The Formation of Supramolecular Chiral Materials from Achiral Molecules Using a Liquid-Crystallin System: Symmetry Breaking, Amplification, and Transfer
Abstract
:1. Introduction
2. Design Concept of Liquid-Crystalline Supermolecules
3. Spontaneous Mirror Symmetry Breaking of Achiral Liquid Crystals Possessing a Layer Structure
4. External-Field-Induced Mirror Symmetry Breaking in Liquid Crystals
5. The Formation of Helical Polymers without a Chiral Component
6. Concluding Remarks
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, M.; Zhang, L.; Wang, T. Supramolecular chirality in self-assembled systems. Chem. Rev. 2015, 115, 7304–7397. [Google Scholar] [CrossRef] [PubMed]
- Yashima, E.; Ouska, N.; Taura, D.; Shimomura, K.; Ikai, T.; Maeda, K. Supramolecular helical systems: Helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev. 2016, 116, 13752–13990. [Google Scholar] [CrossRef] [PubMed]
- Xing, P.Y.; Zhao, Y. Controlling supramolecular chirality in multicomponent self-assembled systems. ACC. Chem. Res. 2018, 51, 2324–2334. [Google Scholar] [CrossRef] [PubMed]
- Chang, B.; Li, X.; Sun, T. Self-assembled chiral materials from achiral components or racemates. Eur. Polym. J. 2019, 118, 365–381. [Google Scholar] [CrossRef]
- Guijarro, A.; Yus, M. The Origin of Chirality in the Molecules of Life; RSC Publishing: Cambridge, UK, 2008. [Google Scholar]
- Mauksch, M.; Wei, S.; Freund, M.; Zamfir, A.; Tsogoeva, S.B. Spontaneous mirror symmetry breaking in the aldol reaction and its potential relevance in prebiotic chemistry. Orig. Life. Evol. Biosph. 2010, 40, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Huber, L.; Trapp, O. Symmetry breaking by consecutive amplification: Efficient paths to homochirality. Orig. Life Evol. Biosph. 2022, 52, 75–91. [Google Scholar] [CrossRef]
- Satyanarayana, T.; Abraham, S.; Kagan, H.B. Nonlinear effects in asymmetric catalysis. Angew. Chem. Int. Ed. 2009, 48, 456–494. [Google Scholar] [CrossRef]
- Kitamura, M.; Okada, S.; Suga, S.; Noyori, R. Enantioselective addition of dialkylzincs to aldehydes promoted by chiral amino alcohols. Mechanism and nonlinear effect. J. Am. Chem. Soc. 1989, 111, 4028–4036. [Google Scholar] [CrossRef]
- Córdova, A.; Engqvist, M.; Ibrahem, I.; Casas, J.; Sundén, H. Plausible origins of homochirality in the amino acid catalyzed neogenesis of carbohydrates. Chem. Commun. 2005, 2047–2049. [Google Scholar] [CrossRef]
- Viedma, C. Chiral symmetry breaking during crystallization: Complete chiral purity induced by nonlinear autocatalysis and recycling. Phys. Rev. Lett. 2005, 94, 065504. [Google Scholar] [CrossRef]
- Soai, K.; Shibata, T.; Morioka, H.; Choji, K. Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule. Nature 1995, 378, 767–768. [Google Scholar] [CrossRef]
- Soai, K.; Kawasaki, T.; Matsumoto, A. Asymmetric autocatalysis of pyrimidyl alkanol and its application to the study on the origin of homochirality. Acc. Chem. Res. 2014, 47, 3643–3654. [Google Scholar] [CrossRef] [PubMed]
