An Operando Study of the Thermal Reduction of BaTiO3 Crystals: The Nature of the Insulator–Metal Transition of the Surface Layer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crystals
2.2. XPS Spectrometer
2.3. Effusion Apparatus
2.4. Electrical Characterization
2.5. Atomic Force Microscopy
3. Results and Discussion
3.1. The I/M Transition of BaTiO3 Induced by Thermal Reduction
3.1.1. Electrical Characterization
3.1.2. Oxygen Effusion
3.1.3. Operando XPS Study of the Reduction of BaTiO3
3.1.4. Comparison to Density Functional Theory Calculations
3.1.5. Conclusions from the In Situ Analysis of Thermal Reduction
- The unambiguous determination of the chemical composition of the surface layer of BaTiO3 single crystals (e.g., Ti/Ba ratio) up to 800 °C is difficult due to substantial surface contamination by physically and chemically adsorbed compounds, whose concentrations may vary during the reduction process. Therefore, it is necessary to monitor additional compounds of the O1s and C1s core line with higher binding energies as a function of annealing temperature and time;
- The analysis of the Ti2p core line shows that the valence of Ti (in ionic notation) at 900 °C is equal to 4+. Only at 1000 and 1100 °C do we observe a small contribution from the Ti ions with valence 3+ to the Ti2p lines. Despite this, we have no hints of an occupied state close to the Fermi level from the VB spectra;
- The highest variation of the chemical state in the surface layer during the reduction shows the Ba3d line, whose additional compounds (relative to the Ba in the matrix) could be connected with Ba bounded on the surface with BaO termination or represented by BaO-rich structures and metallic Ba (especially if the reduction temperature is higher than 800 °C);
- Note: Although the maximum reduction temperature was extremely high (1100 °C), our in operando studies of the thermal reduction of the BaTiO3 crystal (100) are not as spectacular as the XPS studies presented in the literature on in situ-reduced crystal analyzed at RT after reduction, as it shows a much lower concentration of Ti with reduced valence. On the other hand, our XPS measurements are consistent with the data on the outflow of oxygen, as we cannot expect to observe a dramatic change in the oxygen stoichiometry in the surface layer when only a small quantity of atoms is removed from the crystal.
3.2. Quenching of Reduced Crystals: Freezing Defects in the Surface Layer by Means of Rapid Cooling
3.2.1. XPS Investigation of Reduced BaTiO3 Quenched from 800 °C to 500 °C
3.2.2. XPS Investigation of Reduced BaTiO3 Quenched from 900 °C to 500 °C
3.2.3. XPS Investigation of Reduced BaTiO3 Quenched from 1000 °C to 500 °C
3.2.4. XPS Investigation of Reduced BaTiO3 Quenched from 1100 °C to 500 °C
3.2.5. Change in the Ba/Ti Ratio during Quenching
3.2.6. XPS Investigation of the De-Quenching by Repeated Reduction at 1100 °C
3.2.7. Angular Dependence of XPS Spectra of a Crystal Quenched from 1100 to 400 °C
3.3. Cooling of a Reduced BaTiO3 Crystal to the Ferroelectric Phase
3.3.1. XPS Investigation of Reduced BaTiO3 Cooled from 400 °C to Room temperature
3.3.2. Model of the Quenching from the Paraelectric to Ferroelectric Phase
3.4. Nanoscopic Analysis of the I/M Transition
3.4.1. LC–AFM Investigation of the Reduced BaTiO3 crystals
3.4.2. Investigation of Dislocations in the Surface Layer of BaTiO3 Crystals
4. Summary and Conclusions
- During the thermal reduction process of BaTiO3 crystals, only an extremely low oxygen concentration on the order of 1015 atoms/cm3 was removed.
