High-Throughput Exploration of Half-Heusler Phases for Thermoelectric Applications
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, G.; Wang, D. Electronic structure and thermoelectric properties of Pb-based half-Heusler compounds: ABPb (A = Hf, Zr; B = Ni, Pd). J. Alloys Compd. 2016, 682, 375–380. [Google Scholar] [CrossRef]
- Touia, A.; Benyahia, K.; Tekin, A. First-principles calculations of structural, electronic, optical, and thermoelectric properties of LuNiBi and LuNiSb half-heusler. J. Supercond. Nov. Magn. 2021, 34, 2689–2698. [Google Scholar] [CrossRef]
- Xing, G.; Sun, J.; Li, Y.; Fan, X.; Zheng, W.; Singh, D.J. Electronic fitness function for screening semiconductors as thermoelectric materials. Phys. Rev. Mater. 2017, 1, 065405. [Google Scholar] [CrossRef]
- Abid, O.M.; Menouer, S.; Yakoubi, A.; Khachai, H.; Omran, S.B.; Murtaza, G.; Prakash, D.; Kgebata, R.; Verma, K.D. Structural, electronic, elastic, thermoelectric and thermodynamic properties of the NbMSb half heusler (M = Fe, Ru, Os) compounds with first principle calculations. Superlattices Microstruct. 2016, 93, 171–185. [Google Scholar] [CrossRef]
- Touia, A.; Benkhaled, M.; Khobzaoui, C.; Fodil, M. Optical and Thermodynamic Properties of Half-Heusler Compound TaIrSn: Using Modified Becke–Johnson (mBJ). J. Supercond. Nov. Magn. 2021, 34, 2865–2877. [Google Scholar] [CrossRef]
- Candan, A.; Kushwaha, A.K. A first-principles study of the structural, electronic, optical, and vibrational properties for paramagnetic half-Heusler compound TiIrBi by GGA and GGA + mBJ functional. Mater. Today Commun. 2021, 27, 102246. [Google Scholar] [CrossRef]
- Chibani, S.; Arbouche, O.; Zemouli, M.; Benallou, Y.; Amara, K.; Chami, N.; Ameri, M.; El Keurti, M. First-principles investigation of structural, mechanical, electronic, and thermoelectric properties of Half-Heusler compounds RuVX (X = As, P, and Sb). Comput. Condens. Matter 2018, 16, e00312. [Google Scholar] [CrossRef]
- Winiarski, M.J.; Bilińska, K.; Ciesielski, K.; Kaczorowski, D. Thermoelectric performance of p-type half-Heusler alloys ScMSb (M = Ni, Pd, Pt) by ab initio calculations. J. Alloys Compd. 2018, 762, 901–905. [Google Scholar] [CrossRef]
- Winiarski, M.J.; Bilińska, K. High thermoelectric power factors of p-type half-Heusler alloys YNiSb, LuNiSb, YPdSb, and LuPdSb. Intermetallics 2019, 108, 55–60. [Google Scholar] [CrossRef]
- Winiarski, M.J.; Bilinska, K. Power Factors of p-type Half-Heusler Alloys ScNiBi, YNiBi, and LuNiBi by ab initio Calculations. Acta Phys. Pol. A 2020, 138, 533–538. [Google Scholar] [CrossRef]
- Bilińska, K.; Winiarski, M.J. Search for semiconducting materials among 18-electron half-Heusler alloys. Solid State Commun. 2023, 365, 115133. [Google Scholar] [CrossRef]
- Mallick, M.M.; Vitta, S. Thermoelectric properties of ultra-low thermal conductivity half-Heusler alloy. AIP Conf. Proc. 2016, 1731, 110027. [Google Scholar]