- Soai, K.; Sato, I.; Shibata, T.; Komiya, S.; Hayashi, M.; Matsueda, Y.; Imamura, H.; Hayase, T.; Morioka, H.; Tabira, H.; et al. Asymmetric synthesis of pyrimidyl alkanol without adding chiral substances by the addition of diisopropylzinc to pyrimidine-5-carbaldehyde in conjunction with asymmetric autocatalysis. Tetrahedron Asymmetry 2003, 14, 185–188. [Google Scholar] [CrossRef]
- Kondepudi, D.K.; Kaufman, R.J.; Singh, N. Chiral symmetry breaking in sodium chlorate crystallization. Science 1990, 250, 975–976. [Google Scholar] [CrossRef] [PubMed]
- Kondepudi, D.K.; Laudadio, J.; Asakura, K. Chiral symmetry breaking in stirred crystallization of 1,1′-binaphthyl melt. J. Am. Chem. Soc. 1999, 121, 1448–1451. [Google Scholar] [CrossRef]
- Kondepudi, D.K.; Asakura, K. Chiral autocatalysis, spontaneous symmetry breaking, and stochastic behavior. Acc. Chem. Res. 2001, 34, 946–954. [Google Scholar] [CrossRef]
- Kuroha, M.; Nambu, S.; Hattori, S.; Kitagawa, Y.; Niimura, K.; Mizuno, Y.; Hamba, F.; Ishii, K. Chiral supramolecular nanoarchitectures from macroscopic mechanical rotations: Effects on enantioselective aggregation behavior of phthalocyanines. Angew. Chem. Int. Ed. 2019, 58, 18454–18459. [Google Scholar] [CrossRef] [PubMed]
- He, C.I.; Yang, G.; Kuai, Y.; Shan, S.Z.; Yang, L.; Hu, J.G.; Zhang, D.G.; Zhang, Q.J.; Zou, G. Dissymmetry enhancement in enantioselective synthesis of helical polydiacetylene by application of superchiral light. Nat. Commun. 2018, 9, 5117. [Google Scholar] [CrossRef]
- Tejedor, R.M.; Oriol, L.; Serrano, J.L.; Partal Ureña, F.; López González, J.J. Photoinduced chiral nematic organization in an achiral glassy nematic azopolymer. Adv. Func. Mater. 2007, 17, 3486–3492. [Google Scholar] [CrossRef]
- Niori, T.; Sekine, J.; Watanabe, J.; Furukawa, T.; Takezoe, H. Distinct ferroelectric smectic liquid crystals consisting of banana shaped achiral molecules. J. Mater. Chem. 1996, 6, 1231–1233. [Google Scholar] [CrossRef]
- Sekine, T.; Niori, T.; Sone, M.; Watanabe, J.; Choi, S.-W.; Takanishi, Y.; Takezoe, H. Origin of helix in achiral banana-shaped molecular systems. Jpn. J. Appl. Phys. 1997, 36, 6455–6463. [Google Scholar] [CrossRef]
- Thisayukta, J.; Takezoe, H.; Watanabe, J. Study on helical structure of the B4 phase formed from achiral banana-shaped molecule. Jpn. J. Appl. Phys. 2001, 40, 3277–3287. [Google Scholar] [CrossRef]
- Le, K.V.; Takezoe, H.; Araoka, F. Chiral superstructure mesophases of achiral bent-shaped molecules—Hierarchical chirality amplification and physical properties. Adv. Mater. 2017, 29, 1602737. [Google Scholar] [CrossRef] [PubMed]
- Takezoe, H. Spontaneous achiral symmetry breaking in liquid crystalline phases. Top. Curr. Chem. 2012, 318, 303–330. [Google Scholar] [PubMed]
- Görtz, V.; Goodby, J.W. Enantioselective segregation in achiral nematic liquid crystals. Chem. Commun. 2005, 3262–3264. [Google Scholar] [CrossRef]
- Kajitani, T.; Kohomoto, S.; Yamamoto, M.; Kishikawa, K. Spontaneous chiral induction in a cubic phase. Chem. Mater. 2005, 17, 3812–3819. [Google Scholar] [CrossRef]
- Dressel, C.; Liu, F.; Prehm, M.; Zeng, X.; Ungar, G.; Tschierske, C. Dynamic mirror-symmetry breaking in bicontinuous cubic phases. Angew. Chem. Int. Ed. 2014, 53, 13115–13120. [Google Scholar] [CrossRef] [PubMed]