- Despite this low level of oxygen vacancies incorporated into the crystal during the reduction, the electrical measurements of the resistance change as a function of the temperature exhibited metallic behavior;
- The I/M transition at the nanoscale is only limited to the core of the dislocations. Hence, the doping level alongside such extended defects is 6–7 orders of magnitude higher than calculated when assuming a uniform distribution of oxygen vacancies. For such an enormous inhomogeneity, using “delta” parameters to describe the oxygen nonstoichiometry as BaTiO3−δ is not helpful;
- The tendency of the agglomeration/accumulation of defects in the surface layer leads to a dramatic change in the electronic structure and local chemical composition of the surface layer;
- The XPS investigation showed that the transformation into a metallic phase is connected with the reduction in the Ti valence from 4+ to 3+. This influence of the reduction process on the modification of core lines is clearly visible at extremely high reduction temperatures (1000–1100 °C). Despite the very high reduction temperatures, only a low level of the occupied state close to the Fermi level can be identified on the VB spectra. This observation aligns with the very low doping level determined by the effusion study;
- The in operando XPS analysis revealed that the transformation of the surface layer into the metallic state becomes enhanced if the reduced crystal is quenched from a high reduction temperature (900–1100 °C) to moderated temperatures (500–400 °C) in the paraelectric phase;
- This self-reduction process is connected to the re-segregation of oxygen vacancies and leads to the enrichment of the upper part of the surface layer in Ti oxides with low valences (3+ and 2+). The XPS measurement for different angles supported this observation. The transformation of the surface layer during quenching is a complex process with “many facets,”, i.e., the amount of BaO in the upper part of the surface layer is significantly smaller than for the stoichiometric crystal, as BaO segregates into the deeper parts of the surface layer;
- The topographical investigations show that thermal reduction is responsible for the growth of a new surface structure, in which dislocations with good conductivity can be identified with atomic resolution;
- During the cooling of the reduced BaTiO3 crystal to RT, a step-like change in resistance occurs at the transition temperature between the paraelectric and ferroelectric phases. This contrasts with the continuous dependence of the resistance observed for thermally reduced SrTiO3 [21], although the crystal was reduced under similar conditions. The sudden increase in resistance at the transition temperature can also be deduced from the XPS analysis revealing a shift in the binding energy of the part of the core line as an effect of the additional charging of part of the surface layer in the ferroelectric phase;
- Combined PFM and LC–AFM measurements in the ferroelectric state demonstrate the negative correlation between the positions of the metallic filaments and piezoelectrically active areas.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akbarian, D.; Yilmaz, D.E.; Cao, Y.; Ganesh, P.; Dabo, I.; Munro, J.; Van Ginhoven, R.; van Duin, A.C.T. Understanding the influence of defects and surface chemistry on ferroelectric switching: A ReaxFF investigation of BaTiO3. Phys. Chem. Chem. Phys. 2019, 21, 18240–18249. [Google Scholar] [CrossRef] [PubMed]