- Kimura, Y.; Zama, A. Thermoelectric properties of p-type half-Heusler compound HfPtSn and improvement for high-performance by Ir and Co additions. Appl. Phys. Lett. 2006, 89, 172110. [Google Scholar] [CrossRef]
- Sekimoto, T.; Kurosaki, K.; Muta, H.; Yamasaka, S. Thermoelectric and thermophysical properties of TiCoSb, ZrCoSb, HfCoSb prepared by SPS. In Proceedings of the ICT 2005. 24th International Conference on Thermoelectrics, Clemson, SC, USA, 19–23 June 2005; pp. 347–350. [Google Scholar]
- Serrano-Sánchez, F.; Luo, T.; Yu, J.; Xie, W.; Le, C.; Auffermann, G.; Weidenkaff, A.; Zhu, T.; Zhao, X.; Alonso, J.A.; et al. Thermoelectric properties of n-type half-Heusler NbCoSn with heavy-element Pt substitution. Phys. Chem. Chem. Phys. 2020, 8, 14822–14828. [Google Scholar] [CrossRef]
- Joshi, G.; He, R.; Engber, M.; Samsonidze, G.; Pantha, T.; Dahal, E.; Yang, J.; Lan, Y.; Kozinsky, B.; Ren, Z. NbFeSb-based p-type half-Heuslers for power generation applications. J. Am. Chem. Soc. 2019, 12, 4070–4076. [Google Scholar] [CrossRef]
- Zakutayev, A.; Zhang, X.; Nagaraja, A.; Yu, L.; Lany, S.; Mason, T.O.; Ginley, D.S.; Zunger, A. Theoretical prediction and experimental realization of new stable inorganic materials using the inverse design approach. J. Am. Chem. Soc. 2013, 135, 10048–10054. [Google Scholar] [CrossRef]
- Kawaharada, Y.; Kurosaki, K.; Muta, H.; Uno, M.; Yamanaka, S. High temperature thermoelectric properties of CoTiSb half-Heusler compounds. J. Alloys Compd. 2004, 384, 308–311. [Google Scholar] [CrossRef]
- Asaad, M.; Buckman, J.; Smith, R.I.; Bos, J.W.G. Thermoelectric properties and high-temperature stability of the Ti1-xVxCoSb1-xSnx half-Heusler alloys. RSC Adv. 2016, 6, 5611–56517. [Google Scholar] [CrossRef]
- Hooshm Zaferani, S.; Darebaghi, A.; Hong, S.J.; Vashaee, D.; Ghomashchi, R. Experimental realization of heavily p-doped half-Heusler CoVSn compound. Energies 2020, 13, 1459. [Google Scholar] [CrossRef]
- Gzyl, A.S.; Oliynyk, A.O.; Mar, A. Half-heusler structures with full-heusler counterparts: Machine-learning predictions and experimental validation. Cryst. Growth Des. 2020, 20, 6469–6477. [Google Scholar] [CrossRef]
- Romaka, V.V.; Romaka, L. Experimental and theoretical investigation of the Y–Ni–Sb and Tm–Ni–Sb systems. J. Alloys Compd. 2021, 855, 157334. [Google Scholar] [CrossRef]
- Oestreich, J.; Probst, U.; Richardt, F.; Bucher, E. Thermoelectrical properties of the compounds ScM {sup VIII} Sb and YM {sup VIII} Sb (M {sup VIII} = Ni, Pd, Pt). J. Phys. Condens. Matter 2003, 15, 635. [Google Scholar] [CrossRef]
- Dai, C.K.; Song, Q.F.; Xie, L.; Liu, R.H.; Bai, S.Q.; Chen, L.D. Improving thermoelectric properties of ZrPtSn-based half-Heusler compound by Sb doping. Rare Met. 2021, 40, 2838. [Google Scholar] [CrossRef]
