CrossRef]
- Yin, T.; Ng, C.-T.; Kotousov, A. Damage detection of ultra-high-performance fibre-reinforced concrete using a harmonic wave modulation technique. Constr. Build. Mater. 2021, 313, 125306. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Y.; Lu, W.; Hu, G.; Xu, B.; Cao, W. Low-frequency forbidden bandgap engineering via a cascade of multiple 1D superlattices. J. Appl. Phys. 2018, 124. [Google Scholar] [CrossRef]
- Chen, D.-C.; Zhu, X.-F.; Wei, Q.; Yao, J.; Wu, D.-J. Broadband tunable focusing lenses by acoustic coding metasurfaces. J. Phys. D Appl. Phys. 2020, 53, 255501. [Google Scholar] [CrossRef]
- Chen, D.-C.; Zhu, X.-F.; Wei, Q.; Wu, D.-J. Bidirectional asymmetric acoustic focusing with two flat acoustic metasurfaces. Chin. Phys. B 2018, 27, 124302. [Google Scholar] [CrossRef]
- Li, X.-R.; Jia, Y.-R.; Luo, Y.-C.; Yao, J.; Wu, D.-J. Mixed focused-acoustic-vortices generated by an artificial structure plate engraved with discrete rectangular holes. Appl. Phys. Lett. 2021, 118, 043503. [Google Scholar] [CrossRef]
- Xu, B.; Wu, J.; Lu, W.; Gu, X.; Zhang, L.; Zhang, S.; Zhang, Y. Transmission and rainbow trapping of acoustic waves in a fluid medium using gradient-index superlattices. J. Appl. Phys. 2021, 129, 154501. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, Y.; Zhu, X.; Garcia-Vidal, F.J.; Yin, X.; Zhang, W.; Zhang, X. Acoustic rainbow trapping. Sci. Rep. 2013, 3, 1728. [Google Scholar] [CrossRef]
- Ni, X.; Wu, Y.; Chen, Z.-G.; Zheng, L.-Y.; Xu, Y.-L.; Nayar, P.; Liu, X.-P.; Lu, M.-H.; Chen, Y.-F. Acoustic rainbow trapping by coiling up space. Sci. Rep. 2014, 4, 7038. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, H.; Reilly, M.; Bae, H.; Yu, M. Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials. Nat. Commun. 2014, 5, 5247. [Google Scholar] [CrossRef]
- Huang, X.; Yan, Y.; Ma, J.; Li, J.; Rui, X. An Acoustic Metamaterial-Based Sensor Capable of Multiband Filtering and Amplification. IEEE Sens. J. 2020, 20, 4413–4419. [Google Scholar] [CrossRef]
- Li, J.; Shi, W.; Huang, X.; Ma, J.; Rui, X.; Guo, L. Study on a gradient structure acoustic metamaterial for underwater sound sensing enhancements. In Proceedings of the 2019 14th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), Changsha, China, 1–3 November 2019; pp. 873–879. [Google Scholar]
- Zubov, Y.; Djafari-Rouhani, B.; Jin, Y.; Sofield, M.; Walker, E.; Neogi, A.; Krokhin, A. Long-range nonspreading propagation of sound beam through periodic layered structure. Commun Phys. 2020, 3, 155. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Yang, J.; Chen, B.; Liu, S.; Chen, Y. Compact acoustic amplifiers based on non-adiabatic compression of sound in metamaterial waveguides. Appl. Acoust. 2023, 204, 109246. [Google Scholar] [CrossRef]
- Li, Y.; Liang, B.; Tao, X.; Zhu, X.; Zou, X.; Cheng, J. Acoustic focusing by coiling up space. Appl. Phys. Lett. 2012, 101, 233508. [Google Scholar] [CrossRef]
- Li, Y.; Liang, B.; Gu, Z.; Zou, X.; Cheng, J. Unidirectional acoustic transmission through a prism with near-zero refractive index. Appl. Phys. Lett. 2013, 103, 053505. [Google Scholar] [CrossRef]
- Zhang, T.; Bok, E.; Tomoda, M.; Matsuda, O.; Guo, J.; Liu, X.; Wright, O.B. Compact acoustic metamaterial based on the 3D Mie resonance of a maze ball with an octahedral structure. Appl. Phys. Lett. 2022, 120, 161701. [Google Scholar] [CrossRef]
- Jia, Y.; Luo, Y.; Wu, D.; Wei, Q.; Liu, X. Enhanced Low-Frequency Monopole and Dipole Acoustic Antennas Based on a Subwavelength Bianisotropic Structure. Adv. Mater. Technol. 2020, 5, 1900970. [Google Scholar] [CrossRef]
- Dal Poggetto, V.F.; Bosia, F.; Urban, D.; Beoletto, P.H.; Torgersen, J.; Pugno, N.M.; Gliozzi, A.S. Cochlea-inspired tonotopic resonators. Mater. Des. 2023, 227, 111712. [Google Scholar] [CrossRef]
- Cummer, S.A.; Christensen, J.; Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 2016, 1, 16001. [Google Scholar] [CrossRef]
