Phase Transition and Switchable Dielectric Properties of a Three-Dimensional Hydrogen-Bonding Framework Based on Cobalt (Ⅲ), o-Bromoaniline, and 18-Crown-6
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Instruments
2.2. Preparation of (o-BrAH)[H2Co(CN)6]0.5·(18-Crown-6)0.5·H2O (1)
2.3. Crystal Structure Determination
3. Results and Discussion
3.1. Spectral Properties
3.2. TG and DSC Analysis
3.3. XRD Analysis
3.4. Description of Crystal Structure
3.5. Dielectric Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hua, X.-N.; Huang, C.-R.; Gao, J.-X.; Lu, Y.; Chen, X.-G.; Liao, W.-Q. High-temperature Reversible Phase Transitions and Exceptional Dielectric Anomalies in Cobalt (II) Based Ionic Crystals: [Me3NCH2X]2[CoX4] (X = Cl and Br). Dalton Trans. 2018, 47, 6218–6224. [Google Scholar] [CrossRef]
- Lai, H.J.; He, F. Crystal Engineering in Organic Photovoltaic Acceptors: A 3D Network Approach. Adv. Energy Mater. 2020, 10, 2002678. [Google Scholar] [CrossRef]
- Li, D.; Zhao, X.M.; Zhao, H.X.; Long, L.S.; Zheng, L.S. Coexistence of Magnetic-Optic-Electric Triple Switching and Thermal Energy Storage in a Multifunctional Plastic Crystal of Trimethylchloromethyl Ammonium Tetrachloroferrate(III). Inorg. Chem. 2019, 58, 655–662. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, W.-Y.; Ye, Q.; Fu, D.-W. Multifunctional Material with Efficient Optoelectronic Integrated Molecular Switches Based on a Flexible Thin Film/Crystal. Inorg. Chem. 2017, 56, 14477–14485. [Google Scholar] [CrossRef] [PubMed]
- Tao, K.; Han, S.; Ji, C.; Liu, X.; Wu, Z.; Zhang, J.; Luo, J.; Sun, Z. Structural Phase Transition and Switchable Dielectric Properties of a Unique Two-Dimensional Organic–Inorganic Hybrid Perovskite Compound [C6H11NH2CH3]4Pb3I10. Cryst. Growth Des. 2018, 18, 7316–7322. [Google Scholar] [CrossRef]
- García-Fernández, A.; Bermúdez-García, J.M.; Castro-García, S.; Llamas-Saiz, A.L.; Artiaga, R.; López-Beceiro, J.; Hu, S.; Ren, W.; Stroppa, A.; Sánchez-Andújar, M.; et al. Phase Transition, Dielectric Properties, and Ionic Transport in the [(CH3)2NH2]PbI3 Organic-Inorganic Hybrid with 2H-Hexagonal Perovskite Structure. Inorg. Chem. 2017, 56, 4918–4927. [Google Scholar] [CrossRef]
- Ji, Q.; Li, L.; Deng, S.; Cao, X.; Chen, L. High Switchable Dielectric Phase Transition Originating from Distortion in Inorganic–Organic Hybrid Materials (H2dabco-C2H5) [MIICl4] (M = Co, Zn). Dalton Trans. 2018, 47, 5630–5638. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Xu, K.; Shi, P.-P.; Ye, Q.; Zhang, W. An Order–Disorder Type High-Temperature Multiaxial Supramolecular Ferroelectric. Adv. Electron. Mater. 2022, 8, 2100635. [Google Scholar] [CrossRef]
- Drath, O.; Boskovic, C. Switchable Cobalt Coordination Polymers: Spin Crossover and Valence Tautomerism. Coord. Chem. Rev. 2018, 375, 256–266. [Google Scholar] [CrossRef]