- Adetunji, B.I.; Adebambo, P.O.; Bamgbose, M.K.; Musari, A.A.; Adebayo, G.A. Predicting the elastic, phonon and thermodynamic properties of cubic HfNiX (X = Ge and Sn) Half Heulser alloys: A DFT study. Eur. Phys. J. B 2019, 92, 231. [Google Scholar] [CrossRef]
- Bendahma, F.; Mana, M.; Terkhi, S.; Cherid, S.; Bestani, B.; Bentata, S. Investigation of high figure of merit in semiconductor XHfGe (X = Ni and Pd) half-Heusler alloys: Ab-initio study. Comput. Condens. Matter 2019, 21, e00407. [Google Scholar] [CrossRef]
- Vikram, J.K.; Enamullah Alam, A. Bismuth based half-Heusler alloys with giant thermoelectric figures of merit. J. Mater. Chem. A 2017, 13, 6131. [Google Scholar] [CrossRef]
- Kaur, K.; Kumar, R.; Rai, D.P. A promising thermoelectric response of HfRhSb half Heusler compound at high temperature: A first principle study. J. Alloys Compd. 2018, 763, 1018. [Google Scholar] [CrossRef]
- Kaur, K.; Rai, D.P.; Thapa, R.K.; Srivastava, S. Structural, electronic, mechanical, and thermoelectric properties of a novel half Heusler compound HfPtPb. J. Appl. Phys. 2017, 122, 045110. [Google Scholar] [CrossRef]
- Rani, B.; Wani, A.F.; Sharopov, U.B.; Patra, L.; Singh, J.; Ali, A.M.; El-Rehim, A.F.A.; Khandy, S.A.; Dhiman, S.; Kaur, K. Electronic Structure-, Phonon Spectrum-, and Effective Mass-Related Thermoelectric Properties of PdXSn (X = Zr, Hf) Half Heuslers. Molecules 2022, 27, 6567. [Google Scholar] [CrossRef]
- Bamgbose, M.K. First-principles study of electronic structure and thermoelectric properties of p-type XIrSb (X = Ti, Zr and Hf) half-Heusler compounds. Mater. Sci. Semicond. Process 2021, 129, 105792. [Google Scholar] [CrossRef]
- Popoola, A.I.; Odusote, Y.A. The properties of NbRhGe as high temperature thermoelectric material. J. Appl. Phys. 2019, 11, 51–56. [Google Scholar]
- Osafile, O.E.; Nenuwe, O.N. Lattice dynamics and thermodynamic responses of XNbSn half-heusler semiconductors: A first-principles approach. J. Nig. Soc. Phys. Sci. 2021, 3, 121–130. [Google Scholar] [CrossRef]
- Kaur, K.; Kumar, R. On the possibility of thermoelectricity in half Heusler XRuSb (X = V, Nb, Ta) materials: A first principles prospective. J. Phys. Chem. Solids 2017, 110, 108–115. [Google Scholar] [CrossRef]
- Fang, T.; Zheng, S.; Zhou, T.; Yan, L.; Zhang, P. Computational prediction of high thermoelectric performance in p-type half-Heusler compounds with low band effective mass. Phys. Chem. Chem. Phys. 2017, 19, 4411–4417. [Google Scholar] [CrossRef] [PubMed]
- Naydenov, G.A.; Hasnip, P.J.; Lazarov, V.K.; Probert, M.I.J. Huge power factor in p-type half-Heusler alloys NbFeSb and TaFeSb. J. Phys. Mater. 2019, 2, 035002. [Google Scholar] [CrossRef]
- Wang, L.L.; Miao, L.; Wang, Z.Y.; Wei, W.; Xiong, R.; Liu, H.J.; Shi, J.; Tang, X.F. Thermoelectric performance of half-Heusler compounds TiNiSn and TiCoSb. J. Appl. Phys. 2009, 105, 013709. [Google Scholar] [CrossRef]
