Identifications of False Positives Amongst Sodium(I) Cations in Protein Three-Dimensional Structures—A Validation Approach Extendible to Any Alkali or Alkaline Earth Cation and to Any Monoatomic Anion
Abstract
:1. Introduction
1.1. Overview of the Validation Tools
1.2. Aberrant and Inaccurate Structures
2. Results
3. Discussion
4. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Popper, K. Logik der Forschung; Verlag von Julius Springer: Heidelberg, Germany, 1934. [Google Scholar]
- Carugo, O.; Djinovic-Carugo, K. Half a century of Ramachandran plots. Acta Crystallogr. 2013, D69, 1333–1341. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, G.; Ramakrishnan, C.; Sasisekharan, V. Stereochemistry of polypeptide chain conformations. J. Mol. Biol. 1963, 7, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst. 1993, 26, 283–291. [Google Scholar] [CrossRef]
- Laskowski, R.A.; Rullmann, J.A.C.; MacArthur, M.W.; Kaptein, R.; Thornton, J.M. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 1996, 8, 477–486. [Google Scholar] [CrossRef]
- Sippl, M.J. Recognition of errors in three-dimensional structures of proteins. Proteins 1993, 17, 355–362. [Google Scholar] [CrossRef]
- Wiederstein, M.; Sippl, W.M. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007, 35, W407–W410. [Google Scholar] [CrossRef]
- Chen, V.B.; Arendall, W.B., 3rd; Headd, J.J.; Keedy, D.A.; Immormino, R.M.; Kapral, G.J.; Murray, L.W.; Richardson, J.S.; Richardson, D.C. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. 2010, D66, 12–21. [Google Scholar] [CrossRef]
- Davis, I.W.; Murray, L.W.; Richardson, J.S.; Richardson, D.C. MOLPROBITY: Structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res. 2004, 32, W615–W619. [Google Scholar] [CrossRef]
- Hintze, B.J.; Lewis, S.M.; Richardson, J.S.; Richardson, D.C. Molprobity’s ultimate rotamer-library distributions for model validation. Proteins 2016, 84, 1177–1189. [Google Scholar] [CrossRef]
- Williams, C.J.; Headd, J.J.; Moriarty, N.W.; Prisant, M.G.; Videau, L.L.; Deis, L.N.; Verma, V.; Keedy, D.A.; Hintze, B.J.; Chen, V.B.; et al. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 2018, 27, 293–315. [Google Scholar] [CrossRef]
- Hooft, R.W.; Sander, C.; Vriend, G. Objectively judging the quality of a protein structure from a Ramachandran plot. Comput. Appl. Biosci. 1997, 13, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Sobolev, O.V.; Afonine, P.V.; Moriarty, N.W.; Hekkelman, M.L.; Joosten, R.P.; Perrakis, A.; Adams, P.D. A Global Ramachandran Score Identifies Protein Structures with Unlikely Stereochemistry. Structure 2020, 28, 1249–1258.e1242. [Google Scholar] [CrossRef] [PubMed]
- Afonine, P.V.; Sobolev, O.V.; Moriarty, N.W.; Terwilliger, T.C.; Adams, P.D. Overall protein structure quality assessment using hydrogen-bonding parameters. Acta Cryst. 2023, D79, 684–693. [Google Scholar] [CrossRef] [PubMed]
- Vaguine, A.A.; Richelle, J.; Wodak, S.J. SFCHECK: A unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. Acta Crystallogr. 1999, D55, 191–205. [Google Scholar] [CrossRef]
- Benkert, P.; Biasini, M.; Schwede, T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 2011, 27, 343–350. [Google Scholar] [CrossRef]
- Benkert, P.; Tosatto, S.C.; Schomburg, D. QMEAN: A comprehensive scoring function for model quality assessment. Proteins 2008, 71, 261–277. [Google Scholar] [CrossRef]
- Praznikar, J.; Tomic, M.; Turk, D. Validation and quality assessment of macromolecular structures using complex network analysis. Sci. Rep. 2019, 9, 1678. [Google Scholar] [CrossRef]
- Studer, G.; Biasini, M.; Schwede, T. Assessing the local structural quality of transmembrane protein models using statistical potentials (QMEANBrane). Bioinformatics 2014, 30, i505–i511. [Google Scholar] [CrossRef]