- Roche, C.; Sun, H.-J.; Prendergast, M.E.; Leowanawat, P.; Partridge, B.E.; Heiney, P.A.; Araoka, F.; Graf, R.; Spiess, H.W.; Zeng, X.; et al. Homochiral columns constructed by chiral self-sorting during supramolecular helical organization of hat-shaped molecules. J. Am. Chem. Soc. 2014, 136, 7169–7185. [Google Scholar] [CrossRef]
- Hough, L.E.; Spannuth, M.; Nakata, M.; Coleman, D.A.; Jones, C.D.; Dantlgraber, G.; Tschierske, C.; Watanabe, J.; Körblova, E.; Walba, D.M.; et al. Chiral isotropic liquids from achiral molecules. Science 2009, 325, 452–456. [Google Scholar] [CrossRef]
- Hough, L.E.; Jung, H.T.; Krürke, D.; Heberling, M.S.; Nakata, M.; Jones, C.D.; Chen, D.; Link, D.R.; Zasadzinski, J.; Heppke, G.; et al. Helical nanofilament phases. Science 2009, 325, 456–460. [Google Scholar] [CrossRef]
- Alaasar, M.; Prehem, M.; Tschierske, C. Helical nano-crystallite (HNC) phases: Chirality synchronization of achiral bent-core mesogens in a new type of dark conglomerates. Chem. Eur. J. 2016, 22, 6583–6597. [Google Scholar] [CrossRef] [PubMed]
- Dressel, C.; Reppe, T.; Prehm, M.; Brautzsch, M.; Tschierske, C. Chiral self-sorting and amplification in isotropic liquids of achiral molecules. Nat. Chem. 2014, 6, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Tschierske, C.; Ungar, G. Mirror symmetry breaking by chirality synchronization in liquids and liquid crystals of achiral molecules. ChemPhysChem. 2016, 17, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Cestari, M.; Diez-Berart, S.; Dunmur, D.A.; Ferrarini, M.R.; de la Fuente, M.R.; Jackson, D.J.B.; Lopez, D.O.; Luckhurst, G.R.; Perez-Jubindo, M.A.; Richardson, R.M.; et al. Phase behavior and properties of the liquid-crystal dimer 1′′,7′′-bis(4-cyanobiphenyl-4′-yl) heptane: A twist-bend nematic liquid crystal. Phys. Rev. E 2011, 84, 031704. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Porada, J.H.; Hooper, J.B.; Klittnick, A.; Shen, Y.; Tuchband, M.R.; Korblova, E.; Bedrov, D.; Walba, D.M.; Glaser, M.A.; et al. Chiral helicoidal ground state of nanoscale pitch in a nematic liquid crystal of achiral molecular dimers. Proc. Natl. Acad. Sci. USA 2013, 110, 15931–15936. [Google Scholar] [CrossRef]
- Borshch, V.; Kim, Y.-K.; Xiang, J.; Gao, M.; Jákli, A.; Panov, V.P.; Viji, J.K.; Imrie, C.T.; Tamba, M.G.; Mehl, G.H.; et al. Nematic twist-bend phase with nanoscale modulation of molecular orientation. Nat. Commun. 2013, 4, 2635. [Google Scholar] [CrossRef] [PubMed]
- Tschierske, C.; Dressel, C. Mirror symmetry breaking in liquids and their impact on the development of homochirality in abiogenesis: Emerging proto-RNA as source of biochirality? Symmetry 2020, 12, 1098. [Google Scholar] [CrossRef]
- Link, D.R.; Natale, G.; Shao, R.; Maclennan, J.E.; Clark, N.A.; Körblova, E.; Walba, D.M. Spontaneous formation of macroscopic chiral domains in a fluid smectic phase of achiral molecules. Science 1997, 278, 1924–1927. [Google Scholar] [CrossRef]
- Okamoto, Y.; Nakano, T. Asymmetric polymerization. Chem. Rev. 1994, 94, 349–372. [Google Scholar] [CrossRef]
- Green, M.M.; Park, J.-W.; Sato, T.; Teramoto, A.; Lifson, S.; Selinger, R.L.B.; Selinger, J.V. The macromolecular route to chiral amplification. Angew. Chem. Int. Ed. 1999, 38, 3138–3154. [Google Scholar] [CrossRef]