- Kaur, K.; Kumar, R. High temperature thermoelectric performance of p-type TaRhSn half Heusler compound: A computational assessment. Ceram. Int. 2017, 43, 15160. [Google Scholar] [CrossRef]
- Kaur, K.; Kumar, R. Giant thermoelectric performance of novel TaIrSn Half Heusler compound. Phys. Lett. A 2017, 381, 3760. [Google Scholar] [CrossRef]
- Hong, D.; Zeng, W.; Xin, Z.; Liu, F.S.; Tang, B.; Liu, Q.J. First-principles calculations of structural, mechanical and electronic properties of TiNi-X (X = C, Si, Ge, Sn, Pb) alloys. Int. J. Mod. Phys. 2019, 33, 1950167. [Google Scholar] [CrossRef]
- Kaur, K. TiPdSn: A half Heusler compound with high thermoelectric performance. Europhys. Lett. 2017, 117, 47002. [Google Scholar] [CrossRef]
- Zheng, W.; Lu, Y.; Li, Y.; Wang, J.; Hou, Z.; Shao, X. Structural and thermoelectric properties of Zr-doped TiPdSn half-Heusler compound by first-principles calculations. Chem. Phys. Lett. 2020, 741, 137055. [Google Scholar] [CrossRef]
- Adebambo, P.O.; Agbaoye, R.O.; Bamgbose, M.K.; Ayedun, F.; Solola, G.T.; Adebayo, G.A. Assessing the structural, electronic, elastic and thermoelectric properties of PtTiSn and PdLaBi transition metal alloys from the first-principles prospective. Mater. Sci. Semicond. 2021, 129, 105796. [Google Scholar] [CrossRef]
- Ma, H.; Yang, C.L.; Wang, M.S.; Ma, X.G.; Yi, Y.G. Effect of M elements (M = Ti, Zr, and Hf) on thermoelectric performance of the half-Heusler compounds MCoBi. J. Phys. D Appl. Phys. 2019, 52, 255501. [Google Scholar] [CrossRef]
- Umukoro, J.O.; Omagbemi, O.G.; Osafile, O.E. Effect of Spin-Orbit Coupling (SOC) On the Electronic and Thermoelectric Properties of Ticobi Half Heusler Alloy. J. Phys. Chem. Res. 2022, 4, 4. [Google Scholar]
- Yang, J.; Li, H.; Wu, T.; Zhang, W.; Chen, L.; Yang, J. Evaluation of half-Heusler compounds as thermoelectric materials based on the calculated electrical transport properties. Adv. Funct. Mater. 2008, 18, 2880–2888. [Google Scholar] [CrossRef]
- Kaur, K.; Kumar, R. Ti based half Heusler compounds: A new on the screen with robustic thermoelectric performance. J. Alloys Compd. 2017, 727, 1171–1177. [Google Scholar] [CrossRef]
- Cherifi, F.; Mostefa, Z.; Boukra, A.; Meghoufel, Z.F.; Bouattou, M.; Kadi Allah, F.; Terki, F. Thermoelectric Transport Parameters of p-Type RuVAs and RuNbAs Heusler Alloys. Phys. Status Solidi B 2020, 257, 2000271. [Google Scholar] [CrossRef]
- Mostari, F.; Rahman, M.A.; Khatun, R. First principles study on the structural, elastic, electronic and optical properties of cubic ‘half-Heusler’alloy RuVAs under pressure. Int. J. Mat. Math. Sci. 2020, 2, 51–63. [Google Scholar]
- Sharma, S.K.; Ahmed, S.S. Transport properties of RuV-based half-Heusler semiconductors for thermoelectric applications: A computational study. J. Phys. Condens. Mat. 2020, 32, 405501. [Google Scholar]
