Structural, Morphological, and Optical Properties of Nano- and Micro-Structures of ZnO Obtained by the Vapor–Solid Method at Atmospheric Pressure and Photocatalytic Activity
Abstract
:1. Introduction
2. Materials
3. Synthesis and Characterization
4. Degradation Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.F.; Zhang, Q.; Xiong, Q.H.; Sum, T.M. Tailoring the Lasing Modes in Semiconductor Nanowire Cavities Using Intrinsic Self-Absorption. Nano Lett. 2013, 13, 1080. [Google Scholar] [CrossRef] [PubMed]
- Jara, P.; Fernández-Jiménez, R.; Ferreiro, A.; Urbieta, A.; Rabanal, M.E.; Fernández, P. Morphological, structural and luminescent characterization of Nd-doped ZnO nano- and microstructures grown by vapor-solid method. Mater. Sci. Eng. B 2024, 299, 116941. [Google Scholar] [CrossRef]
- Wang, Z.L.; Song, J.H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242. [Google Scholar] [CrossRef]
- Kumar, Y.; Adelung, R. ZnO tetrapod materials for functional applications. Mater. Today 2018, 21, 631–651. [Google Scholar] [CrossRef]
- Hoang, S.; Guo, S.W.; Hahn, N.T.; Bard, A.J.; Mullins, C.B. Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. Nano Lett. 2012, 12, 26. [Google Scholar] [CrossRef] [PubMed]
- Cao, G. Nanostructures and Nanomaterials: Synthesis, Properties and Applications; Imperial College Press: London, UK, 2004. [Google Scholar]
- Wang, Z.L. Zinc oxide nanostructures: Growth, properties and applications. J. Phys. Condens. Mat. 2004, 16, R829. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, Y.; Kumar, H. A study of hydrothermally grown ZnO nanorod-based metal-semiconductor-metal UV detectors on glass substrates. Nanomater. Nanotechnol. 2017, 7, 1847980417702144. [Google Scholar] [CrossRef]
- Miccoli, I.; Spampinato, R.; Marzo, F.; Prete, P.; Lovergine, N. DC-magnetron sputtering of ZnO:Al films on (00.1)Al2O3 substrates from slip-casting sintered ceramic targets. Appl. Surf. Sci. 2014, 313, 418–423. [Google Scholar] [CrossRef]
- El Hichou, A.; Addou, M.; Bougrine, A.; Dounia, R.; Ebothé, J.; Troyon, M.; Amrani, M. Cathodoluminescence properties of undoped and Al-doped ZnO thin films deposited on glass substrate by spray pyrolysis. Mater. Chem. Phys. 2004, 83, 43–47. [Google Scholar] [CrossRef]
- Park, W.I.; Yi, G.C.; Kim, M.; Pennycook, S.J. ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy. Adv. Mater. 2002, 14, 1841–1843. [Google Scholar] [CrossRef]
- Fang, Y.; Wen, X.; Yang, S.; Pang, Q.; Ding, L.; Wang, J.; Ge, W. Hydrothermal synthesis and optical properties of ZnO nanostructured films directly grown from/on zinc substrates. J. Sol-Gel Sci. Technol. 2005, 36, 227–234. [Google Scholar] [CrossRef]
- Wojnarowicz, J.; Chudoba, T.; Lojkowski, W. A Review of Microwave Synthesis of Zinc Oxide Nanomaterials: Reactants. Process Parameters and Morphologies. Nanomaterials 2020, 10, 1086. [Google Scholar] [CrossRef]
- Liang, J.K.; Su, H.L.; Kuo, C.L.; Kao, S.P.; Cui, J.W.; Wu, Y.C.; Huang, J.C.A. Structural, Optical and Electrical Properties of Electrodeposited Sb-Doped ZnO Nanorod Arrays. Electrochim. Acta 2014, 125, 124–132. [Google Scholar] [CrossRef]
