Local Orientation Transitions to a Lying Helix State in Negative Dielectric Anisotropy Cholesteric Liquid Crystal
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Induced Transitions in Second and Fourth Grandjean Zones
3.2. Simulation of Orientation Transitions and Discussion
- Induced orientation transition in the first Grandjean zone
- b.
- Induced orientation transition in the second Grandjean zone
- c.
- Induced orientation transition in the third and fourth Grandjean zones
- d.
- Dynamics of induced transitions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Gennes, P.G.; Prost, J. The Physics of Liquid Crystals; Oxford University Press: Oxford, UK, 1993; ISBN 9780198517856. [Google Scholar]
- Oseen, C.W. The theory of liquid crystals. J. Chem. Soc. Faraday Trans. 1933, 29, 883–899. [Google Scholar] [CrossRef]
- Stebryte, M. Reflective optical components based on chiral liquid crystal for head-up displays. Liq. Crystals Today 2021, 30, 36–45. [Google Scholar] [CrossRef]
- Nam, S.; Wang, D.; Lee, G.; Choi, S.S. Broadband wavelength tuning of electrically stretchable chiral photonic gel. Nanophotonics 2022, 11, 2139–2148. [Google Scholar] [CrossRef]
- Wang, D.; Nam, S.; Jung, W.; Yang, H.J.; Choi, S.S. Electrically wavelength-controllable color filters with high optical transmittance using heterogeneous chiral liquid crystals. Adv. Opt. Mater. 2023, 11, 2202906. [Google Scholar] [CrossRef]
- Mysliwiec, J.; Szukalska, A.; Szukalski, A.; Sznitko, L. Liquid crystal lasers: The last decade and the future. Nanophotonics 2021, 10, 2309–2346. [Google Scholar] [CrossRef]
- Coles, H.; Morris, S. Liquid-crystal lasers. Nat. Photon. 2010, 4, 676–685. [Google Scholar] [CrossRef]
- Papič, M.; Mur, U.; Zuhail, K.P.; Ravnik, M.; Muševič, I.; Humar, M. Topological liquid crystal superstructures as structured light lasers. Proc. Nat. Acad. Sci. USA 2021, 118, e2110839118. [Google Scholar] [CrossRef]
- Ortega, J.; Folcia, C.L.; Etxebarria, J. Laser emission at the second-order photonic band gap in an electric-field-distorted cholesteric liquid crystal. Liq. Cryst. 2019, 46, 2159–2166. [Google Scholar] [CrossRef]
- Folcia, C.L.; Ortega, J.; Sierra, T.; Martínez-Bueno, A.; Etxebarria, J. Chiral ferroelectric nematic liquid crystals as materials for versatile laser devices. Giant 2024, 19, 100316. [Google Scholar] [CrossRef]
- Dadalyan, T.; Ninoyan, Z.; Nys, I.; Alaverdyan, R.; Beeckman, J.; Neyts, K. Light-induced multi-wavelength lasing in dye-doped chiral nematic liquid crystals due to strong pumping illumination. Liq. Cryst. 2018, 45, 1272–1278. [Google Scholar] [CrossRef]
- Sarukhanyan, T.M.; Gharagulyan, H.; Rafayelyan, M.S.; Golik, S.S.; Gevorgyan, A.H.; Alaverdyan, R.B. Multimode Robust Lasing in a Dye-Doped Polymer Layer Embedded in a Wedge-Shaped Cholesteric. Molecules 2021, 26, 6089. [Google Scholar] [CrossRef] [PubMed]
- Inoue, Y.; Yoshida, H.; Inoue, K.; Fujii, A.; Ozaki, M. Improved lasing threshold of cholesteric liquid crystal lasers with in-plane helix alignment. Appl. Phys. Express 2010, 3, 102702. [Google Scholar] [CrossRef]
- Carbone, G.; Salter, P.; Elston, S.J.; Raynes, P.; De Sio, L.; Ferjani, S.; Strangi, G.; Umeton, C.; Bartolino, R. Short pitch cholesteric electro-optical device based on periodic polymer structures. Appl. Phys. Lett. 2009, 95, 011102. [Google Scholar] [CrossRef]