- Sarwan, M.; Shukoor, A.; Singh, S. A first principle study of structural, elastic, electronic and thermodynamic properties of Half-Heusler compounds; YNiPn (Pn = As, Sb, and Bi). Solid State Sci. 2021, 112, 106507. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, P. Tuning the thermoelectric properties of YNiBi half-Heusler alloy. MRX 2018, 5, 046528. [Google Scholar] [CrossRef]
- Kong, F.; Hu, Y.; Hou, H.; Liu, Y.; Wang, B.; Wang, L. Thermoelectric and thermodynamic properties of half-Heulser alloy YPdSb from first principles calculations. J. Solid State Chem. 2012, 196, 511–517. [Google Scholar] [CrossRef]
- Nenuwe, N.O.; Agbawe, N.O. Ab initio predictions of thermoelectric, mechanical, and phonon characteristics of FeTiSe half-Heusler compound. Curr. Appl. Phys. 2023, 53, 132–141. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, X.; Cong, D.; Tang, G.; Yang, J. A novel valence-balanced double half-Heusler Ti2Zr2Hf2NbVFe5Ni3Sb8 alloy by high entropy engineering. Mater. Today Phys. 2023, 36, 101172. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Tran, F.; Blaha, P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 2009, 102, 226401. [Google Scholar] [CrossRef]
- Bardeen, J.; Shockley, W.J.P.R. Deformation potentials and mobilities in non-polar crystals. Phys. Rev. 1950, 80, 72. [Google Scholar] [CrossRef]
- Slack, G.A. Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 1973, 34, 321–335. [Google Scholar] [CrossRef]
- Yang, K.; Wan, R.; Zhang, Z.; Lei, Y.; Tian, G. First-principle investigation on the thermoelectric and electronic properties of HfCoX (X = As, Sb, Bi) half-Heusler compounds. J. Solid State Chem. 2022, 312, 123386. [Google Scholar] [CrossRef]
- Sun, H.L.; Yang, C.L.; Wang, M.S.; Ma, X.G. Remarkably high thermoelectric efficiencies of the half-Heusler compounds BXGa (X = Be, Mg, and Ca). ACS Appl. Mater. Interfaces 2020, 12, 5838–5846. [Google Scholar] [CrossRef]
- Madsen, G.K.; Carrete, J.; Verstraete, M.J. BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput. Phys. Commun. 2018, 231, 140–145. [Google Scholar] [CrossRef]
- Kirklin, S.; Saal, J.E.; Meredig, B.; Thompson, A.; Doak, J.W.; Aykol, M.; Rühl, S.; Wolverton, C. The Open Quantum Materials Database (OQMD): Assessing the accuracy of DFT formation energies. NPJ Comput. Mater. 2015, 1, 15010. [Google Scholar] [CrossRef]
- Gautier, R.; Zhang, X.; Hu, L.; Yu, L.; Lin, Y.; Sunde, T.O.; Chon, D.; Paeppelmeirer, K.; Zunger, A. Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds. Nat. Chem. 2015, 7, 308–316. [Google Scholar] [CrossRef]
- Lundgren, C.; Kakanakova-Georgieva, A.; Gueorguiev, G.K. A perspective on thermal stability and mechanical properties of 2D Indium Bismide from ab initio molecular dynamics. Nanotechnology 2022, 33, 335706. [Google Scholar] [CrossRef]
