Hydrothermal Synthesis of ZnO Nanoflowers: Exploring the Relationship between Morphology, Defects, and Photocatalytic Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Synthesis Processes
2.2. Characterization and Photocatalytic Measurements
3. Results
3.1. Morphology and Structure Properties
3.2. Chemical Composition and Vibrational Analysis
3.3. Optical and Photoluminescent Properties
3.4. Photocatalytic Activity
3.5. Photo-Degradation Kinetic
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Radzimska, A.K.; Jesionowski, T. Zinc Oxide—From Synthesis to Application: A Review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef]
- Farooq, U.; Ruby Phul, R.; Alshehri, S.M.; Ahmed, J.; Ahmad, T. Electrocatalytic and Enhanced Photocatalytic Applications of Sodium Niobate Nanoparticles Developed by Citrate Precursor Route. Sci. Rep. 2019, 9, 4488. [Google Scholar] [CrossRef]
- Naaz, F.; Shamsi, A.; Jain, S.K.; Kalam, A.; Ahmad, T. Tin oxide nanocatalyst assisted transformation of p-Nitrophenol to p-Aminophenol. Mater. Today Proc. 2021, 36, 708–716. [Google Scholar] [CrossRef]
- Farooq, U.; Chaudhary, P.; Ingole, P.P.; Kalam, A.; Ahmad, T. Development of Cuboidal KNbO3@α-Fe2O3 Hybrid Nanostructures for Improved Photocatalytic and Photoelectrocatalytic Applications. ACS Omega 2020, 5, 20491–20505. [Google Scholar] [CrossRef]
- Gupta, J.; Hassan, P.A.; Barick, K.C. Multifunctional ZnO nanostructures: A next generation nanomedicine for cancer therapy, targeted drug delivery, bioimaging, and tissue regeneration. Nanotechnology 2023, 34, 282003. [Google Scholar] [CrossRef]
- Wibowo, A.; Marsudia, M.A.; Amal, M.I.; Ananda, M.B.; Stephanie, R.; Ardy, H.; Diguna, L.J. ZnO nanostructured materials for emerging solar cell applications. RSC Adv. 2020, 10, 42838–42859. [Google Scholar] [CrossRef]
- Bhati, V.S.; Hojamberdiev, M.; Kumar, M. Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review. Energy Rep. 2020, 6, 46–62. [Google Scholar] [CrossRef]
- Pandey, R.K.; Dutta, J.; Brahma, S.; Rao, B.; Liu, C.-P. Review on ZnO-based piezotronics and piezoelectric nanogenerators: Aspects of piezo potential and screening effect. J. Phys. Mater. 2021, 4, 044011. [Google Scholar] [CrossRef]
- Sheikh, M.; Pazirofteh, M.; Dehghani, M.; Asghari, M.; Rezakazemi, M.; Valderrama, C.; Cortina, J.-L. Application of ZnO nanostructures in ceramic and polymeric membranes for water and wastewater technologies: A review. Chem. Eng. J. 2020, 391, 123475. [Google Scholar] [CrossRef]
- Kumaresan, N.; Ramamurthi, K.; Ramesh, B.R.; Sethuraman, K.; Moorthy, B.S. Hydrothermally grown ZnO nanoparticles for effective photocatalytic activity. Appl. Surf. Sci. 2017, 418, 138–146. [Google Scholar] [CrossRef]
- Debanath, M.K.; Karmakar, S. Study of blueshift of optical band gap in zinc oxide (ZnO) nano particles prepared by low-temperature wet chemical method. Mater. Lett. 2013, 111, 116–119. [Google Scholar] [CrossRef]
- Darr, J.A.; Zhang, J.; Makwana, N.; Weng, X. Continuous Hydrothermal Synthesis of Inorganic Nanoparticles: Applications and Future Directions. Chem. Rev. 2017, 117, 11125–11238. [Google Scholar] [CrossRef]