- Barzilay, M.; Elangoyan, H.; Ivry, Y. Surface Nucleation of the Paraelectric Phase in Ferroelectric BaTiO3: Atomic Scale Mapping. ACS Appl. Electron. Mater. 2019, 1, 2431–2436. [Google Scholar] [CrossRef]
- Barzilay, M.; Qiu, T.; Rappe, A.M.; Ivry, Y. Epitaxial TiOx Surface in Ferroelectric BaTiO3: Native Structure and Dynamic Patterning at the Atomic Scale. Adv. Funct. Mater. 2020, 30, 201902549. [Google Scholar] [CrossRef]
- He, D.Y.; Tang, X.J.; Liu, Y.X.; Liu, J.; Du, W.B.; He, P.F.; Wang, H.D. Phase Transition Effect on Ferroelectric Domain Surface Charge Dynamics in BaTiO3 Single Crystal. Materials 2021, 14, 4463. [Google Scholar] [CrossRef]
- Kalinin, S.V.; Bonnell, D.A. Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys. Rev. B 2002, 65, 125408. [Google Scholar] [CrossRef]
- Lee, H.; Kim, T.H.; Patzner, J.J.; Lu, H.D.; Lee, J.W.; Zhou, H.; Chang, W.S.; Mahanthappa, M.K.; Tsymbal, E.Y.; Gruverman, A.; et al. Imprint Control of BaTiO3 Thin Films via Chemically Induced Surface Polarization Pinning. Nano Lett. 2016, 16, 2400–2406. [Google Scholar] [CrossRef]
- Li, X.L.; Lu, H.B.; Li, M.; Mai, Z.H.; Kim, H.J. Temperature dependence surface structure of BaTiO3 thin films induced by ferroelectric phase transition. J. Appl. Phys. 2008, 103, 2894901. [Google Scholar] [CrossRef]
- Nishimatsu, T.; Iwamoto, M.; Kawazoe, Y.; Waghmare, U.V. First-principles accurate total energy surfaces for polar structural distortions of BaTiO3, PbTiO3, and SrTiO3: Consequences for structural transition temperatures. Phys. Rev. B 2010, 82, 134106. [Google Scholar] [CrossRef]
- Urakami, Y.; Yamato, M.; Watanabe, Y. Surface conduction on poled BaTiO3 single crystals in ultra high vacuum. Ferroelectrics 2007, 346, 32–36. [Google Scholar] [CrossRef]
- Watanabe, Y. BaTiO3 polar surface in ultrahigh vacuum calculated by local density functional theory with a large supercell. Ferroelectrics 2018, 534, 183–189. [Google Scholar] [CrossRef]
- Watanabe, Y.; Okano, M.; Masuda, A. Surface conduction on insulating BaTiO3 crystal suggesting an intrinsic surface electron layer. Phys. Rev. Lett. 2001, 86, 332–335. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Vanderbilt, D.; Rabe, K.M. First-principles theory of ferroelectric phase-transitions for perovskites—The case of BaTiO3. Phys. Rev. B 1995, 52, 6301–6312. [Google Scholar] [CrossRef] [PubMed]
- Känzig, W. Space Charge Layer Near the Surface of a Ferroelectric. Phys. Rev. 1955, 98, 549–550. [Google Scholar] [CrossRef]
- Lee, S.; Bock, J.A.; Trolier-McKinstry, S.; Randall, C.A. Ferroelectric-thermoelectricity and Mott transition of ferroelectric oxides with high electronic conductivity. J. Eur. Ceram. Soc. 2012, 32, 3971–3988. [Google Scholar] [CrossRef]
- Yimer, Z.; Fu, H.X. Origin of the persistence of soft modes in metallic ferroelectrics. Phys. Rev. B 2020, 101, 174105. [Google Scholar] [CrossRef]
- Akishige, Y.; Yamazaki, Y.; Mori, N. Pressure induced insulator-metal transition in hexagonal BaTiO3-δ. J. Phys. Soc. Jpn. 2004, 73, 1267–1272. [Google Scholar] [CrossRef]
- Kolodiazhnyi, T.; Tachibana, M.; Kawaji, H.; Hwang, J.; Takayama-Muromachi, E. Persistence of Ferroelectricity in BaTiO3 through the Insulator-Metal Transition. Phys. Rev. Lett. 2010, 104, 147602. [Google Scholar] [CrossRef]