- Filho, M.A.M.; Hsiao, C.-L.; Batista dos Santos, R.; Hultman, L.; Birch, J.; Gueorguiev, G.K. Self-Induced Core–Shell InAlN Nanorods: Formation and Stability Unraveled by Ab Initio Simulations. ACS Nanosci. Au 2023, 3, 84–93. [Google Scholar] [CrossRef]
- Xia, K.; Liu, Y.; An, S.; Snyder, G.J.; Xin, J.; Yu, J.; Zhao, X.; Zhu, T. Enhanced thermoelectric performance in 18-electron Nb0.8CoSb half-heusler compound with intrinsic Nb vacancies. Adv. Funct. Mater. 2018, 28, 1705845. [Google Scholar] [CrossRef]
- Downie, R.A.; MacLaren, D.A.; Bos, J.W. Thermoelectric performance of multiphase XNiSn (X = Ti, Zr, Hf) half-Heusler alloys. J. Mater. Chem. A 2014, 2, 6107–6114. [Google Scholar] [CrossRef]
- Gürth, M.; Rogl, G.; Romaka, V.V.; Grytsiv, A.; Bauer, E.; Rogl, P. Thermoelectric high ZT half-Heusler alloys Ti1-x-yZrxHfyNiSn (0 < x < 1; 0 < x < 1). Acta Mater. 2016, 104, 210–222. [Google Scholar]
- Zhu, H.; Mao, J.; Li, Y.; Sun, J.; Wang, Y.; Zhu, Q.; Li, G.; Song, Q.; Zhou, J.; Fu, Y.; et al. Discovery of TaFeSb-based half-Heuslers with high thermoelectric performance. Nat. Commun. 2019, 10, 270. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhu, H.; Mao, J.; Feng, Z.; Li, X.; Chen, C.; Cao, F.; Liu, X.; Singh, D.J.; Ren, Z.; et al. n-Type TaCoSn-Based Half-Heuslers as Promising Thermoelectric Materials. ACS Appl. Mater. Interfaces 2019, 11, 41321–41329. [Google Scholar] [CrossRef]
- Ramarao, S.D.; Pawbake, A.; Singh, A.K.; Núñez-Regueiro, M.; Méasson, M.A.; Peter, S.C. Electrical transport properties of half-heusler ScPdBi single crystals under extreme conditions. J. Alloys Compd. 2020, 848, 156632. [Google Scholar] [CrossRef]
- Chauhan, N.S.; Miyazaki, Y. Low lattice thermal conductivity and microstructural evolution in VFeSb half-Heusler alloys. Materialia 2022, 22, 101430. [Google Scholar] [CrossRef]
- Çiftci, Y.Ö.; Çoban, C. Ab initio calculations on the structural, mechanical, electronic, dynamic, and optical properties of semiconductor half-heusler compound ZrPdSn. Z. Naturforsch. A 2016, 71, 135–143. [Google Scholar] [CrossRef]
- Gupta, Y.; Sinha, M.M.; Verma, S.S. First-principles investigation on the electronic, mechanical and lattice dynamical properties of novel AlNiX (X = As and Sb) half-Heusler alloys. Mater. Today Commun. 2021, 26, 101885. [Google Scholar] [CrossRef]
- Mokhtari, H.; Boumia, L.; Mokhtari, M.; Dahmane, F.; Mansour, D.; Khenata, R. Mechanical Stability, Electronic, and Magnetic Properties of XZrAs (X = Cr, Mn, V) Half-Heusler Compounds. J. Supercond. Nov. Magn. 2023, 36, 1217–1244. [Google Scholar] [CrossRef]
- Bamgbose, M.K. Electronic structure and thermoelectric properties of HfRhZ (Z = As, Sb and Bi) half-Heusler compounds. Appl. Phys. A 2020, 126, 1–8. [Google Scholar] [CrossRef]
- Razzaq, S.; Ismail, K.; Murtaza, G.; Raza, H.H. Theoretical Study of Half-Heusler CsXAs (X = Ca, Sr, and Ba) from First Principle Calculations. J. Supercond. Nov. Magn. 2022, 35, 3291–3299. [Google Scholar] [CrossRef]