- Studer, G.; Rempfer, C.; Waterhouse, A.M.; Gumienny, R.; Haas, J.; Schwede, T. QMEANDisCo-distance constraints applied on model quality estimation. Bioinformatics 2020, 36, 1765–1771. [Google Scholar] [CrossRef]
- Shao, C.; Liu, Z.; Yang, H.; Wang, S.; Burley, S.K. Outlier analyses of the Protein Data Bank archive using a probability-density-ranking approach. Sci. Data 2018, 5, 180293. [Google Scholar] [CrossRef]
- Shao, C.; Bittrich, S.; Wang, S.; Burley, S.K. Assessing PDB macromolecular crystal structure confidence at the individual amino acid residue level. Structure 2022, 30, 1385–1394. [Google Scholar] [CrossRef]
- Pereira, J.; Lamzin, V.S. A distance geometry-based description and validation of protein main-chain conformation. IUCrJ 2017, 4, 657–670. [Google Scholar] [CrossRef] [PubMed]
- Trewhella, J.; Hendrickson, W.A.; Kleywegt, G.J.; Sali, A.; Sato, M.; Schwede, T.; Svergun, D.I.; Tainer, J.A.; Westbrook, J.; Berman, H.M. Report of the wwPDB Small-Angle Scattering Task Force: Data requirements for biomolecular modeling and the PDB. Structure 2013, 21, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Barad, B.A.; Echols, N.; Wang, R.Y.; Cheng, Y.; DiMaio, F.; Adams, P.D.; Fraser, J.S. EMRinger: Side chain-directed model and map validation for 3D cryo-electron microscopy. Nat. Methods 2015, 12, 943–946. [Google Scholar] [CrossRef]
- Gore, S.; Sanz Garcia, E.; Hendrickx, P.M.S.; Gutmanas, A.; Westbrook, J.D.; Yang, H.; Feng, Z.; Baskaran, K.; Berrisford, J.M.; Hudson, B.P.; et al. Validation of Structures in the Protein Data Bank. Structure 2017, 25, 1916–1927. [Google Scholar] [CrossRef]
- Smart, O.S.; Horský, V.; Gore, S.; Svobodová Vařeková, R.; Bendová, V.; Kleywegt, G.J.; Velankar, S. Worldwide Protein Data Bank validation information: Usage and trends. Acta Cryst. 2018, 74, 237–244. [Google Scholar] [CrossRef]
- Dauter, Z.; Wlodawer, A.; Minor, W.; Jaskolski, M.; Rupp, B. Avoidable errors in deposited macromolecular structures: An impediment to efficient data mining. IUCrJ 2014, 1, 179–193. [Google Scholar] [CrossRef]
- Shabalin, I.; Dauter, Z.; Jaskolski, M.; Minor, W.; Wlodawer, A. Crystallography and chemistry should always go together: A cautionary tale of protein complexes with cisplatin and carboplatin. Acta Cryst. 2015, D71, 1965–1979. [Google Scholar] [CrossRef]
- Raczynska, J.E.; Wlodawer, A.; Jaskolski, M. Prior knowledge or freedom of interpretation? A critical look at a recently published classification of “novel” Zn binding sites. Proteins 2016, 84, 700–776. [Google Scholar] [CrossRef]
- Raczynska, J.; Shabalin, I.G.; Minor, W.; Wlodawer, A.; Jaskolski, M. A close look onto structural models and primary ligands of metallo-β-lactamases. Drug Resist. Updat. 2018, 40, 1–12. [Google Scholar] [CrossRef]
- Brezinski, D.; Kowiel, M.; Cooper, D.R.; Cymborowski, M.; Grabowski, M.; Wlodawer, A.; Dauter, Z.; Shabalin, I.G.; Gilski, M.; Rupp, B.; et al. Covid-19.bioreproducibility.org: A web resource for SARS-CoV-2-related structural models. Protein Sci. 2021, 30, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Jaskolski, M.; Dauter, Z.; Shabalin, I.G.; Gilski, M.; Brzezinski, D.; Kowiel, M.; Rupp, B.; Wlodawer, A. Crystallographic models of SARS-CoV-2 3CLpro: In-depth assessment of structure quality and validation. IUCrJ 2021, 8, 238–256. [Google Scholar] [CrossRef] [PubMed]
- Wlodawer, A.; Dauter, Z.; Shabalin, I.; Gilski, M.; Brezinski, D.; Kowiel, M.; Minor, W.; Rupp, B.; Jaskolski, M. Ligand-centered assessment of SARS-CoV-2 drug target models in the Protein Data Bank. FEBS J. 2020, 287, 3703–3718. [Google Scholar] [CrossRef]