- Wu, Z.-Q.; Nagai, K.; Banno, M.; Okoshi, K.; Onitsuka, K.; Yashima, E. Enantiomer-selective and helix-sense-selective living block copolymerization of isocyanide enantiomers initiated by single-handed helical poly(phenyl isocyanide)s. J. Am. Chem. Soc. 2009, 131, 6708–6718. [Google Scholar] [CrossRef] [PubMed]
- Siriwardane, D.A.; Kulikov, O.; Rokhlenko, Y.; Perananthan, S.; Novak, B.M. Stereocomplexation of helical polycarbodiimides synthesized from achiral monomers bearing isopropyl pendants. Macromolecules 2017, 50, 9162–9172. [Google Scholar] [CrossRef]
- Stals, P.J.M.; Korevaar, P.A.; Gillissen, M.A.J.; de Greef, T.F.A.; Fitié, C.F.C.; Sijbesma, R.P.; Palmans, A.R.A.; Meijer, E.W. Symmetry breaking in the self-assembly of partially fluorinated benzene-1,3,5-tricarboxamides. Angew. Chem. Int. Ed. 2012, 51, 11297–11301. [Google Scholar] [CrossRef] [PubMed]
- Karunakaran, S.C.; Cafferty, B.J.; Weigert-Munoz, A.; Schuster, G.B.; Hud, N.V. Spontaneous symmetry breaking in the formation of supramolecular polymers: Implications for the origin of biological homochirality. Angew. Chem. Int. Ed. 2019, 58, 1453–1457. [Google Scholar] [CrossRef]
- Akagi, K.; Piao, G.; Kaneko, S.; Sakamaki, K.; Shirakawa, H.; Kyotani, M. Helical polyacetylene synthesized with a chiral nematic reaction field. Science 1998, 282, 1683–1686. [Google Scholar] [CrossRef]
- Akagi, K. Helical polyacetylene: Asymmetric polymerization in a chiral liquid-crystal field. Chem. Rev. 2009, 109, 5354–5401. [Google Scholar] [CrossRef]
- Longa, L.; De Jeu, W.H. Macroscopic one-particle description of reentrant behavior in nematic liquid crystals. Phys. Rev. A 1982, 26, 1632. [Google Scholar] [CrossRef]
- Yoshizawa, A.; Kikuzaki, H.; Fukumasa, M. Microscopic organization of the molecules in smectic A and chiral (racemic) smectic C phases: Dynamic molecular deformation effect on the SmA to SmC* (SmC) transition. Liq. Cryst. 1995, 18, 351–366. [Google Scholar] [CrossRef]
- Yoshizawa, A.; Nishiyama, I.; Kikuzaki, H.; Ise, N. C-13 NMR and X-ray investigations of phase transitions in an antiferroelectric liquid crystal. Jpn. J. Appl. Phys. 1992, 31, L860–L863. [Google Scholar] [CrossRef]
- Goodby, J.W. Apictorial approach to helical macrostructures in smectic liquid crystals. Mol. Cryst. Liq. Cryst. 1997, 292, 245–263. [Google Scholar] [CrossRef]
- Yoshizawa, A. Unconventional liquid crystal oligomers with a hierarchical structure. J. Mater. Chem. 2008, 18, 2877–2889. [Google Scholar] [CrossRef]
- Nishiya, W.; Takanishi, Y.; Yamamoto, J.; Yoshizawa, A. Molecular design for a cybotactic nematic phase. J. Mater. Chem. C 2014, 2, 3677–3685. [Google Scholar] [CrossRef]
- Yoshizawa, A.; Nishiyama, I. Mesophasic helical structures with high twisting power in optically active 3- methyladipic acid bis esters. J. Mater. Chem. 1994, 4, 449–456. [Google Scholar] [CrossRef]
- De Gennes, P.G. An analogy between superconductors and smectics A. Solid State Commun. 1972, 10, 753–756. [Google Scholar] [CrossRef]
- Renn, S.R.; Lubensky, T.C. Abriksov dislocation lattice in a model of the cholesteric-to–smectic-A transition. Phys. Rev. A 1988, 38, 2132–2147. [Google Scholar] [CrossRef]