- Duncan, H.D.; Beake, E.O.R.; Playford, H.Y.; Dove, M.T.; Phillips, A.E. Local Structure of a Switchable Dielectric Prussian Blue Analogue. CrystEngComm 2017, 19, 7316–7321. [Google Scholar] [CrossRef]
- Luo, H.-B.; Wang, M.; Liu, S.-X.; Liu, W.-L.; Zou, Y.; Tian, Z.-F.; Ren, S.-M. Both Dielectrics and Conductance Anomalies in an Open-Framework Cobalt Phosphate. Inorg. Chem. 2017, 56, 13998–14004. [Google Scholar] [CrossRef]
- Jiang, F.; Wang, C.-F.; Wu, Y.-X.; Li, H.-H.; Shi, C.; Ye, H.-Y.; Zhang, Y. Nonlinear Optical and Photoluminescence Bistable Responses Accompanied by Tunable Dielectric Behaviors in Crown Inclusions. J. Phys. Chem. C 2020, 124, 5796–5801. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, H.-Y.; Cai, H.-L.; Fu, D.-W.; Ye, Q.; Zhang, W.; Zhou, Q.-H.; Wang, J.-l.; Yuan, G.-L.; Xiong, R.-G. Switchable Dielectric, Piezoelectric, and Second-Harmonic Generation Bistability in a New Improper Ferroelectric above Room Temperature. Adv. Mater. 2014, 26, 4515–4520. [Google Scholar] [CrossRef]
- Tang, Y.-Z.; Yu, Y.-M.; Xiong, J.-B.; Tan, Y.-H.; Wen, H.-R. Unusual High-Temperature Reversible Phase-Transition Behavior, Structures, and Dielectric–Ferroelectric Properties of Two New Crown Ether Clathrates. J. Am. Chem. Soc. 2015, 137, 13345–13351. [Google Scholar] [CrossRef]
- Liu, X.; Xiao, Y.; Zhang, Z.; You, Z.; Li, J.; Ma, D.; Li, B. Recent Progress in Metal-Organic Frameworks@Cellulose Hybrids and Their Applications. Chin. J. Chem. 2021, 39, 3462–3480. [Google Scholar] [CrossRef]
- Rok, M.; Prytys, J.K.; Kinzhybalo, V.; Bator, G. Flexible Crystals of Perovskite-like Coordination Polymers with a Tunable and Switchable Organic Guest: (CH3NH3)2[KFe(CN)6] and (CH3NH3)2[KCo(CN)6]. Dalton Trans. 2017, 46, 2322–2331. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Li, X.; Krajnc, A.; Li, Z.; Li, M.; Wang, W.; Zhuang, L.; Smart, S.; Zhu, Z.; Appadoo, D.; et al. Mechanochemically Synthesised Flexible Electrodes Based on Bimetallic Metal–Organic Framework Glasses for the Oxygen Evolution Reaction. Angew. Chem. Int. Ed. 2022, 61, e202112880. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.-Y.; Ge, J.-Z.; Tang, Y.-Y.; Li, P.-F.; Zhang, Y.; You, Y.-M.; Xiong, R.-G. Molecular Ferroelectric with Most Equivalent Polarization Directions Induced by the Plastic Phase Transition. J. Am. Chem. Soc. 2016, 138, 13175–13178. [Google Scholar] [CrossRef] [PubMed]
- Szostak, E.; Pinkowicz, D.; Fryń, P.; Marzec, M. Investigation of Correlation Between Phase Transformations and Changes in Structural, Dynamic, Magnetic and Dielectric Properties of Hexakis-DMSO Cobalt (II) Complex. J. Mol. Struct. 2019, 1194, 227–235. [Google Scholar] [CrossRef]
- Khan, S.; Alothman, Z.A.; Mohammad, M.; Islam, M.S.; Slawin, A.; Wabaidur, S.M.; Islam, M.M.; Mir, M.H. Synthesis and Characterization of a Hydrogen Bonded Metal-Organic Cocrystal: Exploration of its DNA Binding Study. Polyhedron 2020, 180, 114454. [Google Scholar] [CrossRef]