- Li, G.; He, C.; Xiong, Y.; Zou, Z.; Liu, Y.L.; Chen, Q.L.; Zhang, W.L.; Yan, S.A.; Xiao, Y.G.; Tang, M.H.; et al. Coexistence of ferroelectricity and metallicity in M-doped BaTiO3 (M = Al, V, Cr, Fe, Ni, and Nb): First-principles study. Mater. Today Commun. 2021, 27, 102394. [Google Scholar] [CrossRef]
- Szot, K.; Rodenbücher, C.; Bihlmayer, G.; Speier, W.; Ishikawa, R.; Shibata, N.; Ikuhara, Y. Influence of dislocations in transition metal oxides on selected physical and chemical properties. Crystals 2018, 8, 241. [Google Scholar] [CrossRef]
- Szot, K.; Rodenbucher, C. Insulator-Metal Transition Associated with Resistive Switching in Real SrTiO3 and TiO2 Crystals. In Proceedings of the Joint IEEE International Symposium on the Applications of Ferroelectric/International Symposium on Integrated Functionalities/Piezoelectric Force Microscopy Workshop (ISAF/ISIF/PFM), Singapore, 24–27 May 2015; pp. 143–146. [Google Scholar]
- Szot, K.; Speier, W.; Bihlmayer, G.; Waser, R. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 2006, 5, 312–320. [Google Scholar] [CrossRef]
- Szot, K.; Speier, W.; Carius, R.; Zastrow, U.; Beyer, W. Localized metallic conductivity and self-healing during thermal reduction of SrTiO3. Phys. Rev. Lett. 2002, 88, 075508. [Google Scholar] [CrossRef] [PubMed]
- Rodenbücher, C.; Meuffels, P.; Speier, W.; Ermrich, M.; Wrana, D.; Krok, F.; Szot, K. Stability and Decomposition of Perovskite-Type Titanates upon High-Temperature Reduction. Phys. Status Solidi (RRL) Rapid Res. Lett. 2017, 11, 1700222. [Google Scholar] [CrossRef]
- Rodenbücher, C.; Korte, C.; Schmitz-Kempen, T.; Bette, S.; Szot, K. A physical method for investigating defect chemistry in solid metal oxides. APL Mater. 2021, 9, 011106. [Google Scholar] [CrossRef]
- Eglitis, R.; Popov, A.I.; Purans, J.; Jia, R. First principles hybrid Hartree-Fock-DFT calculations of bulk and (001) surface F centers in oxide perovskites and alkaline-earth fluorides. Low Temp. Phys. 2020, 46, 1206–1212. [Google Scholar] [CrossRef]
- Eglitis, R.I.; Purans, J.; Popov, A.I.; Jia, R. Tendencies in ABO3 Perovskite and SrF2, BaF2 and CaF2 Bulk and Surface F-Center Ab Initio Computations at High Symmetry Cubic Structure. Symmetry 2021, 13, 1920. [Google Scholar] [CrossRef]
- Sokolov, M.; Eglitis, R.I.; Piskunov, S.; Zhukovskii, Y.F. Ab initio hybrid DFT calculations of BaTiO3 bulk and BaO-terminated (001) surface F-centers. Int. J. Mod. Phys. B 2017, 31, s0217979217502514. [Google Scholar] [CrossRef]
- Kolodiazhnyi, T. Insulator-metal transition and anomalous sign reversal of the dominant charge carriers in perovskite BaTiO3−δ. Phys. Rev. B 2008, 78, 045107. [Google Scholar] [CrossRef]
- Scofield, J.H. Theoretical Photoionization Cross Sections from 1 to 1500 keV; Technical Report; Lawrence Livermore Laboratory, University of California: Livermore, CA, USA; p. UCRL–-51326.
- Singh, B.; Diwan, A.; Jain, V.; Herrera-Gomez, A.; Terry, J.; Linford, M.R. Uniqueness plots: A simple graphical tool for identifying poor peak fits in X-ray photoelectron spectroscopy. Appl. Surf. Sci. 2016, 387, 155–162. [Google Scholar] [CrossRef]
- Wrana, D.; Rodenbucher, C.; Belza, W.; Szot, K.; Krok, F. In situ study of redox processes on the surface of SrTiO3 single crystals. Appl. Surf. Sci. 2018, 432, 46–52. [Google Scholar] [CrossRef]
- Wu, Z.C. RE More accurate generalized gradient approximation for solids. Am. Phys. Soc. 2006, 73, 235116. [Google Scholar] [CrossRef]