- Palto, S.P.; Shtykov, N.M.; Kasyanova, I.V.; Umanskii, B.A.; Geivandov, A.R.; Rybakov, D.O.; Simdyankin, I.V.; Artemov, V.V.; Gorkunov, M.V. Deformed lying helix transition and lasing effect in cholesteric LC layers at spatially periodic boundary conditions. Liq. Cryst. 2020, 47, 384–398. [Google Scholar] [CrossRef]
- Komitov, L.; Bryan-Brown, G.P.; Wood, E.L.; Smout, A.B.J. Alignment of cholesteric liquid crystals using periodic anchoring. J. Appl. Phys. 1999, 86, 3508–3511. [Google Scholar] [CrossRef]
- Carbone, G.; Corbett, D.; Elston, S.J.; Raynes, P.; Jesacher, A.; Simmonds, R.; Booth, M. Uniform lying helix alignment on periodic surface relief structure generated via laser scanning lithography. Mol. Cryst. Liq. Cryst. 2011, 544, 37–49. [Google Scholar] [CrossRef]
- Yip, W.C.; Welch, C.; Mehl, G.H.; Wilkinson, T.D. A cholesteric liquid crystal device having stable uniform lying helix structure. J. Mol. Liq. 2020, 299, 112141. [Google Scholar] [CrossRef]
- Yu, C.H.; Wu, P.C.; Lee, W. Polymer Stabilization of Uniform Lying Helix Texture in a Bimesogen-Doped Cholesteric Liquid Crystal for Frequency-Modulated Electro-Optic Responses. Materials 2022, 15, 771. [Google Scholar] [CrossRef]
- Kim, S.H.; Shi, L.; Chien, L.C. Fast flexoelectric switching in a cholesteric liquid crystal cell with surface-localized polymer network. J. Phys. D Appl. Phys. 2009, 42, 195102. [Google Scholar] [CrossRef]
- Jia, Z.; Pawale, T.; Guerrero-García, G.I.; Hashemi, S.; Martínez-González, J.A.; Li, X. Engineering the Uniform Lying Helical Structure in Chiral Nematic Liquid Crystals: From Morphology Transition to Dimension Control. Crystals 2021, 11, 414. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, Y.; Bisoyi, H.K.; Wang, L.; Bunning, T.J.; Li, Q. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light. Nature 2016, 531, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Bisoyi, H.K.; Bunning, T.J.; Li, Q. Stimuli-Driven Control of the Helical Axis of Self-Organized Soft Helical Superstructures. Adv. Mater. 2018, 30, 1706512. [Google Scholar] [CrossRef] [PubMed]
- Salter, P.S.; Carbone, G.; Jewell, S.A.; Elston, S.J.; Raynes, P. Unwinding of the uniform lying helix structure in cholesteric liquid crystals next to a spatially uniform aligning surface. Phys. Rev. E 2009, 80, 041707. [Google Scholar] [CrossRef]
- Geivandov, A.R.; Simdyankin, I.V.; Barma, D.D.; Shtykov, N.M.; Palto, S.P. High-quality deformed lying helix in chiral LC on surface with periodic alignment prepared by two-step optical treatment. Liq. Cryst. 2022, 49, 2027–2036. [Google Scholar] [CrossRef]
- Palto, S.P.; Barnik, M.I.; Geivandov, A.R.; Kasyanova, I.V.; Palto, V.S. Spectral and polarization structure of field-induced photonic bands in cholesteric liquid crystals. Phys. Rev. E 2015, 92, 032502. [Google Scholar] [CrossRef] [PubMed]
- Simdyankin, I.V.; Geivandov, A.R.; Barnik, M.I.; Palto, V.S.; Palto, S.P. Selective reflection zones of cholesteric liquid crystals induced in a non-uniform spatially periodic electric field. Liq. Cryst. Its Pract. Use 2019, 19, 48–56. (In Russian) [Google Scholar] [CrossRef]