- Nemec, V.; Lisac, K.; Bedeković, N.; Fotović, L.; Stilinović, V.; Cinčić, D. Crystal Engineering Strategies Towards Halogen-Bonded Metal–Organic Multi-Component Solids: Salts, Cocrystals and Salt Cocrystals. CrystEngComm 2021, 23, 3063–3083. [Google Scholar] [CrossRef]
- Rather, M.U.D.; Samad, R.; Want, B. Ferroelectric and Magneto-Dielectric Properties of Yttrium Doped BaTiO3–CoFe2O4 Multiferroic Composite. J. Mater. Sci. Mater. Electron. 2018, 29, 19164–19179. [Google Scholar] [CrossRef]
- Fu, J.; Wu, Y. A Showcase of Green Chemistry: Sustainable Synthetic Approach of Zirconium-Based MOF Materials. Chem. Eur. J. 2021, 27, 9967–9987. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.-H.; Shi, L.; Gao, X.-M.; Bi, W.-C.; Huang, X.-H.; Sun, Y.-Q.; Sun, R.-Q.; Chen, Y.-P. A Novel Photochromism Material Based on Both Pyrimidinium and Polyoxometalate: (C4N2H4–C4N2H3) [Mn(H2O)6]0.5{SiW12O40}0.5ˑ5H2O. J. Mol. Struct. 2020, 1206, 127716. [Google Scholar] [CrossRef]
- Liu, J.L.; Ji, X.Y.; Xue, J.P.; Hu, J.-S.; Yao, Z.-S.; Tao, J. Architectural Isomerism in the Three-Dimensional Prussian Blue Analogue {[CoII(TPA)]3[FeIII(CN)6][CoIII(CN)6]}: Synthesis, Crystal Structures, and Magnetic Properties. Cryst. Growth Des. 2022, 22, 5092–5099. [Google Scholar] [CrossRef]
- Tsymbal, L.V.; Andriichuk, I.L.; Shova, S.; Lampeka, Y.D. Crystal Structure of [{[Ni(C10H24N4)][Ni(CN)4]}·2H2O]n, A One-Dimensional Coordination Polymer Formed from the [Ni(cyclam)]2+ Cation and the [Ni(CN)4]2− Anion. Acta Crystallogr. E Crystallogr. Commun. 2021, 77, 1140–1143. [Google Scholar] [CrossRef] [PubMed]
- Kuschal, C.; Botta, E.; Orioli, D.; Digiovanna, J.J.; Seneca, S.; Keymolen, K.; Tamura, D.; Heller, E.; Khan, S.G.; Caligiuri, G.; et al. GTF2E2 Mutations Destabilize the General Transcription Factor Complex TFIIE in Individuals with DNA Repair-Proficient Trichothiodystrophy. Am. J. Hum. Genet. 2016, 98, 627–642. [Google Scholar] [CrossRef]
- Moskwa, M.; Sobieszczyk, P.; Mikurenda, J.W.; Zieliński, P.; Rok, M. Improper Ferroelastic Phase Transition in a Hydrogen-Bonded Metallocyanide-Based (Azetidinium)2(H3O)[Co(CN)6] Framework. Chem. Comm. 2023, 59, 5535–5538. [Google Scholar] [CrossRef]
- Stefanczyk, O.; Kumar, K.; Pai, T.; Li, G.; Ohkoshi, S.-I. Integration of Trinuclear Triangle Copper (II) Secondary Building Units in Octacyanidometallates(IV)-Based Frameworks. Inorg. Chem. 2022, 61, 8930–8939. [Google Scholar] [CrossRef]
- Jurowska, A.; Szklarzewicz, J.; Hodorowicz, M. Ion Pair Charge-Transfer Salts Based on Protonated Bipyridines and [W(CN)6(bpy)]2− Anion: Structure and Properties. J. Mol. Struct. 2022, 1261, 132931. [Google Scholar] [CrossRef]