- Goodby, J.W.; Waugh, M.A.; Stein, S.M.; Chin, E.; Pindak, R.; Patel, J. A new molecular ordering in helical liquid crystals. J. Am. Chem. Soc. 1989, 111, 8119–8125. [Google Scholar] [CrossRef]
- Goodby, J.W.; Waugh, M.A.; Stein, S.M.; Chin, E.; Pindak, R.; Patel, J. Characterization of a new helical smectic liquid crystal. Nature 1989, 337, 449–452. [Google Scholar] [CrossRef]
- Alaasar, M.; Prehm, M.; Tschierske, C. Mirror symmetry breaking in fluorinated bent-core mesogens. RSC Adv. 2016, 6, 82890–82899. [Google Scholar] [CrossRef]
- Białecka-Florjańczyk, E.; Śledzińska, I.; Górecka, E.; Przedmojski, J. Odd–even effect in biphenyl-based symmetrical dimers with methylene spacer—Evidence of the B4 phase. Liq. Cryst. 2008, 35, 401–406. [Google Scholar] [CrossRef]
- Meyer, R.B. Structural Problems in Liquid Crystal Physics. In Molecular Fluids; Volume XXV-1973 of Les Houches Summer School in Theoretical, Physics; Balian, R., Weill, G., Eds.; Gordon and Breach: New York, NY, USA, 1976; pp. 273–373. [Google Scholar]
- Dozov, I. On the spontaneous symmetry breaking in the mesophases of achiral banana-shaped molecules. Eur. Lett. 2001, 56, 247–253. [Google Scholar] [CrossRef]
- Henderson, P.A.; Imrie, C.T. Methylene-linked liquid crystal dimers and the twist-bend nematic phase. Liq. Cryst. 2011, 38, 1407–1414. [Google Scholar] [CrossRef]
- Mandle, R.J. The dependency of twist-bend nematic liquid crystals on molecular structure: A progression from dimers to trimers, oligomers and polymers. Soft Matter 2016, 12, 7883–7901. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.; Pociecha, D.; Storey, J.M.D.; Górecka, E.; Imrie, C.T. The chiral twist-bend nematic phase (N*TB). Chem. Eur. J. 2019, 25, 13329–13335. [Google Scholar] [CrossRef] [PubMed]
- Walker, R. The twist-bend phases: Structure–property relationships, chirality and hydrogen-bonding. Liq. Cryst. Today 2020, 29, 2–14. [Google Scholar] [CrossRef]
- Dunmur, D. Anatomy of a discovery: The twist-bend nematic phase. Crystals 2022, 12, 309. [Google Scholar] [CrossRef]
- Sasaki, H.; Takanishi, Y.; Yamamoto, J.; Yoshizawa, A. Achiral flexible liquid crystal trimers exhibiting chiral conglomerates. Soft Matter 2016, 12, 3331–3339. [Google Scholar] [CrossRef]
- Sasaki, H.; Takanishi, Y.; Yamamoto, J.; Yoshizawa, A. Achiral flexible liquid crystal trimers exhibiting gyroid-like surfaces in chiral conglomerate phases. Soft Matter 2017, 13, 6521–6528. [Google Scholar] [CrossRef]
- Seddon, J.M.; Templer, R.H. Polymorphism of lipid-water systems. In Handbook of Biological Physics, 1st ed.; Lipowsky, R., Sackmann, E., Eds.; Elsevier: London, UK, 1995; Volume 1, Chapter 3; pp. 97–160. [Google Scholar]
- Oikawa, R.; Sasaki, H.; Takanishi, Y.; Yamamoto, J.; Yoshizawa, A. Linear sym- metric liquid crystal trimers exhibiting supramolecular chiral architectures. Soft Matter 2019, 15, 3179–3187. [Google Scholar] [CrossRef]
- Tazuke, S.; Kurihara, S.; Ikeda, T. Amplified image recording in liquid crystal media by means of photochemically triggered phase transition. Chem. Lett. 1987, 16, 911–914. [Google Scholar] [CrossRef]
