Growth and Characterization of High-Quality YTiO3 Single Crystals: Minimizing Ti4+ Containing Impurities and TiN Formation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Growth from the Starting Materials with the Nominal Composition YTiO3
3.2. Growth from the Oxygen-Deficient Starting Materials with Nominal Compositions YTiO2.925 and YTiO2.85
3.3. The Formation of TiN Coating
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- MacLean, D.A.; Ng, H.-N.; Greedan, J.E. Crystal structures and crystal chemistry of the RETiO3 perovskites: RE = La, Nd, Sm, Gd, Y. J. Solid State Chem 1979, 30, 35–44. [Google Scholar] [CrossRef]
- Greedan, J.E. The rare earth-titanium (III) perovskite oxides—An isostructural series with a remarkable variation in physical properties. J. Less-Common Met. 1985, 111, 335–345. [Google Scholar] [CrossRef]
- Tokura, Y. Fillingness dependence of electronic structures in strongly correlated electron systems Titanates and vanadates. J. Phys. Chm. Solids 1992, 53, 1619–1625. [Google Scholar] [CrossRef]
- Ishihara, S. Chapter 5. Titanates and Vanadates. In Physics of Transition Metal Oxides; Maekawa, S., Tohyama, T., Barnes, S.E., Ishihara, S., Koshibae, W., Khaliullin, G., Eds.; Springer Series in Solid-State Sciences 144; Springer: Berlin/Heidelberg, Germany, 2004; pp. 225–238. [Google Scholar]
- Guo, Y.; Langlois, J.-M.; Goddard, W.A. Electronic Structure and Valence-Bond Band Structure of Cuprate Superconducting Materials. Science 1988, 239, 896–899. [Google Scholar] [CrossRef]
- Mochizuki, M.; Imada, M. Orbital physics in the perovskite Ti oxides. New J. Phys. 2004, 6, 154. [Google Scholar] [CrossRef]
- Goral, J.P.; Greedan, J.E.; MacLean, D.A. Magnetic Behavior in the Series LaxY1-xTiO3. J. Solid State Chem. 1982, 43, 244. [Google Scholar] [CrossRef]
- Zhou, H.D.; Goodenough, J.B. Evidence for two electronic phases in Y1-xLaxTiO3 from thermoelectric and magnetic susceptibility measurements. Phys. Rev. B 2005, 71, 184431. [Google Scholar] [CrossRef]
- Li, B.; Louca, D.; Niedziela, J.; Li, Z.; Zhang, L.; Zhou, J.; Goodenough, J.B. Lattice and magnetic dynamics in perovskite Y1-xLaxTiO3. Phys. Rev. B 2016, 94, 224301. [Google Scholar] [CrossRef]
- Hameed, S.; El-Khatib, S.; Olson, K.P.; Yu, B.; Williams, T.J.; Hong, T.; Sheng, Q.; Yamakawa, K.; Zang, J.; Uemura, Y.J.; et al. Nature of the ferromagnetic-antiferromagnetic transition in Y1-xLaxTiO3. Phys. Rev. B 2021, 104, 024410. [Google Scholar] [CrossRef]
- Fujishima, Y.; Tokura, Y.; Arima, T.; Uchida, S. Optical-conductivity spectra of Sr1-xLaxTiO3: Filling-dependent effect of the electron correlation. Phys. Rev. B 1992, 46, 11167. [Google Scholar] [CrossRef]
- Tokura, Y.; Taguchi, Y.; Okada, Y.; Fujishima, Y.; Arima, T.; Kumagai, K.; Iye, Y. Filling dependence of electronic properties on the verge of metal–Mott-insulator transition in Sr1-xLaxTiO3. Phys. Rev. Lett. 1993, 70, 2126. [Google Scholar] [CrossRef]
- Okada, Y.; Arima, T.; Tokura, Y.; Murayama, C.; Môri, N. Doping- and pressure-induced change of electrical and magnetic properties in the Mott-Hubbard insulator LaTiO3 (La3+Ti3+O3). Phys. Rev. B 1993, 48, 9677. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, Y.; Tokura, Y.; Arima, T.; Inaba, F. Change of electronic structures with carrier doping in the highly correlated electron system Y1-xCaxTiO3. Phys. Rev. B 1993, 48, 511. [Google Scholar] [CrossRef] [PubMed]
- Tokura, Y.; Taguchi, Y.; Moritomo, Y.; Kumagai, K.; Suzuki, T.; Iye, Y. Barely metallic states with enhanced carrier mass in Y1-xCaxTiO3. Phys. Rev. B 1993, 48, 14063. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, K.; Suzuki, T.; Taguchi, Y.; Okada, Y.; Fujishima, Y.; Tokura, Y. Metal-insulator transition in La1-xSrxTiO3 and Y1-xCaxTiO3 investigated by specific-heat measurements. Phys. Rev. B 1993, 48, 7636. [Google Scholar] [CrossRef]