- Prete, P.; Lovergine, N.; Tapfer, L. Nanostructure size evolution during Au-catalysed growth by carbo-thermal evaporation of well-aligned ZnO nanowires on (100)Si. Appl. Phys. A 2007, 88, 21–26. [Google Scholar] [CrossRef]
- Yoichiro, N.; Aki, M.; Hiroko, K.; Toru, A.; Yoshinori, H.; Goro, S. Preparation of ZnO thin films for high-resolution field emission display by electron beam evaporation. Appl. Surf. Sci. 1999, 142, 233–236. [Google Scholar] [CrossRef]
- Bueno, C.; Pacio, A.; Osorio, E.; Alvarado, J.A.; Maestre, D.; Cremades, A.; Flores-Carrasco, G.; Juárez, H. Growth mechanism and optical properties of nano and microstructures of ZnO obtained by thermal oxidation of zinc powders at atmospheric pressure. Solid State Phenom. 2019, 286, 33–39. [Google Scholar] [CrossRef]
- Bueno, C.; Maestre, D.; Díaz, T.; Juárez, H.; Pacio, M.; Cremades, A.; Piqueras, J. High-yield growth of Ti doped ZnO nano- and microstructures by a vapor-solid method. J. Alloys Compd. 2017, 726, 201–208. [Google Scholar] [CrossRef]
- Maestre, D.; Haeussler, D.; Cremades, A.; Jager, W.; Piqueras, J. Complex defect structure in the core of Sn-doped In2O3 nanorods and its relationship with a dislocation-driven growth mechanism. Cryst. Growth Des. 2011, 11, 1117–1121. [Google Scholar] [CrossRef]
- Di Carlo, V.; Prete, P.; Dubrovskii, V.G.; Berdnikov, Y.; Lovergine, N. CdTe Nanowires by Au-Catalyzed Metalorganic Vapor Phase Epitaxy. Nano Lett. 2017, 17, 4075–4082. [Google Scholar] [CrossRef]
- Kajbafvala, A.; Ghorbani, H.; Paravar, A.; Samberg, J.P.; Kajbafvala, E.; Sadrnezhaad, S.K. Effects of morphology on photocatalytic performance of Zinc oxide nanostructures synthesized by rapid microwave irradiation methods. Superlattices Microstruct. 2012, 51, 512–522. [Google Scholar] [CrossRef]
- Xu, X.; Xu, C.; Dai, J.; Pan, J.; Hu, J. Evolutions of defects and blue–green emissions in ZnO microwhiskers fabricated by vapor-phase transport. J. Phys. Chem. Solids 2012, 73, 858–862. [Google Scholar] [CrossRef]
- Yuan, L.; Wang, C.; Cai, R.; Wang, Y.; Zhou, G. Spontaneous ZnO nanowire formation during oxidation of Cu-Zn alloy. J. Appl. Phys. 2013, 114, 023512. [Google Scholar] [CrossRef]
- Pavón, F.; Urbieta, A.; Fernández, P. Characterization, luminescence and optical resonant modes of Eu-Li co-doped ZnO nano- and microstructures. Appl. Sci. 2022, 12, 6948. [Google Scholar] [CrossRef]
- Huang, M.H.; Hu, Y.; Feick, H.; Tran, N.; Weber, E.; Yang, P. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 2001, 13, 113–116. [Google Scholar] [CrossRef]
- Huang, M.H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897–1899. [Google Scholar] [CrossRef]
- Du, Y.; Zeng, F. Annealing effects on the cathodoluminescence properties of individual ZnO nanowire. Mater. Lett. 2011, 65, 2238–2240. [Google Scholar] [CrossRef]
- Sun, T.; Qiu, J. Fabrication of ZnO microtube arrays via vapor phase growth. Mater. Lett. 2008, 62, 1528–1531. [Google Scholar] [CrossRef]