- Ikeda, T.; Tsutsumi, O. Optical switching and image storage by means of azobenzene liquid-crystl films. Science 1995, 268, 1873–1875. [Google Scholar] [CrossRef]
- Ichimura, K.; Suzuki, Y.; Seki, T.; Hosoki, A.; Aoki, K. Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer. Langmuir 1988, 4, 1214–1216. [Google Scholar] [CrossRef]
- Ichimura, K. Photoalignment of liquid-crystal systems. Chem. Rev. 2000, 10, 1847–1874. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T. Photomodulation of liquid crystal orientations for photonic applications. J. Mater. Chem. 2003, 13, 2037–2057. [Google Scholar] [CrossRef]
- Chigrinov, V.G.; Kozenkov, V.M.; Kwok, H.-S. Photoalignment of Liquid Crystalline Materials: Physics and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 1–248. [Google Scholar]
- Chigrinov, V.G.; Kudreyko, A.A.; Kozenkov, V.M. Kinetics of photoinduced phase retardation in azo dye layer. Liq. Cryst. 2022, 49, 1376–1383. [Google Scholar] [CrossRef]
- Chigrinov, V.G. Liquid crystal applications in photonics. SID 2016, 47, 927–936. [Google Scholar] [CrossRef]
- Yu, Y.; Nakano, M.; Ikeda, T. Directed bending of a polymer film by light. Nature 2003, 425, 145. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Kondo, M.; Mamiya, J.; Yu, Y.; Kinoshita, M.; Barrett, C.J.; Ikeda, T. Photomobile polymer materials: Towards light-driven plastic motors. Angew. Chem. Int. Ed. 2008, 47, 4986–4988. [Google Scholar] [CrossRef] [PubMed]
- Tamaoki, N.; Wada, M. Dynamic control of racemization rate through E–Z photoisomerization of azobenzene and subsequent partial photoresolution under circular polarized light. J. Am. Chem. Soc. 2006, 128, 6284–6285. [Google Scholar] [CrossRef]
- Vera, F.; Tejedor, R.M.; Romero, P.; Barberá, J.; Ros, M.B.; Serrano, J.L.; Sierra, T. Light-driven supramolecular chirality in propeller-like hydrogen-bonded complexes that show columnar mesomorphism. Angew. Chem. Int. Ed. 2007, 46, 1873–1877. [Google Scholar] [CrossRef]
- Iftime, G.; Labarthet, F.L.; Natansohn, A.; Rochon, P. Control of chirality of an azobenzene liquid crystalline polymer with circularly polarized light. J. Am. Chem. Soc. 2000, 122, 12646–12650. [Google Scholar] [CrossRef]
- Zep, K.; Sitkowska, K.; Pociecha, D.; Górecka, E. Photoresponsive helical nanofilaments of B4 phase. J. Mater. Chem. C 2014, 2, 2323–2327. [Google Scholar] [CrossRef]
- Paterson, D.A.; Xiang, J.; Singh, G.; Walker, R.; Agra-Kooijman, D.M.; Martı́nez-Felipe, A.; Gao, M.; Storey, J.M.D.; Kumar, S.; Lavrentovich, O.D.; et al. Reversible isothermal twist–bend nematic–nematic phase transition driven by the photoisomerization of an azobenzene-based nonsymmetric liquid crystal dimer. J. Am. Chem. Soc. 2016, 138, 5283–5289. [Google Scholar] [CrossRef] [PubMed]
- Alaasar, M.; Poppe, S.; Dong, Q.; Liu, F.; Tschierske, C. Isothermal chirality switching in liquid-crystalline azobenzene compounds with non-polarized light. Angew. Chem. Int. Ed. 2017, 56, 10801–10805. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, H.; Takanishi, Y.; Yamamoto, J.; Yoshizawa, A. Photo-driven chirality switching in a dark conglomerate phase of an achiral liquid crystal trimer. ChemistrySelect 2018, 3, 3278–3283. [Google Scholar] [CrossRef]