- Sasnovskaya, V.D.; Zorina, L.V.; Simonov, S.V.; Talantsev, A.D.; Yagubskii, E.B. [MII(H2dapsc)]-[Cr(CN)6] (M = Mn, Co) Chain and Trimer Complexes: Synthesis, Crystal Structure, Non-Covalent Interactions and Magnetic Properties. Molecules 2022, 27, 8518. [Google Scholar] [CrossRef]
- Etaiw, S.E.H.; Abd El-Aziz, D.M.; Elzeny, I. Nano-Architecture Cobalt (III) Supramolecular Coordination Polymer Based on Host-Guest Recognition as an Effective Catalyst for Phenolic Degradation and Chemical Sensor. J. Org. Chem. 2020, 921, 121397. [Google Scholar] [CrossRef]
- Peng, H.; Huang, T.; Zou, B.; Tian, Y.; Wang, X.; Guo, Y.; Dong, T.; Yu, Z.; Ding, C.; Yang, F.; et al. Organic-inorganic hybrid manganese bromine single crystal with dual-band photoluminescence from polaronic and bipolaronic excitons. Nano Energy 2021, 87, 106166. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Li, M.; Xu, G.C. An In(III)-Based Organic-Inorganic Hybrid Compound (C3H7NH3)3[InCl5(H2O)]Cl with Dielectric Response Behavior Derived from Order-Disorder Changes of n-Propylammonium Cations. Eur. J. Inorg. Chem. 2021, 2021, 1251–1255. [Google Scholar] [CrossRef]
- Li, M.; Xu, G.C.; Zhang, Y.Q.; Xin, W.-B. Phase Transition, Dielectric Switching Property of an In (III)-Based Organic-Inorganic Hybrid Compound: (C5H16N2)InBr5. J. Solid State Chem. 2020, 287, 121329. [Google Scholar] [CrossRef]
- Huang, G.-Z.; Lu, P.-X.; Zeng, M.-M.; Deng, W.; Xie, K.-P.; Wang, Z.-X.; Liu, J.-L.; Chen, Y.-C.; Tong, M.-L. Room Temperature Photochromism and Photoinduced Slow Magnetic Relaxation of Cyanometallic Supramolecular Hybrid Salts. J. Mater. Chem. C 2023, 11, 5611–5615. [Google Scholar] [CrossRef]
- Huang, C.-R.; Luo, X.-Z.; Liao, W.-Q.; Tang, Y.-Y.; Xiong, R.-G. An Above-Room-Temperature Molecular Ferroelectric: [Cyclopentylammonium]2CdBr4. Inorg. Chem. 2020, 59, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.-M.; Zhou, L.; Shi, P.-P.; Zheng, X.; Chen, X.-G.; Gao, J.-X.; Geng, F.-J.; Ye, Q. Halogen substitution effects on optical and electrical properties in 3D molecular perovskites. Chem. Commun. 2018, 54, 13275. [Google Scholar] [CrossRef] [PubMed]
- Bala, R.; Sachdeva, D.; Kumar, M.; Prakash, V. Advances in coordination chemistry of hexaurea complexes of chromium (III). J. Coord. Chem. 2020, 73.20–22, 2801–2837. [Google Scholar] [CrossRef]
- Pechenyuk, S.I.; Zolotarev, A.A.; Gosteva, A.N.; Domonov, D.P.; Shimkin, A.A. Crystal structures and thermal behaviour of double complex compounds incorporating the [Cr{CO(NH2)2}6]3+ cation. J. Mol. Struct. 2017, 1147, 388–396. [Google Scholar] [CrossRef]
- Świetlik, R.; Łapiński, A.; Ouahab, L.; Yakushi, K. Charge ordering in the κ-phase BEDT–TTF salts with Co(CN)6 and Fe(CN)6 anions studied by infrared and Raman spectroscopies. Comptes Rendus Chim. 2003, 6, 395–403. [Google Scholar] [CrossRef]
