A Computational Study on Polar ABiO3 (A = Ca, Zn, Mg) Compounds with Large Electric Polarization
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. CaBiO3
3.1.1. Trigonal Non-Perovskite Structure
3.1.2. Born Effective Charges
3.1.3. Strain
3.2. ZnBiO3 and MgBiO3
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Said, S.M.; Sabri, M.F.M.; Salleh, F. Ferroelectrics and Their Applications. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 978-0-12-803581-8. [Google Scholar]
- Butler, K.T.; Frost, J.M.; Walsh, A. Ferroelectric Materials for Solar Energy Conversion: Photoferroics Revisited. Energy Environ. Sci. 2015, 8, 838–848. [Google Scholar] [CrossRef]
- Lines, M.E.; Glass, A.M.; Lines, M.E.; Glass, A.M. Principles and Applications of Ferroelectrics and Related Materials; Oxford Classic Texts in the Physical Sciences; Oxford University Press: Oxford, UK; New York, NY, USA, 2001; ISBN 978-0-19-850778-9. [Google Scholar]
- Martin, L.W.; Rappe, A.M. Thin-Film Ferroelectric Materials and Their Applications. Nat. Rev. Mater. 2016, 2, 16087. [Google Scholar] [CrossRef]
- Sadabad, Y.A.; Khodadadian, A.; Istadeh, K.H.; Hedayati, M.; Kalantarinejad, R.; Heitzinger, C. Frequency Dependence of Dielectrophoretic Fabrication of Single-Walled Carbon Nanotube Field-Effect Transistors. J. Comput. Electron. 2020, 19, 1516–1526. [Google Scholar] [CrossRef]
- Khodadadian, A.; Parvizi, M.; Teshnehlab, M.; Heitzinger, C. Rational Design of Field-Effect Sensors Using Partial Differential Equations, Bayesian Inversion, and Artificial Neural Networks. Sensors 2022, 22, 4785. [Google Scholar] [CrossRef] [PubMed]
- Lemanov, V.V.; Sotnikov, A.V.; Smirnova, E.P.; Weihnacht, M.; Kunze, R. Perovskite CaTiO3 as an Incipient Ferroelectric. Solid State Commun. 1999, 110, 611–614. [Google Scholar] [CrossRef]
- Razak, N.A.A.; Zabidi, N.A.; Rosli, A.N. A First Principle Study of Band Structure of Tetragonal Barium Titanate. AIP Conf. Proc. 2017, 1875, 020017. [Google Scholar] [CrossRef]
- Mikolajick, T.; Schroeder, U.; Slesazeck, S. The Past, the Present, and the Future of Ferroelectric Memories. IEEE Trans. Electron. Devices 2020, 67, 1434–1443. [Google Scholar] [CrossRef]
- Han, X.; Ji, Y.; Yang, Y. Ferroelectric Photovoltaic Materials and Devices. Adv. Funct. Mater. 2022, 32, 2109625. [Google Scholar] [CrossRef]
- Liu, L.; Huang, H. Ferroelectrics in Photocatalysis. Chem. Eur. J. 2022, 28, e202103975. [Google Scholar] [CrossRef]
- Wang, Z.L.; Song, J. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science 2006, 312, 242–246. [Google Scholar] [CrossRef]
- Karuppannan, R.; Sakar, M. Calcium Bismuthate (CaBiO3): A Potential Sunlight-Driven Perovskite Photocatalyst for the Degradation of Emerging Pharmaceutical Contaminants. ChemPhotoChem 2020, 4, 373–380. [Google Scholar]
- He, J.; Franchini, C.; Rondinelli, J.M. Ferroelectric Oxides with Strong Visible-Light Absorption from Charge Ordering. Chem. Mater. 2017, 29, 2445–2451. [Google Scholar] [CrossRef]