- Rumi, M.; Tondiglia, V.P.; Natarajan, L.V.; White, T.J.; Bunning, T.J. Non-Uniform Helix Unwinding of Cholesteric Liquid Crystals in Cells with Interdigitated Electrodes. ChemPhysChem 2014, 15, 1311–1322. [Google Scholar] [CrossRef]
- Jewell, S.A.; Sambles, J.R. Optical imaging of the effect of in-plane fields on cholesteric liquid crystals. Phys. Rev. E 2008, 78, 012701. [Google Scholar] [CrossRef]
- Gardiner, D.J.; Morris, S.M.; Castles, F.; Qasim, M.M.; Kim, W.-S.; Choi, S.S.; Park, H.J.; Chung, I.J.; Coles, H.J. Polymer stabilized chiral nematic liquid crystals for fast switching and high contrast electro-optic devices. Appl. Phys. Lett. 2011, 98, 263508. [Google Scholar] [CrossRef]
- Gardiner, D.J.; Morris, S.M.; Hands, P.J.W.; Castles, F.; Qasim, M.M.; Kim, W.-S.; Choi, S.S.; Wilkinson, T.D.; Coles, H.J. Spontaneous induction of the uniform lying helix alignment in bimesogenic liquid crystals for the flexoelectro-optic effect. Appl. Phys. Lett. 2012, 100, 063501. [Google Scholar] [CrossRef]
- Joshi, V.; Chang, K.H.; Paterson, D.A.; Storey, J. P-151: Fast Flexoelectro-optic Response of Bimesogen-doped Polymer Stabilized Cholesteric Liquid Crystals in Vertical Standing Helix Mode. SID Symp. Dig. Tech. Pap. 2017, 48, 1849–1852. [Google Scholar] [CrossRef]
- Choi, S.S.; Castles, F.; Morris, S.M.; Coles, H.J. High contrast chiral nematic liquid crystal device using negative dielectric material. Appl. Phys. Lett. 2009, 95, 193502. [Google Scholar] [CrossRef]
- Umanskii, B.A.; Simdyankin, I.V. Circular dichroism in cholesteric liquid crystals. Crystall. Rep. 2019, 64, 437–442. [Google Scholar] [CrossRef]
- Berreman, D.W.; Heffner, W.R. New bistable cholesteric liquid-crystal display. Appl. Phys. Lett. 1980, 37, 109–111. [Google Scholar] [CrossRef]
- Palto, S.P.; Barnik, M.I. Bistable switching in chiral nematic liquid crystal layers with a 2π-twist ground state. J. Expert. Theor. Phys. 2005, 100, 199–207. [Google Scholar] [CrossRef]
- Palto, S.P. On mechanisms of the helix pitch variation in a thin cholesteric layer confined between two surfaces. J. Expert. Theor. Phys. 2002, 94, 260–269. [Google Scholar] [CrossRef]
- Palto, S.P.; Rybakov, D.O.; Umanskii, B.A.; Shtykov, N.M. Spiral Pitch Control in Cholesteric Liquid Crystal Layers with Hybrid Boundary Conditions. Crystals 2022, 13, 10. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simdyankin, I.V.; Geivandov, A.R.; Kasyanova, I.V.; Palto, S.P. Local Orientation Transitions to a Lying Helix State in Negative Dielectric Anisotropy Cholesteric Liquid Crystal. Crystals 2024, 14, 891. https://doi.org/10.3390/cryst14100891
Simdyankin IV, Geivandov AR, Kasyanova IV, Palto SP. Local Orientation Transitions to a Lying Helix State in Negative Dielectric Anisotropy Cholesteric Liquid Crystal. Crystals. 2024; 14(10):891. https://doi.org/10.3390/cryst14100891
Chicago/Turabian StyleSimdyankin, Ivan V., Artur R. Geivandov, Irina V. Kasyanova, and Serguei P. Palto. 2024. "Local Orientation Transitions to a Lying Helix State in Negative Dielectric Anisotropy Cholesteric Liquid Crystal" Crystals 14, no. 10: 891. https://doi.org/10.3390/cryst14100891
APA StyleSimdyankin, I. V., Geivandov, A. R., Kasyanova, I. V., & Palto, S. P. (2024). Local Orientation Transitions to a Lying Helix State in Negative Dielectric Anisotropy Cholesteric Liquid Crystal. Crystals, 14(10), 891. https://doi.org/10.3390/cryst14100891