- Sasaki, H.; Abe, K.; Sagisaka, M.; Yoshizawa, A. Photo-induced guest–host interactions produce chiral conglomerates accompanying grain boundaries in a smectic phase. J. Mater. Chem. C 2021, 9, 12928–12937. [Google Scholar] [CrossRef]
- Lehmann, A.; Alaasar, M.; Poppe, M.; Poppe, S.; Prehm, M.; Nagaraj, M.; Sreenilayam, S.P.; Panarin, Y.P.; Vij, J.K.; Tschierske, C. Stereochemical rules govern the soft Self-Assembly of achiral compounds: Understanding the heliconical liquid-crystalline phases of bent-core mesogens. Chem. Europ. J. 2020, 26, 4714–4733. [Google Scholar] [CrossRef]
- Sayama, S.; Yoshizawa, A. Achiral H-shaped liquid crystals exhibiting an electric-field-induced chiral nematic phase. J. Mater. Chem. C 2019, 7, 6905–6913. [Google Scholar] [CrossRef]
- Crooker, P.P. Blue phases. In Chirality in Liquid Crystals; Kitzerow, H.S., Bahr, C., Eds.; Springer: New York, NY, USA, 2001; pp. 186–222. [Google Scholar]
- Stegemeyer, H.; Blümel, T.; Hiltrop, K.; Onusseit, H.; Porsch, F. Thermodynamic, structural and morphological studies on liquid-crystalline blue phases. Liq. Cryst. 1986, 1, 3–28. [Google Scholar] [CrossRef]
- Yoshizawa, A. Material design for blue phase liquid crystals and their electro-optical effects. RSC Adv. 2013, 3, 25475–25497. [Google Scholar] [CrossRef]
- Hirose, T.; Yoshizawa, A. Odd-even effects of an asymmetric dimer on the double-twist structure in an amorphous blue phase. J. Mater. Chem. C 2016, 4, 8565–8574. [Google Scholar] [CrossRef]
- Kikuchi, H.; Yokota, M.; Hisakado, Y.; Yang, H.; Kajiyama, T. Polymer-stabilized liquid crystal blue phases. Nat. Mater. 2002, 1, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Castles, F.; Day, F.V.; Morris, S.M.; Ko, D.-H.; Gardiner, D.J.; Qasim, M.M.; Nosheen, S.; Hands, P.J.W.; Choi, S.S.; Friend, R.H.; et al. Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications. Nat. Mater. 2012, 11, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, S.S.; Kim, M.S.; Hwang, J.-Y.; Chin, L.-C. Electro-optical memory of a nanoengineered amorphous blue-phase-III polymer scaffold. Adv. Mater. 2016, 28, 8998–9005. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-J.; Kim, B.-C.; Choi, H.-J.; Bae, S.; Araoka, F.; Choi, S.-K. Inverse helical nanofilament networks serving as a chiral nanotemplate. ACS Nano 2020, 14, 5243–5250. [Google Scholar] [CrossRef] [PubMed]
- Yoshizawa, A.; Kagami, T.; Kato, K.; Abe, K.; Hamada, K.; Uemura, T.; Yamaguchi, M.; Sagisaka, M. Helical polymerization using a polymer network derived from a blue phase as a template for chirality transfer. Liq. Cryst. 2023, 1–12. [Google Scholar] [CrossRef]
- Kurata, M.; Yoshizawa, A. The formation of a chiral supramolecular structure acting as a template for chirality transfer. Chem. Commun. 2020, 56, 8289–8292. [Google Scholar] [CrossRef]
- Choi, S.-W.; Izumi, T.; Hoshino, Y.; Takanishi, Y.; Ishikawa, K.; Watanabe, J.; Takezoe, H. Circular-polarization-induced enantiomeric excess in liquid crystals of an achiral, bent-shaped mesogen. Angew. Chem. Int. Ed. 2006, 45, 1382–1385. [Google Scholar] [CrossRef]
- Kurata, M. (Hirosaki University, Hirosaki, Japan). Unpublished work, 2020.