- Fabbri, F.; Villan, M.; Catellani, A.; Calzolari, A.; Cicero, G.; Calestani, D.; Calestani, G.; Zappettini, A.; Dierre, B.; Sekiguchi, T.; et al. Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures. Sci. Rep. 2014, 4, 5158. [Google Scholar] [CrossRef]
- Gatou, M.A.; Fiorentis, E.; Lagopati, N.; Pavlatou, E.A. Photodegradation of rhodamine B and phenol using TiO2/SiO2 composite nanoparticles: A comparative study. Water 2023, 15, 2773. [Google Scholar] [CrossRef]
- Han, C.; Duan, L.; Zhao, X.; Hu, Z.; Niu, Y.; Geng, W. Effect of Fe doping on structural and optical properties of ZnO films and nanorods. J. Alloys Compd. 2019, 770, 854–863. [Google Scholar] [CrossRef]
- Samadi, M.; Zirak, M.; Naseri, A.; Khorashadizade, E.; Moshfegh, A.Z. Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Film. 2016, 605, 2–19. [Google Scholar] [CrossRef]
- Nawaz, R.; Ullah, H.; Ghanim, A.; Irfan, M.; Anjum, M.; Rahman, S.; Ullah, S.; Baki, Z.A.; Oad, V.K. Green synthesis of ZnO and black TiO2 materials and their application in photodegradation of organic pollutants. ACS Omega 2023, 8, 36076–36087. [Google Scholar] [CrossRef] [PubMed]
Sample | Zn % at. | O % at. |
---|---|---|
600 °C Air and Argon | 53.47 | 46.52 |
700 °C Air and Argon | 51.07 | 48.93 |
800 °C Air and Argon | 51.32 | 43.55 |
Upper base of the micro-tube | 64.9 | 35.1 |
Sample | Absorption AM (%) | Degradation AM (%) | Constant Reaction, k (min−1) | Total Elimination AM (%) |
---|---|---|---|---|
Nano-wires | 6.4 | 97.2 | 0.04063 | 97.4 |
Micro-tubes | 5.5 | 49.8 | 0.00745 | 52.5 |
Micro-rods | 13.5 | 94.5 | 0.03246 | 95.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bueno, C.; Luna, A.; Flores, G.; Juárez, H.; Pacio, M.; Pérez, R.; Flores-Méndez, J.; Maestre, D.; Cortés-Maldonado, R. Structural, Morphological, and Optical Properties of Nano- and Micro-Structures of ZnO Obtained by the Vapor–Solid Method at Atmospheric Pressure and Photocatalytic Activity. Crystals 2024, 14, 941. https://doi.org/10.3390/cryst14110941
Bueno C, Luna A, Flores G, Juárez H, Pacio M, Pérez R, Flores-Méndez J, Maestre D, Cortés-Maldonado R. Structural, Morphological, and Optical Properties of Nano- and Micro-Structures of ZnO Obtained by the Vapor–Solid Method at Atmospheric Pressure and Photocatalytic Activity. Crystals. 2024; 14(11):941. https://doi.org/10.3390/cryst14110941
Chicago/Turabian StyleBueno, Carlos, Adan Luna, Gregorio Flores, Héctor Juárez, Mauricio Pacio, René Pérez, Javier Flores-Méndez, David Maestre, and Raúl Cortés-Maldonado. 2024. "Structural, Morphological, and Optical Properties of Nano- and Micro-Structures of ZnO Obtained by the Vapor–Solid Method at Atmospheric Pressure and Photocatalytic Activity" Crystals 14, no. 11: 941. https://doi.org/10.3390/cryst14110941
APA StyleBueno, C., Luna, A., Flores, G., Juárez, H., Pacio, M., Pérez, R., Flores-Méndez, J., Maestre, D., & Cortés-Maldonado, R. (2024). Structural, Morphological, and Optical Properties of Nano- and Micro-Structures of ZnO Obtained by the Vapor–Solid Method at Atmospheric Pressure and Photocatalytic Activity. Crystals, 14(11), 941. https://doi.org/10.3390/cryst14110941