- Mahan, G.D. Figure of merit for thermoelectrics. J. Appl. Phys. 1989, 65, 1578–1583. [Google Scholar] [CrossRef]
- Xue, Q.Y.; Liu, H.J.; Fan, D.D.; Cheng, L.; Zhao, B.Y.; Shi, J. LaPtSb: A half-Heusler compound with high thermoelectric performance. Phys. Chem. Chem. Phys. 2016, 18, 17912–17916. [Google Scholar] [CrossRef] [PubMed]
Compound | E | E | m | m | m | m | ||||
---|---|---|---|---|---|---|---|---|---|---|
ScPdBi | 0.0705 | 0.1211 | 0.34 | 4.80 | 0.19 | 0.31 | 21.5 | 0.3 | 46.3 | 21.5 |
HfNiSn | 0.3239 | 0.2705 | 0.65 | 0.75 | 0.59 | 0.78 | 18.5 | 13.1 | 18.5 | 10.8 |
HfPdSn | 0.3791 | 0.3321 | 0.68 | 0.6 | 0.77 | 0.63 | 11.2 | 11.6 | 8.4 | 10.0 |
ZrPdSn | 0.4373 | 0.4168 | 0.52 | 0.82 | 0.51 | 0.96 | 13.9 | 6.3 | 13.2 | 4.7 |
NbRuSb | 0.3475 | 0.483 | 0.32 | 0.21 | 0.36 | 0.22 | 31.6 | 64.8 | 6.1 | 19.2 |
TiNiGe | 0.6307 | 0.5812 | 1.37 | 1.20 | 1.23 | 1.05 | 5.6 | 5.9 | 5.9 | 6.5 |
VIrGe | 0.2685 | 0.6402 | 0.61 | 0.54 | 0.46 | 0.38 | 14.0 | 18.1 | 20.6 | 32.6 |
VFeSb | 0.3436 | 0.6569 | 0.65 | 0.24 | 0.49 | 0.41 | 14.2 | 61.5 | 2.8 | 2.5 |
NbFeAs | 0.5731 | 0.6987 | 0.32 | 1.43 | 0.33 | 0.31 | 39.0 | 4.2 | 4.4 | 6.0 |
NbIrGe | 0.6031 | 0.7214 | 0.82 | 0.38 | 0.82 | 0.36 | 8.6 | 29.3 | 8.0 | 30.3 |
ZrPtPb | 0.6675 | 0.7294 | 0.48 | 0.19 | 0.47 | 0.37 | 14.8 | 53.4 | 14.0 | 18.0 |
NbIrSn | 0.6251 | 0.7294 | 0.81 | 0.39 | 0.81 | 0.37 | 7.8 | 23.5 | 7.4 | 24.1 |
HfIrSb | 0.6582 | 0.7538 | 0.92 | 0.59 | 0.24 | 1.54 | 9.7 | 6.1 | 64.1 | 1.3 |
TiCoBi | 0.8786 | 0.779 | 0.54 | 0.56 | 0.54 | 1.13 | 14.2 | 11.8 | 13.3 | 3.8 |
TaRuAs | 0.3657 | 0.7818 | 0.36 | 0.23 | 0.44 | 0.24 | 33.7 | 28.6 | 23.3 | 68.9 |
TiPtSn | 0.665 | 0.8063 | 0.53 | 0.53 | 0.65 | 0.77 | 13.0 | 11.6 | 9.1 | 6.0 |
TiRhBi | 0.6574 | 0.8138 | 0.39 | 0.58 | 0.55 | 1.18 | 18.5 | 9.1 | 10.3 | 2.8 |
VFeAs | 0.3614 | 0.8625 | 0.39 | 0.33 | 0.39 | 0.36 | 30.6 | 39.6 | 27.1 | 35.6 |
TaFeSb | 0.8135 | 0.8708 | 0.38 | 0.33 | 0.39 | 0.4 | 45.3 | 51.4 | 48.6 | 37.3 |
TiPtGe | 0.7232 | 0.9088 | 0.44 | 0.42 | 0.48 | 0.47 | 19.6 | 19.0 | 16.0 | 15.2 |
HfCoBi | 0.9763 | 0.9221 | 0.54 | 0.59 | 0.58 | 0.40 | 18.8 | 13.8 | 15.2 | 22.3 |
TiRhAs | 0.7684 | 0.9571 | 0.32 | 0.41 | 0.32 | 0.42 | 31.6 | 20.2 | 29.8 | 19.4 |
TiIrSb | 0.6813 | 0.9716 | 0.35 | 0.28 | 0.36 | 0.27 | 32.4 | 41.7 | 28.8 | 42.4 |
TaFeAs | 0.879 | 0.9801 | 0.34 | 0.29 | 0.35 | 3.01 | 52.5 | 65.9 | 45.6 | 1.9 |
VCoGe | 0.6832 | 0.9926 | 0.79 | 0.46 | 0.82 | 0.49 | 11.0 | 22.5 | 9.3 | 20.1 |
HfPtGe | 0.9256 | 1.0236 | 0.56 | 0.44 | 0.25 | 1.36 | 17.6 | 8.4 | 53.0 | 3.4 |
TaCoSn | 1.0083 | 1.0329 | 0.7 | 0.44 | 1.32 | 0.65 | 15.7 | 27.4 | 5.6 | 14.0 |
ZrPtGe | 1.0119 | 1.0807 | 0.47 | 9.06 | 0.47 | 3.83 | 19.8 | 0.2 | 18.3 | 0.6 |
NbCoGe | 1.0887 | 1.1272 | 0.58 | 0.34 | 0.60 | 0.35 | 17.2 | 33.6 | 14.0 | 30.1 |
TiFeTe | 0.984 | 1.184 | 0.56 | 0.38 | 0.57 | 0.5 | 12.6 | 20.2 | 1.8 | 1.6 |