- Raha, S.; Ahmaruzzaman, M.d. ZnO nanostructured materials and their potential applications: Progress, challenges, and perspectives. Nanoscale Adv. 2022, 4, 1868–1925. [Google Scholar] [CrossRef]
- Shahzad, S.; Javed, S.; Usman, M. A Review on Synthesis and Optoelectronic Applications of Nanostructured ZnO. Front. Mater. 2021, 8, 613825. [Google Scholar] [CrossRef]
- Abdel-Fattah, E.; Elsayed, I.A.; Fahmy, T. Substrate temperature and laser fluence effects on properties of ZnO thin films deposited by pulsed laser deposition. J. Mater. Sci. Mater. Electron. 2018, 29, 19942. [Google Scholar] [CrossRef]
- Ma, S.; Yunyun, H.; Hong, R.; Lu, X.; Li, J.; Zheng, Y. Enhancing Photocatalytic Activity of ZnO Nanoparticles in a Circulating Fluidized Bed with Plasma Jets. Catalysts 2021, 11, 77. [Google Scholar] [CrossRef]
- Yang, Z.; Ye, Z.; Xu, Z.B.; Zhao, B. Effect of the Morphology on the Optical Properties of ZnO Nanostructured. Physica E Low Dimens. Syst. Nanostruct. 2009, 42, 116–119. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, R.K. Influence of Morphology on the Photocatalytic Performance of ZnO Nanostructures. Mater. Today Chem. 2021, 20, 100463. [Google Scholar]
- Xu, Y.J.; Zhuang, Y.; Wang, W.; Xiong, W. Recent advances in hierarchical micro/nanostructured ZnO and Ag/ZnO photocatalysts. Catal. Sci. Technol. 2017, 7, 4126–4139. [Google Scholar]
- Vinod, R.; Sajan, P.; Achary, S.R.; Tomas, C.M.; Munoz-Sanjos, V.; Bushiri, M.J. Enhanced UV emission from ZnO nanoflowers synthesized by the hydrothermal process. J. Phys. D Appl. Phys. 2012, 45, 425103. [Google Scholar] [CrossRef]
- Xu, X.L.; Chen, Y.; Ma, S.Y.; Yan, S.H.; Mao, Y.Z.; Wang, T.; Bian, H.Q. CTAB-assisted synthesis of unique 3D ZnO and the acetone sensing performances. Mater. Lett. 2015, 151, 5–8. [Google Scholar] [CrossRef]
- Qu, Y.; Huang, R.; Qi, W.; Shi, M.; Su, R.; He, Z. Controllable synthesis of ZnO nanoflowers with structure-dependent photocatalytic activity. Catal. Today 2020, 355, 397–407. [Google Scholar] [CrossRef]
- Zou, X.; Ke, J.; Hao, J.; Yan, X.; Tian, Y. A new method for synthesis of ZnO flower-like nanostructures and their photocatalytic performance. Phys. Rev. B Condens. 2022, 624, 413395. [Google Scholar] [CrossRef]
- Wu, H.; Xie, Q.; An, L.; Jin, P.; Peng, D.-L.; Huang, C.; Wan, H. Facile preparation of porous flower-like ZnO microspheres with excellent photocatalytic performance. Mater. Lett. 2015, 139, 393–396. [Google Scholar] [CrossRef]
- Duo, S.; Zhong, R.; Liu, Z.; Wang, J.; Liu, T.; Huang, C.; Wu, H. One-step hydrothermal synthesis of ZnO microflowers and their composition-/hollow nanorod-dependent wettability and photocatalytic property. J. Phys. Chem. Solids 2018, 120, 20–33. [Google Scholar] [CrossRef]
- Cunha, D.M.; Souza, F.L. Facile synthetic route for producing one-dimensional zinc oxide nanoflowers and characterization of their optical properties. J. Alloys Compd. 2013, 577, 158–164. [Google Scholar] [CrossRef]