- Krakauer, H.; Posternak, M.; Freeman, A.J. Linearized augmented plane-wave method for the electronic band structure of thin films. Phys. Rev. B 1979, 19, 1706–1719. [Google Scholar] [CrossRef]
- Wortmann, D.; Gregor, M.; Baadji, N.; Betzinger, M.; Bihlmayer, G.; Bröder, J.; Burnus, T.; Enkovaara, J.; Freimuth, F.; Friedrich, C.; et al. Fleur; Zenodo: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Bilc, D.I.; Orlando, R.; Shaltaf, R.; Rignanese, G.M.; Íñiguez, J.; Ghosez, P. Hybrid exchange-correlation functional for accurate prediction of the electronic and structural properties of ferroelectric oxides. Phys. Rev. B 2008, 77, 165107. [Google Scholar] [CrossRef]
- Becker, K.D.; Schrader, M.; Kwon, H.S.; Yoo, H.I. Electrical and optical characterization of undoped BaTiO3 in the quenched state. Phys. Chem. Chem. Phys. 2009, 11, 3082–3089. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.S.; Yoo, H.I.; Kim, C.H.; Hur, K.H. Semiconductor-to-insulator transition of undoped-BaTiO3 in quenched state. J. Appl. Phys. 2010, 107, 3385426. [Google Scholar] [CrossRef]
- Macchi, C.; Somoza, A.; Dupasquier, A.; Garcia, A.L.; Castro, M. Positron trapping in BaTiO3 perovskite. J. Phys. Condens. Matter 2001, 13, 5717–5722. [Google Scholar] [CrossRef]
- Maier, R.A.; Randall, C.A. Low Temperature Ionic Conductivity of an Acceptor-Doped Perovskite: II. Impedance of Single-Crystal BaTiO3. J. Am. Ceram. Soc. 2016, 99, 3360–3366. [Google Scholar] [CrossRef]
- Yeo, H.G.; Kuk, M.H.; Kim, M.H.; Song, T.K.; Bae, D.S.; Park, T.G.; Lee, S.I.; Randall, C.A. Electrical Conductivity Revisited in Excess BaO into BaTiO3. J. Korean Ceram. Soc. 2005, 42, 308–313. [Google Scholar] [CrossRef]
- Rogala, M.; Bihlmayer, G.; Dabrowski, P.; Rodenbucher, C.; Wrana, D.; Krok, F.; Klusek, Z.; Szot, K. Self-reduction of the native TiO2 (110) surface during cooling after thermal annealing—In-operando investigations. Sci. Rep. 2019, 9, s41598. [Google Scholar] [CrossRef]
- Alexandrov, V.E.; Kotomin, E.A.; Maier, J.; Evarestov, R.A. First-principles study of bulk and surface oxygen vacancies in SrTiO3 crystal. Eur. Phys. J. B 2009, 72, 53–57. [Google Scholar] [CrossRef]
- Lee, S.B.; Phillipp, F.; Sigle, W.; Ruhle, M. Nanoscale TiO island formation on the SrTiO3(001) surface studied by in situ high-resolution transmission electron microscopy. Ultramicroscopy 2005, 104, 30–38. [Google Scholar] [CrossRef]
- Meyer, R.; Waser, R.; Helmbold, J.; Borchardt, G. Cationic surface segregation in donor-doped SrTiO3 under oxidizing conditions. J. Electroceram. 2002, 9, 103–112. [Google Scholar] [CrossRef]
- Szot, K.; Bihlmayer, G.; Speier, W. Nature of the Resistive Switching Phenomena in TiO2 and SrTiO3: Origin of the Reversible Insulator-Metal Transition. In Solid State Physics; Solid State Physics: 2014; Camley, R.E., Stamps, R.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 65, pp. 353–559. [Google Scholar]
- Szade, J.; Psiuk, B.; Pilch, M.; Waser, R.; Szot, K. Self-neutralization via electroreduction in photoemission from SrTiO3 single crystals. Appl. Phys. A-Mater. Sci. Process. 2009, 97, 449–454. [Google Scholar] [CrossRef]
- Arend, H.; Montemezzani, G.; Szot, K.; Turcicova, H. Importance of oxidation and reduction of barium titanate in material science. Ferroelectrics 1997, 202, 1–10. [Google Scholar] [CrossRef]
- Szot, K.; Freiburg, C.; Pawelczyk, M. Layer structures BaO-BaTiO3 in the region of p-type conductivity on the surface of BaTiO3. Appl. Phys. A-Mater. Sci. Process. 1991, 53, 563–567. [Google Scholar] [CrossRef]