- Yoshizawa, A.; Kurata, M. Porous surface of an achiral trimer in the chiral conglomerate phase catalyzes a direct aldol reaction. New J. Chem. 2019, 43, 8865–8868. [Google Scholar] [CrossRef]
- List, B.; Lerner, R.A.; Barbas, C.F. Proline-catalyzed direct asymmetric aldol reactions. J. Am. Chem. Soc. 2000, 122, 2395–2396. [Google Scholar] [CrossRef]
- Pavlov, V.A.; Klabunovskii, E.I. The origin of homochirality in nature: A possible version. Russ. Chem. Rev. 2015, 84, 121–133. [Google Scholar] [CrossRef]
- Pavlov, V.; Pavlova, T. Paradoxes of symmetry: Homochirality; cryptochiral reactions; chiral field, memory, and induction; chiral and racemic environment. Curr. Org. Chem. 2017, 21, 872–888. [Google Scholar] [CrossRef]
- Pavlov, V.A.; Zlotin, S.G. Homochirality, stochastic chiral reactions, spontaneous chiral ordering of achiral molecules, and similar chiral effects. Is there a physical basis for these mirror symmetry breaking phenomena? Curr. Org. Chem. 2018, 22, 2029–2054. [Google Scholar] [CrossRef]
- He, Y.J.; Qi, F.; Qi, S.C. Earth’s orbital chirality and driving force of biomolecular evolution. Med. Hypotheses 2001, 56, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, V.A.; Shushenachev, Y.V.; Zlotin, S.G. Chiral and racemic fields concept for understanding of the homochirality origin, asymmetric catalysis, chiral superstructure formation from achiral molecules, and B-Z DNA conformational transition. Symmetry 2019, 11, 649. [Google Scholar] [CrossRef]
- Naraok, H.; Takano, Y.; Dworkin, J.; Oba, Y.; Hamase, K.; Furusho, A.; Ogawa, N.O.; Hashiguchi, M.; Fukushima, K.; Aoki, D.; et al. Soluble organic molecules in samples of the carbonaceous asteroid (162173) Ryugu. Science 2023, 379, eabn9033. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshizawa, A. The Formation of Supramolecular Chiral Materials from Achiral Molecules Using a Liquid-Crystallin System: Symmetry Breaking, Amplification, and Transfer. Crystals 2024, 14, 97. https://doi.org/10.3390/cryst14010097
Yoshizawa A. The Formation of Supramolecular Chiral Materials from Achiral Molecules Using a Liquid-Crystallin System: Symmetry Breaking, Amplification, and Transfer. Crystals. 2024; 14(1):97. https://doi.org/10.3390/cryst14010097
Chicago/Turabian StyleYoshizawa, Atsushi. 2024. "The Formation of Supramolecular Chiral Materials from Achiral Molecules Using a Liquid-Crystallin System: Symmetry Breaking, Amplification, and Transfer" Crystals 14, no. 1: 97. https://doi.org/10.3390/cryst14010097
APA StyleYoshizawa, A. (2024). The Formation of Supramolecular Chiral Materials from Achiral Molecules Using a Liquid-Crystallin System: Symmetry Breaking, Amplification, and Transfer. Crystals, 14(1), 97. https://doi.org/10.3390/cryst14010097