- Abdel-Fattah, E.; Alotibi, S. Synergistic Effect of Nonthermal Plasma and ZnO Nanoparticles on Organic Dye Degradation. Appl. Sci. 2023, 13, 10045. [Google Scholar] [CrossRef]
- Wang, Z.G.; Zu, X.T.; Zhub, S.; Wang, L.M. Green luminescence originates from surface defects in ZnO nanoparticles. Physica E Low Dimens. Syst. Nanostru. 2006, 35, 199–202. [Google Scholar] [CrossRef]
- Heinhold, R.; Williams, G.T.; Cooil, S.P.; Evans, D.A.; Allen, M.W. Influence of polarity and hydroxyl termination on the band bending at ZnO surfaces. Phys. Rev. B Condens. Matter 2013, 88, 235315. [Google Scholar] [CrossRef]
- Chen, M.; Wang, W.; Yu, Y.H.; Pei, Z.I.; Bai, X.D.; Sun, C.; Huang, R.F.; Wen, L.S. X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl. Surf. Sci. 2000, 158, 134. [Google Scholar] [CrossRef]
- Zhang, X.; Qin, J.; Xue, Y.; Yu, P.; Zhang, B.; Wang, L.; Liu, R. Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci. Rep. 2014, 4, 4596. [Google Scholar] [CrossRef] [PubMed]
- Al-Gaashani, R.; Radiman, S.; Daud, A.R.; Tabet, N.; Al-Douri, Y. XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram. Int. 2013, 39, 2283–2292. [Google Scholar] [CrossRef]
- Lin, K.F.; Cheng, H.M.; Hsu, H.C.; Hsieh, W.F. Electronic structures, and surface states of ZnO finite well structures. Appl. Phys. Lett. 2006, 88, 263117. [Google Scholar] [CrossRef]
- Cusco, R.; Alarco- Lladó, E.; Ibáñez, J.; Artús, L.; Jiménez, J.; Wang, B.; Callahan, M.J. Temperature dependence of Raman scattering in ZnO. Phys. Rev. B Condens. Matter. 2007, 75, 165202. [Google Scholar] [CrossRef]
- Roy, N.; Chowdhury, A.; Paul, T.; Roy, A. Morphological, Optical, and Raman Characteristics of ZnO Nanoflowers on ZnO-Seeded Si Substrates Synthesized by Chemical Method. J. Nanosci. Nanotechnol. 2016, 16, 9738–9745. [Google Scholar] [CrossRef]
- Suriani, A.B.; Safitri, R.N.; Mohamed, A.; Alfarisa, S.; Isa, I.M.; Kamari, A.; Hashim, N.; Ahmed, M.K.; Malek, M.F.; Rusop, M. Enhanced field electron emission of flower-like zinc oxide on zinc oxide nanorods grown on carbon nanotubes. Mater. Lett. 2015, 149, 66–69. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, J.; Zheng, J.; Li, L.; Zhu, Z. Shuttle-like ZnO nano/microrods: Facile synthesis, optical characterization and high formaldehyde sensing properties. Appl. Surf. Sci. 2011, 258, 711–718. [Google Scholar] [CrossRef]
- Ghimbeu, C.M.; Schoonman, J.; Lumbreras, M.; Siadat, M. Electrostatic spray deposited zinc oxide films for gas sensor applications. Appl. Surf. Sci. 2007, 253, 7483–7489. [Google Scholar] [CrossRef]
- Nafees, M.; Liaqut, W.; Ali, S.; Shafique, M.A. Synthesis of ZnO/Al: ZnO nanomaterial: Structural and band gap variation in ZnO nanomaterial by Al doping. Appl. Nanosci. 2013, 3, 49–55. [Google Scholar] [CrossRef]
- Anandkumar, M.; Lathe, A.; Palve, A.M.; Deshpande, A.S. Single-phase Gd0.2La0.2Ce0.2Hf0.2Zr0.2O2 and Gd0.2La0.2Y0.2Hf0.2Zr0.2O2 nanoparticles as efficient photocatalysts for the reduction of Cr(VI) and degradation of methylene blue dye. J. Alloys Compd. 2021, 850, 156716. [Google Scholar] [CrossRef]