- Ivanov, V.D. Electrochemical properties of (Co, Fe) CN, cobaltous Prussian blue analogue. J. Solid State Electrochem. 2023, 27, 2419–2432. [Google Scholar] [CrossRef]
- Shi, C.; Wang, Y.; Han, X.-B.; Zhang, W. Switchable Dielectric Constant in the Cyanometalate-Based Hydrogen-Bonded [(CH3)2NH2]2(H3O)[Co(CN)6] Framework. Eur. J. Inorg. Chem. 2017, 2017, 3685–3689. [Google Scholar]
- Rok, M.; Moskwa, M.; Hetmańczyk, J.; Hetmańczyk, Ł.; Bator, G. Switchable Dielectric Constant, Structural, and Vibrational Studies of Double Perovskite Organic–Inorganic Hybrids: (Azetidinium)2[KCr(CN)6] and (Azetidinium)2[KFe(CN)6]. CrystEngComm 2022, 24, 4932–4939. [Google Scholar] [CrossRef]
- Zhang, Y.; Woods, T.; Rauchfuss, T.B. Synthesis and Dynamics of Ferrous Polychalcogenides [Fe(Ex)(CN)2(CO)2]2− (E = S, Se, or Te). Inorg. Chem. 2022, 61, 8241–8249. [Google Scholar] [CrossRef] [PubMed]
- Soto, M.A.; Carta, V.; Cano, M.T.; Andrews, R.J.; Patrick, B.O.; MacLachlan, M.J. Multiresponsive Cyclometalated Crown Ether Bearing a Platinum(II) Metal Center. Inorg. Chem. 2021, 61, 2999–3006. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.-Y.; Mo, J.-T.; Su, C.-Y.; Pan, M. Ultralong Room-Temperature Phosphorescence from Organic–Inorganic Hybrid Perovskitoid Based on Metal-Organic Complex Component. Adv. Opt. Mater. 2023, 11, 2203144. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, S.-X.; Cheng, L.; Liang, C.; Yin, X.; Zhang, H.; Li, A.; Sheng, D.; Diwu, J.; Wang, X.; et al. Stabilization of Plutonium(V) within a Crown Ether Inclusion Complex. CCS Chem. 2020, 2, 425–431. [Google Scholar] [CrossRef]
- Reuter, K.; Thiele, G.; Hafner, T.; Uhlig, F.; von Hänisch, C. Synthesis and Coordination Ability of a Partially Silicon-Based Crown Ether. Chem. Comm. 2016, 52, 13265–13268. [Google Scholar] [CrossRef] [PubMed]
- Poe, T.N.; Ramanantoanina, H.; Sperling, J.M.; Wineinger, H.B.; Rotermund, B.M.; Brannon, J.; Bai, Z.; Scheibe, B.; Beck, N.; Long, B.N.; et al. Isolation of a Californium(II) Crown-Ether Complex. Nat. Chem. 2023, 15, 722–728. [Google Scholar] [CrossRef]
- Ichihashi, K.; Konno, D.; Date, T.; Nishimura, T.; Maryunina, K.Y.; Inoue, K.; Nakaya, T.; Toyoda, K.; Tatewaki, Y.; Akutagawa, T.; et al. Optimizing Lithium Ion Conduction through Crown Ether-Based Cylindrical Channels in [Ni (dmit)2]− Salts. Chem. Mater. 2018, 30, 7130–7137. [Google Scholar] [CrossRef]
- Huang, Y.; Aierken, A.; Yu, G.; Zhang, W.; Wang, S.; Sui, Y.; Tang, J.; Yang, X.; Zhuang, Y.; Song, Q.; et al. Enhanced Efficiency and Stability of Perovskite Solar Cells Achieved by Incorporating Potassium Cation-18-Crown Ether-6 Complexes. Org. Electron. 2023, 116, 106766. [Google Scholar] [CrossRef]
- Ma, H.; Luo, D.; Zhao, Q.; Liu, R.; Zhang, Z.; Hou, X.; Sun, X.; Wang, Y. Crown Ether and Crown Ether/K+ Complex Assisted DOSY NMR: A Versatile Tool for Positional Isomers Identification in Aqueous Solution. J. Mol. Liq. 2022, 345, 117884. [Google Scholar] [CrossRef]