- Kuentzler, R.; Hornick, C.; Dossman, Y.; Wegner, S.; El Farsi, R.; Drillon, M. Superconductivity of Pb, K and Rb-Doped BaBiO3. Phys. C Supercond. 1991, 184, 316–320. [Google Scholar] [CrossRef]
- Li, G.; Yan, B.; Thomale, R.; Hanke, W. Topological Nature and the Multiple Dirac Cones Hidden in Bismuth High-Tc Superconductors. Sci. Rep. 2015, 5, 10435. [Google Scholar] [CrossRef]
- Khamari, B.; Kashikar, R.; Nanda, B.R.K. Topologically Invariant Double Dirac States in Bismuth-Based Perovskites: Consequence of Ambivalent Charge States and Covalent Bonding. Phys. Rev. B 2018, 97, 045149. [Google Scholar] [CrossRef]
- Smolyanyuk, A.; Franchini, C.; Boeri, L. Ab-Initio Study of ABiO3 (A = Ba, Sr, Ca) under High Pressure. Phys. Rev. B 2018, 98, 115158. [Google Scholar] [CrossRef]
- Khosya, M.; Faraz, M.; Khare, N. Enhanced Photocatalytic Reduction of Hexavalent Chromium by Using Piezo-Photo Active Calcium Bismuth Oxide Ferroelectric Nanoflakes. New J. Chem. 2022, 46, 12244–12251. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced Capabilities for Materials Modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 2017, 29, 465901. [Google Scholar] [CrossRef]
- Prandini, G.; Marrazzo, A.; Castelli, I.E.; Mounet, N.; Marzari, N. Precision and Efficiency in Solid-State Pseudopotential Calculations. Npj Comput. Mater. 2018, 4, 72. [Google Scholar] [CrossRef]
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Lett. 2008, 100, 136406. [Google Scholar] [CrossRef] [PubMed]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid Functionals Based on a Screened Coulomb Potential. J. Chem. Phys. 2003, 118, 8207–8215. [Google Scholar] [CrossRef]
- Krukau, A.V.; Vydrov, O.A.; Izmaylov, A.F.; Scuseria, G.E. Influence of the Exchange Screening Parameter on the Performance of Screened Hybrid Functionals. J. Chem. Phys. 2006, 125, 224106. [Google Scholar] [CrossRef] [PubMed]
- King-Smith, R.D.; Vanderbilt, D. Theory of Polarization of Crystalline Solids. Phys. Rev. B 1993, 47, 1651–1654. [Google Scholar] [CrossRef]
- Resta, R. Macroscopic Polarization in Crystalline Dielectrics: The Geometric Phase Approach. Rev. Mod. Phys. 1994, 66, 899–915. [Google Scholar] [CrossRef]
- Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and Related Crystal Properties from Density-Functional Perturbation Theory. Rev. Mod. Phys. 2001, 73, 515–562. [Google Scholar] [CrossRef]
- Xu, X.-F.; Chen, L.-F.; Xu, H.-K.; Lai, G.-X.; Hu, S.-M.; Ji, H.; Tang, J.-J.; Chen, X.-Y.; Zhu, W.-L. Theoretical Study on the Stability, Ferroelectricity and Photocatalytic Properties of CaBiO3. RSC Adv. 2022, 12, 30764–30770. [Google Scholar] [CrossRef]
- Aroyo, M.I.; Kirov, A.; Capillas, C.; Perez-Mato, J.M.; Wondratschek, H. Bilbao Crystallographic Server. II. Representations of Crystallographic Point Groups and Space Groups. Acta Crystallogr. A 2006, 62, 115–128. [Google Scholar] [CrossRef]