- Wlodawer, A.; Dauter, Z.; Lubkowski, J.; Loch, J.; Brezinski, D.; Gilski, M. Towards a dependable dataset of structures for L-asparaginase research. Acta Cryst. 2024, D80, 506–527. [Google Scholar]
- Jaskolski, M.; Wlodawer, A.; Dauter, Z.; Minor, W.; Rupp, B. Group deposition to the Protein Data Bank need adequate presentation and different archiving protocol. Protein Sci. 2022, 31, 784–786. [Google Scholar] [CrossRef]
- Domagalski, M.J.; Zheng, H.; Zimmerman, M.D.; Dauter, Z.; Wlodawer, A.; Minor, W. The quality and validation of structures from structural genomics. Meth. Mol. Biol. 2014, 2091, 297–314. [Google Scholar]
- Djinovic-Carugo, K.; Carugo, O. Naked Metal Cations Swimming in Protein Crystals. Crystals 2019, 9, 581. [Google Scholar] [CrossRef]
- Rupp, B.; Wlodawer, A.; Minor, W.; Helliwell, J.R.; Jaskolski, M. Correcting the record of structural publications requires joint effort of the community and journal editors. FEBS J. 2016, 283, 4452–4457. [Google Scholar] [CrossRef]
- Wlodawer, A.; Dauter, Z.; Minor, W.; Stanfield, R.; Porebski, P.; Jaskolski, M.; Pozjarski, E.; Weichenberger, C.X.; Rupp, B. Detect, Correct, Retract: How to manage incorrect structural models. FEBS J. 2018, 285, 444–466. [Google Scholar] [CrossRef]
- Brown, I.D.; Wu, K.K. Empirical Parameters for Calculating Cation-Oxygen Bond Valences. Acta Cryst. 1975, B32, 1957–1959. [Google Scholar] [CrossRef]
- Carugo, O. Buried chloride stereochemistry in the protein data bank. BMC Struct. Biol. 2014, 14, 19. [Google Scholar] [CrossRef] [PubMed]
- Gucwa, M.; Bijak, V.; Zheng, H.; Murzyn, K.; Minor, W. CheckMyMetal (CMM): Validating metal-binding sites in X-ray and cryo-EM data. IUCrJ 2024, 11, 871–877. [Google Scholar] [CrossRef] [PubMed]
- Harding, M.M. The geometry of metal-ligand interactions relevant to proteins. Acta Cryst. 1999, D55, 1432–1443. [Google Scholar] [CrossRef]
- Harding, M.M. The geometry of metal-ligand interactions relevant to proteins. II. Angles at the metal atom, additional weak metal-donor interactions. Acta Cryst. 2000, D56, 857–867. [Google Scholar] [CrossRef]
- Harding, M.M. Geometry of metal-ligand interactions in proteins. Acta Cryst. 2001, D57, 401–411. [Google Scholar] [CrossRef]
- Harding, M.M. The architecture of metal coordination groups in proteins. Acta Cryst. 2004, D60, 849–859. [Google Scholar] [CrossRef]
- Harding, M.M. Small revisions to predicted distances around metal sites in proteins. Acta Cryst. 2006, D62, 678–682. [Google Scholar] [CrossRef]
- Harding, M.M.; Nowicki, M.W.; Walkinshaw, M.D. Metals in protein structures: A review of their principal features. Cryst. Rev. 2010, 16, 247–302. [Google Scholar] [CrossRef]
- Hsin, K.; Sheng, Y.; Harding, M.M.; Taylor, P.; Walkinshaw, M.D. MESPEUS: A database of the geometry of metal sites in proteins. J. Appl. Cryst. 2008, 41, 963–968. [Google Scholar] [CrossRef]
- Lin, G.-Y.; Su, Y.-C.; Huang, Y.L.; Hsin, K.-Y. MESPEUS: A database of metal coordination groups in proteins. Nucl. Acids Res. 2024, 52, D483–D493. [Google Scholar] [CrossRef]
- Mueller, P.; Koepke, S.; Sheldrick, G.M. Is the bond-valence method able to identify metal atoms in protein structures? Acta Cryst. 2003, D59, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Nayal, M.; Di Cera, E. Valence Screening of Water in Protein Crystals Reveals Potential Na+ Binding Sites. J. Mol. Biol. 1996, 256, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Bazayeva, M.; Andreini, C.; Rosato, A. A adatabase overview of meta-coordination distances in metalloproteins. Acta Cryst. 2024, D80, 362–376. [Google Scholar]
- Minor, W.; Dauter, Z.; Helliwell, J.R.; Jaskolski, M.; Wlodawer, A. Safeguarding Structural Data Repositories against Bad Apples. Structure 2016, 24, 216–220. [Google Scholar] [CrossRef]