- Di, F.-F.; Zhou, L.; Chen, W.-J.; Liu, J.-C.; Peng, H.; Tang, S.-Y.; Yu, H.; Liao, W.-Q.; Wang, Z.-X. Room-Temperature Dielectric Switching in a Host–Guest Crown Ether Inclusion Complex. Inorg. Chem. Front. 2021, 8, 4896–4902. [Google Scholar] [CrossRef]
- Xang, L.; Luo, W.; Yue, Z.-Y.; Huang, Y.-F.; Wang, N.; Miao, L.-P.; Ye, H.-Y.; Shi, C. A New Crown-Ether Clathrate [15-Crown-5][Y(NO3)2(H2O)5][NO3] with Switchable Dielectric Constant Behavior. New J. Chem. 2022, 46, 18512–18517. [Google Scholar] [CrossRef]
- Zhang, Z.-X.; Zhang, T.; Shi, P.-P.; Zhang, W.-Y.; Ye, Q.; Fu, D.-W. Exploring high-performance integration in a plastic crystal/film with switching and semiconducting behavior. Inorg. Chem. Front. 2020, 7, 1239–1249. [Google Scholar] [CrossRef]
Temperature | 100 K | 296 K |
---|---|---|
Chemical formula | C15H22BrN4O4Co0.5 | C15H22BrN4O4Co0.5 |
Formula weight | 431.73 | 431.73 |
Crystal size (mm3) | 0.22 × 0.20 × 0.18 | 0.22 × 0.20 × 0.18 |
Crystal system | Triclinic | Triclinic |
Space group | P-1 | P-1 |
a (Å) | 8.566(3) | 8.724(3) |
b (Å) | 9.831(4) | 9.687(3) |
c (Å) | 11.508(4) | 11.556(4) |
α (°) | 75.764(4) | 77.799(4) |
β (°) | 79.755(4) | 78.954(4) |
γ (°) | 88.092(4) | 88.451(4) |
V (Å3) | 924.3(6) | 936.8(5) |
Z | 1 | 1 |
Dcalc (g cm−1) | 1.549 | 1.529 |
F (000) | 440 | 440 |
μ (mm−1) | 2.683 | 2.647 |
Measured 2θ range (°) | 0.980–25.242 | 0.898–25.242 |
Rint | 0.0489 | 0.0700 |
R (I > 2(I)) [a] | 0.0579 | 0.0947 |
WR (all data) [b] | 0.1343 | 0.1918 |
GOF | 1.088 | 1.054 |
CCDC | 2313124 | 2313125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.-Z.; Yan, Y.-B.; Wang, N.; Adila, A.; Liu, Y.; Liu, Z.-Q. Phase Transition and Switchable Dielectric Properties of a Three-Dimensional Hydrogen-Bonding Framework Based on Cobalt (Ⅲ), o-Bromoaniline, and 18-Crown-6. Crystals 2024, 14, 87. https://doi.org/10.3390/cryst14010087
Hu H-Z, Yan Y-B, Wang N, Adila A, Liu Y, Liu Z-Q. Phase Transition and Switchable Dielectric Properties of a Three-Dimensional Hydrogen-Bonding Framework Based on Cobalt (Ⅲ), o-Bromoaniline, and 18-Crown-6. Crystals. 2024; 14(1):87. https://doi.org/10.3390/cryst14010087
Chicago/Turabian StyleHu, Hong-Zhi, Yi-Bo Yan, Na Wang, Abuduheni Adila, Yang Liu, and Zun-Qi Liu. 2024. "Phase Transition and Switchable Dielectric Properties of a Three-Dimensional Hydrogen-Bonding Framework Based on Cobalt (Ⅲ), o-Bromoaniline, and 18-Crown-6" Crystals 14, no. 1: 87. https://doi.org/10.3390/cryst14010087
APA StyleHu, H. -Z., Yan, Y. -B., Wang, N., Adila, A., Liu, Y., & Liu, Z. -Q. (2024). Phase Transition and Switchable Dielectric Properties of a Three-Dimensional Hydrogen-Bonding Framework Based on Cobalt (Ⅲ), o-Bromoaniline, and 18-Crown-6. Crystals, 14(1), 87. https://doi.org/10.3390/cryst14010087