- Kong, Y.C.; Yu, D.P.; Zhang, B.; Fang, W.; Feng, S.Q. Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Appl. Phys. Lett. 2001, 78, 407. [Google Scholar] [CrossRef]
- Lin, B.; Fu, Z.; Jia, Y. Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett. 2001, 79, 943. [Google Scholar] [CrossRef]
- Ahn, H.C.; Kim, Y.Y.; Kim, D.C.; Mohanta, S.K.; Cho, H.K. A comparative analysis of deep level emission in ZnO layers deposited by various methods. J. Appl. Phys. 2009, 105, 013502. [Google Scholar] [CrossRef]
- Antoniadou, M.; Arfanis, M.K.; Ibrahim, I.; Falaras, P. Bifunctional g-C3N4/WO3 thin films for photocatalytic water purification. Water 2019, 11, 2439. [Google Scholar] [CrossRef]
- Xu, Y.; Schoonen, M.A.A. The Absolute Energy Positions of Conduction and Valence Bands of Selected Semiconducting Minerals. Am. Mineral. 2000, 85, 543–556. [Google Scholar] [CrossRef]
- Legrini, O.; Oliveros, E.; Braun, A.M. Photochemical processes for water treatment. Chem. Rev. 1993, 93, 671–698. [Google Scholar] [CrossRef]
- Ozer, L.Y.; Garlisi, C.; Oladipo, H.; Pagliaro, M.; Sharief, S.A.; Yusuf, A.; Almheiri, S.; Palmisano, G. Inorganic semiconductorsgraphene composites in photo(electro)catalysis: Synthetic strategies, interaction mechanisms and applications. J. Photochem. Photobiol. C Photochem. Rev. 2017, 33, 132–164. [Google Scholar] [CrossRef]
Sample | Crystal Size (nm) | a (Å) | c (Å) |
---|---|---|---|
Lotus-flower-like Nanostructures | 15.92 | 3.322 | 5.3190 |
Tulip-flower-like Nanostructures | 28.72 | 3.2495 | 5.2069 |
Scheme | Kinetic Model Parameters | ||
---|---|---|---|
Zeroth Order | Pseudo-First Order | Pseudo-Second Order | |
ZnO-lotus NFs | Ko = 0.00782 | K1 = 0.00633 | K2 = 0.0538 |
R2 = 0.9788 | R2 = 0.929 | R2 = 0.8470 | |
ZnO-tulip NFs | Ko = 0.01589 | K1 = 0.0238 | K2 = 0.05561 |
R2 = 0.9399 | R2 = 0.9469 | R2 = 0.8558 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Fattah, E.M.; Alshehri, S.M.; Alotibi, S.; Alyami, M.; Abdelhameed, D. Hydrothermal Synthesis of ZnO Nanoflowers: Exploring the Relationship between Morphology, Defects, and Photocatalytic Activity. Crystals 2024, 14, 892. https://doi.org/10.3390/cryst14100892
Abdel-Fattah EM, Alshehri SM, Alotibi S, Alyami M, Abdelhameed D. Hydrothermal Synthesis of ZnO Nanoflowers: Exploring the Relationship between Morphology, Defects, and Photocatalytic Activity. Crystals. 2024; 14(10):892. https://doi.org/10.3390/cryst14100892
Chicago/Turabian StyleAbdel-Fattah, Essam M., Salman M. Alshehri, Satam Alotibi, Mohammed Alyami, and Doaa Abdelhameed. 2024. "Hydrothermal Synthesis of ZnO Nanoflowers: Exploring the Relationship between Morphology, Defects, and Photocatalytic Activity" Crystals 14, no. 10: 892. https://doi.org/10.3390/cryst14100892
APA StyleAbdel-Fattah, E. M., Alshehri, S. M., Alotibi, S., Alyami, M., & Abdelhameed, D. (2024). Hydrothermal Synthesis of ZnO Nanoflowers: Exploring the Relationship between Morphology, Defects, and Photocatalytic Activity. Crystals, 14(10), 892. https://doi.org/10.3390/cryst14100892