- Szot, K.; Hoffmann, S.; Speier, W.; Breuer, U.; Siegert, M.; Waser, R. Segregation phenomena in thin films of BaTiO3. Integr. Ferroelectr. 2001, 33, 303–310. [Google Scholar] [CrossRef]
- Szot, K.; Pawelczyk, M.; Herion, J.; Freiburg, C.; Albers, J.; Waser, R.; Hulliger, J.; Kwapulinski, J.; Dec, J. Nature of the surface layer in ABO3-type Perovskites at elevated temperatures. Appl. Phys. A-Mater. Sci. Process. 1996, 62, 335–343. [Google Scholar] [CrossRef]
- Bursill, L.; Peng, J.; Fan, X. Structure and reactivity of atomic surfaces of barium titanate under electron irradiation. Ferroelectrics 1989, 97, 71–84. [Google Scholar] [CrossRef]
- Buck, E.C. Effects of electron irradiation of barium titanate. Radiat. Eff. Defects Solids 1995, 133, 15–25. [Google Scholar] [CrossRef]
- Hirel, P.; Marton, P.; Mrovec, M.; Elsasser, C. Theoretical investigation of {110} generalized stacking faults and their relation to dislocation behavior in perovskite oxides. Acta Mater. 2010, 58, 6072–6079. [Google Scholar] [CrossRef]
- Li, Y.L.; Xie, L.; Yu, R.; Zhou, H.H.; Cheng, Z.Y.; Wang, X.H.; Li, L.T.; Zhu, J. Core Structures of <001> {110} edge dislocations in BaTiO3. AIP Adv. 2015, 5, 4927637. [Google Scholar] [CrossRef]
- Wunderlich, W.; Fujimoto, M.; Ohsato, H. Formation of stacking faults from misfit dislocations at the BaTiO3/SrTiO3 interface simulated by molecular dynamics. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2001, 309, 148–151. [Google Scholar] [CrossRef]
- Jia, C.; Urban, K. The atomic structure of the dislocation cores in a small-angle grain boundary in BaTiO3 thin films. Philos. Mag. Lett. 1999, 79, 859–867. [Google Scholar] [CrossRef]
- Mott, N.F.; Friedman, L. Metal-insulator transitions in VO2, Ti2O3 and Ti2-XVXO3. Philos. Mag. 1974, 30, 389–402. [Google Scholar] [CrossRef]
- Liborio, L.; Mallia, G.; Harrison, N. Electronic structure of the Ti4O7 Magnéli phase. Phys. Rev. B 2009, 79, 245133. [Google Scholar] [CrossRef]
- Waser, R.; Dittmann, R.; Staikov, G.; Szot, K. Redox-Based Resistive Switching Memories—Nanoionic Mechanisms, Prospects, and Challenges. Adv. Mater. 2009, 21, 2632. [Google Scholar] [CrossRef] [PubMed]
- Marshall, M.S.; Becerra-Toledo, A.E.; Marks, L.D.; Castell, M.R. Surface and defect structure of oxide nanowires on SrTiO3. Phys. Rev. Lett. 2011, 107, 086102. [Google Scholar] [CrossRef] [PubMed]
- Wrana, D.; Rodenbucher, C.; Jany, B.R.; Kryshtal, O.; Cempura, G.; Kruk, A.; Indyka, P.; Szot, K.; Krok, F. A bottom-up process of self-formation of highly conductive titanium oxide (TiO) nanowires on reduced SrTiO3. Nanoscale 2019, 11, 89–97. [Google Scholar] [CrossRef]
- Szot, K.; Speier, W. Surfaces of reduced and oxidized SrTiO3 from atomic force microscopy. Phys. Rev. B 1999, 60, 5909–5926. [Google Scholar] [CrossRef]
- Doukhan, N.; Doukhan, J. Dislocations in perovskites BaTiO3 and CaTiO3. Phys. Chem. Miner. 1986, 13, 403–410. [Google Scholar] [CrossRef]
- Eibl, O.; Pongratz, P.; Skalicky, P.; Schmelz, H. Dislocations in BaTiO3 ceramics. Phys. Status Solidi 1988, 108, 495–502. [Google Scholar] [CrossRef]
- Balzar, D.; Ledbetter, H.; Stephens, P.W.; Park, E.T.; Routbort, J.L. Dislocation-density changes upon poling of polycrystalline BaTiO3. Phys. Rev. B 1999, 59, 3414. [Google Scholar] [CrossRef]