- Capillas, C.; Tasci, E.S.; de la Flor, G.; Orobengoa, D.; Perez-Mato, J.M.; Aroyo, M.I. A New Computer Tool at the Bilbao Crystallographic Server to Detect and Characterize Pseudosymmetry. Z. Für Krist. Cryst. Mater. 2011, 226, 186–196. [Google Scholar] [CrossRef]
- Mikolajick, T.; Slesazeck, S.; Mulaosmanovic, H.; Park, M.H.; Fichtner, S.; Lomenzo, P.D.; Hoffmann, M.; Schroeder, U. Next Generation Ferroelectric Materials for Semiconductor Process Integration and Their Applications. J. Appl. Phys. 2021, 129, 100901. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array Programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Feng, Z.; Charles, N.; Wang, X.R.; Lee, D.; Stoerzinger, K.A.; Muy, S.; Rao, R.R.; Lee, D.; Jacobs, R.; et al. Tuning Perovskite Oxides by Strain: Electronic Structure, Properties, and Functions in (Electro)Catalysis and Ferroelectricity. Mater. Today 2019, 31, 100–118. [Google Scholar] [CrossRef]
- Ederer, C.; Spaldin, N.A. Effect of Epitaxial Strain on the Spontaneous Polarization of Thin Film Ferroelectrics. Phys. Rev. Lett. 2005, 95, 257601. [Google Scholar] [CrossRef] [PubMed]
Method/Lattice Parameters | a (Å) | c (Å) |
---|---|---|
PBE, previous work [18] | 5.92 | 15.17 |
PBEsol, QE | 5.85 | 14.85 |
PBEsol, VASP (PAW method) | 5.86 | 14.87 |
BEC Eigenvalues | λ3 | λ2 | λ1 |
---|---|---|---|
Z*(Bi1) | 4.22 + 0.33i | 4.22 − 0.33i | 4.50 |
Z*(Bi2) | 3.94 + 0.37i | 3.94 − 0.37i | 5.29 |
Z*(Ca1) | 2.88 + 0.46i | 2.88 − 0.46i | 2.35 |
Z*(Ca2) | 2.65 + 0.23i | 2.65 − 0.23i | 2.15 |
Z*(O1) | −3.38 | −1.52 | −2.18 |
Z*(O2) | −2.89 | −2.39 | −1.54 |
BEC Eigenvalues | λ3 | λ2 | λ1 |
---|---|---|---|
Z*Bi1 | 4.22 | 4.92 − 0.62i | 4.92 + 0.62i |
Z*Bi2 | 5.53 | 5.02 − 1.02i | 5.02 + 1.02i |
Z*Zn1 | 2.36 | 2.51 − 0.24i | 2.51 + 0.24i |
Z*Zn2 | 2.14 | 2.48 − 0.25i | 2.48 + 0.25i |
Z*O1 | −3.84 | −2.15 | −1.66 |
Z*O2 | −3.36 | −1.53 | −2.17 |
BEC Eigenvalues | λ3 | λ2 | λ1 |
---|---|---|---|
Z*(Bi1) | 4.012 | 4.90 − 0.81i | 4.90 + 0.81i |
Z*(Bi2) | 5.49 | 4.83 − 1.26i | 4.83 + 1.26i |
Z*(Mg1) | 2.06 | 2.15 − 0.44i | 2.15 + 0.44i |
Z*(Mg2) | 1.91 | 2.17 − 0.38i | 2.17 + 0.38i |
Z*(O1) | −3.77 | −1.59 | −1.75 |
Z*(O2) | −3.22 | −1.50 | −2.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rus, F.Ș.; Gonçalves, J.N. A Computational Study on Polar ABiO3 (A = Ca, Zn, Mg) Compounds with Large Electric Polarization. Crystals 2023, 13, 1403. https://doi.org/10.3390/cryst13091403
Rus FȘ, Gonçalves JN. A Computational Study on Polar ABiO3 (A = Ca, Zn, Mg) Compounds with Large Electric Polarization. Crystals. 2023; 13(9):1403. https://doi.org/10.3390/cryst13091403
Chicago/Turabian StyleRus, Florina Ștefania, and João Nuno Gonçalves. 2023. "A Computational Study on Polar ABiO3 (A = Ca, Zn, Mg) Compounds with Large Electric Polarization" Crystals 13, no. 9: 1403. https://doi.org/10.3390/cryst13091403
APA StyleRus, F. Ș., & Gonçalves, J. N. (2023). A Computational Study on Polar ABiO3 (A = Ca, Zn, Mg) Compounds with Large Electric Polarization. Crystals, 13(9), 1403. https://doi.org/10.3390/cryst13091403