- Levi, P. If This Is a Man and the Truce; Abacus: London, UK, 2003. [Google Scholar]
- Levi, P. Se Questo e’ un Uomo; Einaudi: Turin, Italy, 2014. [Google Scholar]
- Carugo, O. Random sampling of the Protein Data Bank: RaSPDB. Sci. Rep. 2021, 11, 24178. [Google Scholar] [CrossRef]
- Brooks, B.R.; Bruccoleri, R.E.; Olafson, B.D.; States, D.J.; Swaminathan, S.; Karplus, M. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 1983, 4, 187–217. [Google Scholar] [CrossRef]
- Anjanappa, R.; Garcia-Alai, M.; Kopicki, J.D.; Lockhauserbaumer, J.; Aboelmagd, M.; Hinrichs, J.; Nemtanu, I.M.; Uetrecht, C.; Zacharias, M.; Springer, S.; et al. Structures of peptide-free and partially loaded MHC class I molecules reveal mechanisms of peptide selection. Nat. Commun. 2020, 11, 1314. [Google Scholar] [CrossRef]
- Thomas, M.E.; Grinshpon, R.; Swartz, P.; Clark, A.C. Modifications to a common phosphorylation network provide individualized control in caspases. J. Biol. Chem. 2018, 293, 5447–5461. [Google Scholar] [CrossRef]
- Podvalnaya, N.; Bronkhorst, A.W.; Lichtenberger, R.; Hellmann, S.; Nischwitz, E.; Falk, T.; Karaulanov, E.; Butter, F.; Falk, S.; Ketting, R.F. piRNA processing by a trimeric Schlafen-domain nuclease. Nature 2023, 622, 402–409. [Google Scholar] [CrossRef]
- Rupp, B. Biomolecular Crystallography: Principles, Practice, and Application to Structural Biology; Garland Science: New York, NY, USA, 2010. [Google Scholar]
- Wlodawer, A.; Minor, W.; Dauter, Z.; Jaskolski, M. Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J. 2008, 275, 1–21. [Google Scholar] [CrossRef]
- Connick, W.B.; Henling, W.M.; Marsh, R.E. Revision of structure of (bipyridyl-N,N’)disyanoplatinum(II). Acta Cryst. 1996, B52, 817–822. [Google Scholar] [CrossRef]
- Marsh, R.E. P1 or P-1? Or something else? Acta Cryst. 1999, B55, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Marsh, R.E. Space groups P1 and Cc: How are they doing? Acta Cryst. 2009, B65, 782–783. [Google Scholar] [CrossRef]
- Meng, A.Q.; Diment, L.A.; Abdi, A.; Hubbs, V.J.; Jeffreys, E.A.; O’Dell, M.; Ou, X.; Park, K.A.; Quillin, B.T.; Dickie, D.A. Using data from the Cambridge Structural Database to practice crystallographic skills and revise erroneous structures. Cryst. Growth Des. 2024, 24, 4690–4696. [Google Scholar] [CrossRef]
- Thompson, A.J.; Whittaker, J.J.; Brock, A.J.; Baanoon, H.A.; Sankalpa, A.-F.K.; Arachichage, A.; Pfunder, M.C.; McMurtrie, J.C. Is a crystal structure enough? Reflecting on the reliability of SCXRD in a age of automation. Cryst. Growth Des. 2024, 24, 5349–5354. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carugo, O. Identifications of False Positives Amongst Sodium(I) Cations in Protein Three-Dimensional Structures—A Validation Approach Extendible to Any Alkali or Alkaline Earth Cation and to Any Monoatomic Anion. Crystals 2024, 14, 918. https://doi.org/10.3390/cryst14110918
Carugo O. Identifications of False Positives Amongst Sodium(I) Cations in Protein Three-Dimensional Structures—A Validation Approach Extendible to Any Alkali or Alkaline Earth Cation and to Any Monoatomic Anion. Crystals. 2024; 14(11):918. https://doi.org/10.3390/cryst14110918
Chicago/Turabian StyleCarugo, Oliviero. 2024. "Identifications of False Positives Amongst Sodium(I) Cations in Protein Three-Dimensional Structures—A Validation Approach Extendible to Any Alkali or Alkaline Earth Cation and to Any Monoatomic Anion" Crystals 14, no. 11: 918. https://doi.org/10.3390/cryst14110918
APA StyleCarugo, O. (2024). Identifications of False Positives Amongst Sodium(I) Cations in Protein Three-Dimensional Structures—A Validation Approach Extendible to Any Alkali or Alkaline Earth Cation and to Any Monoatomic Anion. Crystals, 14(11), 918. https://doi.org/10.3390/cryst14110918