- Kurata, H.; Isojima, S.; Kawai, M.; Shimakawa, Y.; Isoda, S. Local analysis of the edge dislocation core in BaTiO3 thin film by STEM-EELS. J. Microsc. 2009, 236, 128–131. [Google Scholar] [CrossRef]
- Gao, P.; Yang, S.; Ishikawa, R.; Li, N.; Feng, B.; Kumamoto, A.; Shibata, N.; Yu, P.; Ikuhara, Y. Atomic-scale measurement of flexoelectric polarization at SrTiO3 dislocations. Phys. Rev. Lett. 2018, 120, 267601. [Google Scholar] [CrossRef]
- Polinger, V.; Bersuker, I.B. Origin of polar nanoregions and relaxor properties of ferroelectrics. Phys. Rev. B 2018, 98, 214102. [Google Scholar] [CrossRef]
Component 1 | Component 2 | |||||
---|---|---|---|---|---|---|
T (°C) | BE (eV) | FWHM (eV) | Area (%) | BE (eV) | FWHM (eV) | Area (%) |
400 | 529.7 | 1.52 | 89.4 | 530.9 | 1.57 | 10.6 |
700 | 529.7 | 1.69 | 94.5 | 531.0 | 1.55 | 5.5 |
800 | 529.7 | 1.77 | 97.3 | 531.1 | 1.80 | 2.7 |
900 | 529.7 | 1.80 | 97.5 | 531.1 | 1.70 | 2.5 |
1000 | 529.7 | 2.09 | 100 | |||
1100 | 529.7 | 2.12 | 100 |
Component 1 | Component 2 | Component 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
T (°C) | BE (eV) | FWHM (eV) | Area (%) | BE (eV) | FWHM (eV) | Area (%) | BE (eV) | FWHM (eV) | Area (%) |
400 | 284.2 | 1.45 | 69.1 | 285.7 | 1.56 | 19.5 | 287.4 | 1.56 | 6.5 |
700 | 284.2 | 1.45 | 66.4 | 286.0 | 1.56 | 19.4 |
Component 1 | Component 2 | |||||
---|---|---|---|---|---|---|
T (°C) | BE (eV) | FWHM (eV) | Area (%) | BE (eV) | FWHM (eV) | Area (%) |
400 | 458.4 | 1.26 | 100 | |||
700 | 458.4 | 1.34 | 100 | |||
800 | 458.4 | 1.33 | 100 | |||
900 | 458.3 | 1.44 | 100 | |||
1000 | 458.1 | 1.83 | 100 | |||
1100 | 458.4 | 1.69 | 70 | 456.6 | 1.4 | 30 |
Component 1 | Component 2 | Component 3 | Component 4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T (°C) | BE (eV) | FWHM (eV) | Area (%) | BE (eV) | FWHM (eV) | Area (%) | BE (eV) | FWHM (eV) | Area (%) | BE (eV) | FWHM (eV) | Area (%) |
400 | 779.1 | 1.51 | 80.6 | 780.6 | 1.60 | 19.4 | ||||||
700 | 779.1 | 1.62 | 77.6 | 780.8 | 1.82 | 22.4 | ||||||
800 | 779.1 | 1.64 | 78.4 | 780.8 | 1.84 | 21.6 | ||||||
900 | 779.1 | 1.73 | 76.9 | 780.9 | 1.70 | 17.5 | 781.6 | 1.7 | 3.0 | 777.3 | 1.7 | 2.6 |
1000 | 779.2 | 1.97 | 74.9 | 780.9 | 1.83 | 15.3 | 781.7 | 1.9 | 3.4 | 777.5 | 1.7 | 6.6 |
1100 | 779.1 | 2.10 | 77.2 | 780.7 | 1.90 | 11.4 | 781.5 | 1.9 | 7.3 | 776.8 | 21 | 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodenbücher, C.; Bihlmayer, G.; Korte, C.; Rytz, D.; Szade, J.; Szot, K. An Operando Study of the Thermal Reduction of BaTiO3 Crystals: The Nature of the Insulator–Metal Transition of the Surface Layer. Crystals 2023, 13, 1278. https://doi.org/10.3390/cryst13081278
Rodenbücher C, Bihlmayer G, Korte C, Rytz D, Szade J, Szot K. An Operando Study of the Thermal Reduction of BaTiO3 Crystals: The Nature of the Insulator–Metal Transition of the Surface Layer. Crystals. 2023; 13(8):1278. https://doi.org/10.3390/cryst13081278
Chicago/Turabian StyleRodenbücher, Christian, Gustav Bihlmayer, Carsten Korte, Daniel Rytz, Jacek Szade, and Kristof Szot. 2023. "An Operando Study of the Thermal Reduction of BaTiO3 Crystals: The Nature of the Insulator–Metal Transition of the Surface Layer" Crystals 13, no. 8: 1278. https://doi.org/10.3390/cryst13081278
APA StyleRodenbücher, C., Bihlmayer, G., Korte, C., Rytz, D., Szade, J., & Szot, K. (2023). An Operando Study of the Thermal Reduction of BaTiO3 Crystals: The Nature of the Insulator–Metal Transition of the Surface Layer. Crystals, 13(8), 1278. https://doi.org/10.3390/cryst13081278