TaCoGe | 1.1601 | 1.1881 | 0.69 | 0.45 | 0.78 | 0.46 | 20.0 | 32.2 | 14.2 | 26.7 |
TiCoAs | 1.3001 | 1.241 | 0.70 | 1.70 | 0.83 | 1.57 | 14.0 | 2.9 | 10.3 | 3.0 |
ZrRuTe | 0.932 | 1.247 | 0.51 | 0.34 | 0.24 | 0.28 | 11.4 | 9.8 | 37.6 | 29.1 |
HfCoAs | 1.2861 | 1.3607 | 1.67 | 1.10 | 2.84 | 3.03 | 4.3 | 6.6 | 2.1 | 1.4 |
Compound | a | Volume | ||
---|---|---|---|---|
ScPdBi | 6.525 | 65.93 | 69.45 | 72.20 |
HfNiSn | 6.111 | 73.72 | 57.05 | 113.52 |
HfPdSn | 6.360 | 93.09 | 64.31 | 99.54 |
ZrPdSn | 6.396 | 86.55 | 65.41 | 91.21 |
NbRuSb | 6.187 | 125.22 | 59.21 | 76.27 |
TiNiGe | 5.668 | 95.40 | 45.52 | 61.53 |
VIrGe | 5.818 | 169.88 | 49.23 | 38.92 |
VFeSb | 5.788 | 98.83 | 48.48 | 45.43 |
NbFeAs | 5.689 | 115.02 | 46.03 | 63.29 |
NbIrGe | 6.010 | 156.94 | 54.27 | 62.45 |
ZrPtPb | 6.508 | 90.27 | 68.91 | 95.69 |
NbIrSn | 6.230 | 132.14 | 60.45 | 76.60 |
HfIrSb | 6.333 | 112.19 | 63.50 | 112.06 |
TiCoBi | 6.033 | 75.00 | 54.90 | 58.22 |
TaRuAs | 5.972 | 158.49 | 53.25 | 52.81 |
TiPtSn | 6.231 | 108.25 | 60.48 | 65.36 |
TiRhBi | 6.280 | 93.95 | 61.92 | 50.51 |
VFeAs | 5.496 | 126.62 | 41.50 | 44.79 |
TaFeSb | 5.960 | 98.45 | 52.93 | 97.50 |
TiPtGe | 5.991 | 126.35 | 53.76 | 51.50 |
HfCoBi | 6.188 | 65.63 | 59.24 | 102.54 |
TiRhAs | 5.889 | 128.96 | 51.06 | 43.12 |
TiIrSb | 6.165 | 119.58 | 58.58 | 73.10 |
TaFeAs | 5.692 | 128.43 | 46.10 | 69.27 |
VCoGe | 5.512 | 121.07 | 41.87 | 47.04 |
HfPtGe | 6.171 | 124.52 | 58.75 | 72.45 |
TaCoSn | 5.962 | 96.36 | 52.98 | 88.66 |
ZrPtGe | 6.200 | 119.11 | 59.58 | 66.56 |
NbCoGe | 5.698 | 116.33 | 46.25 | 69.23 |
TiFeTe | 5.864 | 67.43 | 50.41 | 60.65 |
TaCoGe | 5.715 | 125.23 | 46.74 | 79.43 |
TiCoAs | 5.605 | 104.92 | 44.02 | 57.09 |
ZrRuTe | 6.298 | 82.02 | 62.45 | 86.20 |
HfCoAs | 5.783 | 99.48 | 48.35 | 76.60 |
Comp. | PF | PF | ZT | ZT |
---|---|---|---|---|
TaFeAs | 1.67, 2.01 | 1.48, 1.17 | 0.024, 0.025 | 0.021, 0.015 |
TaFeSb | 1.49, 1.15 | 1.63, 1.06 | 0.015, 0.011 | 0.017, 0.010 |
VFeAs | 1.10, 0.95 | 0.98, 1.25 | 0.024, 0.017 | 0.021, 0.025 |
TiRhAs | 0.95, 0.69 | 0.80, 0.96 | 0.018, 0.014 | 0.014, 0.021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilińska, K.; Winiarski, M.J. High-Throughput Exploration of Half-Heusler Phases for Thermoelectric Applications. Crystals 2023, 13, 1378. https://doi.org/10.3390/cryst13091378
Bilińska K, Winiarski MJ. High-Throughput Exploration of Half-Heusler Phases for Thermoelectric Applications. Crystals. 2023; 13(9):1378. https://doi.org/10.3390/cryst13091378
Chicago/Turabian StyleBilińska, Kaja, and Maciej J. Winiarski. 2023. "High-Throughput Exploration of Half-Heusler Phases for Thermoelectric Applications" Crystals 13, no. 9: 1378. https://doi.org/10.3390/cryst13091378
APA StyleBilińska, K., & Winiarski, M. J. (2023). High-Throughput Exploration of Half-Heusler Phases for Thermoelectric Applications. Crystals, 13(9), 1378. https://doi.org/10.3390/cryst13091378