- Huang, S.; Lin, Y.; Tang, W.; Deng, R.; He, Q.; Gu, F.; Ball, A.D. Sensing with sound enhanced acoustic metamaterials for fault diagnosis. Front. Phys. 2022, 10, 1027895. [Google Scholar] [CrossRef]
- Zhu, X.; Liang, B.; Kan, W.; Peng, Y.-G.; Cheng, J. Deep-Subwavelength-Scale Directional Sensing Based on Highly Localized Dipolar Mie Resonances. Phys. Rev. Appl. 2016, 5, 054015. [Google Scholar] [CrossRef]
- Agulló, J.; Barjau, A.; Keefe, D.H.J.A. Acoustic propagation in flaring, axisymmetric horns: I. A new family of unidimensional solutions. Acta Acust. United Acust. 1999, 85, 278–284. [Google Scholar]
- Orduña-Bustamante, F.; Rendón, P.L.; Martínez-Montejo, E. Comparison between acoustic measurements of brass instruments and one-dimensional models with curved wavefronts and transformed axial coordinates. J. Acoust. Soc. Am. 2017, 142, 1717. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Shang, T.; Li, G.; Li, Z. Low-frequency sound source localization in enclosed space based on time reversal method. Measurement 2022, 204, 112096. [Google Scholar] [CrossRef]
- Huang, W.; Wang, D.; Garcia, H.; Godø, O.R.; Ratilal, P. Continental Shelf-Scale Passive Acoustic Detection and Characterization of Diesel-Electric Ships Using a Coherent Hydrophone Array. Remote Sens. 2017, 9, 772. [Google Scholar] [CrossRef]
- Avots, E.; Vecvanags, A.; Filipovs, J.; Brauns, A.; Skudrins, G.; Done, G.; Ozolins, J.; Anbarjafari, G.; Jakovels, D. Towards Automated Detection and Localization of Red Deer Cervus elaphus Using Passive Acoustic Sensors during the Rut. Remote Sens. 2022, 14, 2464. [Google Scholar] [CrossRef]
- Buchan, S.J.; Duran, M.; Rojas, C.; Wuth, J.; Mahu, R.; Stafford, K.M.; Becerra Yoma, N. An HMM-DNN-Based System for the Detection and Classification of Low-Frequency Acoustic Signals from Baleen Whales, Earthquakes, and Air Guns off Chile. Remote Sens. 2023, 15, 2554. [Google Scholar] [CrossRef]
- Shi, Y.; Qiao, Z.; Wang, G.; Wei, J. In Situ Experimental Study of Cloud-Precipitation Interference by Low-Frequency Acoustic Waves. Remote Sens. 2023, 15, 993. [Google Scholar] [CrossRef]
- Guo, Y.; Zhu, H.; Dang, X. Tracking multiple acoustic sources by adaptive fusion of TDOAs across microphone pairs. Digit. Signal Process. 2020, 106, 102853. [Google Scholar] [CrossRef]
Parameters | h | d | G | g | c | t | H |
---|---|---|---|---|---|---|---|
Values(mm) | 3 | 9 | 9 | 3 | 12 | 3 | 90 |
Air Gaps | fNGCM (Hz) | fGAM (Hz) | Air Gaps | fNGCM (Hz) | fGAM (Hz) |
---|---|---|---|---|---|
7th | 2292 | 3104 | 16th | 810 | 1494 |
8th | 1711 | 2774 | 17th | 710 | 1365 |
9th | 1702 | 2544 | 18th | 650 | 1162 |
10th | 1342 | 2411 | 19th | 580 | 1168 |
11th | 1340 | 2403 | 20th | 530 | 1090 |
12th | 1102 | 2196 | 21st | 490 | 1010 |
13th | 1100 | 1963 | 22nd | 458 | 940 |
14th | 910 | 1781 | 23rd | 429 | 885 |
15th | 821 | 1616 |
Air Gaps | FNGCM (Hz) | FGAM (Hz) | Air Gaps | FNGCM (Hz) | FGAM (Hz) |
---|---|---|---|---|---|
7th | 2290 | 3103 | 16th | 810 | 1494 |
8th | 1712 | 2774 | 17th | 710 | 1366 |
9th | 1701 | 2544 | 18th | 650 | 1161 |
10th | 1342 | 2412 | 19th | 580 | 1168 |
11th | 1341 | 2402 | 20th | 530 | 1090 |
12th | 1102 | 2194 | 21st | 490 | 1011 |
13th | 1100 | 1963 | 22nd | 458 | 940 |
14th | 911 | 1782 | 23rd | 429 | 884 |
15th | 822 | 1616 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, G.; Zhao, X.; Han, J. A Nonlinear Gradient-Coiling Metamaterial for Enhanced Acoustic Signal Sensing. Crystals 2023, 13, 1291. https://doi.org/10.3390/cryst13081291
Hao G, Zhao X, Han J. A Nonlinear Gradient-Coiling Metamaterial for Enhanced Acoustic Signal Sensing. Crystals. 2023; 13(8):1291. https://doi.org/10.3390/cryst13081291
Chicago/Turabian StyleHao, Guodong, Xinsa Zhao, and Jianning Han. 2023. "A Nonlinear Gradient-Coiling Metamaterial for Enhanced Acoustic Signal Sensing" Crystals 13, no. 8: 1291. https://doi.org/10.3390/cryst13081291
APA StyleHao, G., Zhao, X., & Han, J. (2023). A Nonlinear Gradient-Coiling Metamaterial for Enhanced Acoustic Signal Sensing. Crystals, 13(8), 1291. https://doi.org/10.3390/cryst13081291