- Katsufuji, T.; Taguchi, Y.; Tokura, Y. Transport and magnetic properties of a Mott-Hubbard system whose bandwidth and band filling are both controllable: R1-xCaxTiO3+y/2. Phys. Rev. B 1997, 56, 10145. [Google Scholar] [CrossRef]
- Furukawa, Y.; Okamura, I.; Kumagai, K.; Goto, T.; Fukase, T.; Taguchi, Y.; Tokura, Y. La1-xSrxTiO3 by 47/49Ti and 139La nuclear magnetic resonance. Phys. Rev. B 1999, 59, 10550. [Google Scholar] [CrossRef]
- Tsubota, M.; Iga, F.; Nakano, T.; Uchihira, K.; Kura, S.; Takemura, M.; Bando, Y.; Umeo, K.; Takabatake, T.; Nishibori, E.; et al. Hole-doping and Pressure Effects on the Metal–Insulator Transition in Single Crystals of Y1-xCaxTiO3 (0.37<x<0.41). J. Phys. Soc. Jpn. 2003, 72, 3182–3188. [Google Scholar]
- Hays, C.C.; Zhou, J.-S.; Markert, J.T.; Goodenough, J.B. Electronic transition in La1-xSrxTiO3. Phys. Rev. B 1999, 60, 10367. [Google Scholar] [CrossRef]
- Disa, A.S.; Curtis, J.; Fechner, M.; Liu, A.; von Hoegen, A.; Först, M.; Nova, T.F.; Narang, P.; Maljuk, A.; Boris, A.V.; et al. Photo-induced high-temperature ferromagnetism in YTiO3. Nature 2023, 617, 73–78. [Google Scholar] [CrossRef]
- Komarek, A.C.; Roth, H.; Cwik, M.; Stein, W.-D.; Baier, J.; Kriener, M.; Bourée, F.; Lorenz, T.; Braden, M. Magnetoelastic coupling in RTiO3 (R = La, Nd, Sm, Gd, Y) investigated with diffraction techniques and thermal expansion measurements. Phys. Rev. B 2007, 75, 224402. [Google Scholar] [CrossRef]
- Knafo, W.; Meingast, C.; Boris, A.V.; Popovich, P.; Kovaleva, N.N.; Yordanov, P.; Maljuk, A.; Kremer, R.K.; v. Löhneysen, H.; Keimer, B. Ferromagnetism and lattice distortions in the perovskite YTiO3. Phys. Rev. B 2009, 79, 054431. [Google Scholar] [CrossRef]
- Garrett, J.D.; Greedan, J.E.; MacLean, D.A. Crystal growth and magnetic anisotropy of YTiO3. Mat. Res. Bull. 1981, 16, 145–148. [Google Scholar] [CrossRef]
- MacLean, D.A.; Greedan, J.E. Crystal growth, electrical resistivity, and magnetic properties of lanthanum titanate and cerium titanate Evidence for a metal-semiconductor transition. Inorg. Chem. 1981, 20, 1025–1029. [Google Scholar] [CrossRef]
- Kikugawa, N. Recent Progress of Floating-Zone Techniques for Bulk Single-Crystal Growth. Crystals 2024, 14, 552. [Google Scholar] [CrossRef]
- Hameed, S.; Joe, J.; Thoutam, L.R.; Garcia-Barriocanal, J.; Yu, B.; Yu, G.; Chi, S.; Hong, T.; Williams, T.J.; Freeland, J.W.; et al. Growth and characterization of large (Y, La)TiO3 and (Y, Ca)TiO3 single crystals. Phys. Rev. Mater. 2021, 5, 125003. [Google Scholar] [CrossRef]
- Taguchi, Y.; Okuda, T.; Ohashi, M.; Murayama, C.; Môri, N.; Iye, Y.; Tokura, Y. Critical behavior in LaTiO3+δ/2 in the vicinity of antiferromagnetic instability. Phys. Rev. B 1999, 59, 7917. [Google Scholar] [CrossRef]
- Lichtenberg, F.; Widmer, D.; Bednorz, J.G.; Williams, T.; Relier, A. Phase diagram of LaTiOx: From 2D layered ferroelectric insulator to 3D weak ferromagnetic semiconductor. Z. Phys. B-Condens. Matter 1991, 82, 211–216. [Google Scholar] [CrossRef]
- Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. The HighScore suite. Powder Diffr. 2014, 29 (Suppl. S2), S13–S18. [Google Scholar] [CrossRef]
- Agilent. CrysAlis PRO; Agilent Technologies Ltd.: Yarnton, UK, 2014. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal. Acta Cryst. 2015, A71, 3–8. [Google Scholar]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
- Hübschle, C.B.; Sheldrick, G.M.; Dittrich, B. ShelXle: A Qt graphical user interface for SHELXL. J. Appl. Cryst. 2011, 44, 1281–1284. [Google Scholar] [CrossRef] [PubMed]
- Westrip, S.P. publCIF: Software for editing, validating and formatting crystallographic information files. J. Appl. Cryst. 2010, 43, 920–925. [Google Scholar] [CrossRef]
- Roth, H. Single Crystal Growth and Electron Spectroscopy of d1-Systems. Ph.D. Thesis, The University of Cologne, Köln, Germany, 2008. [Google Scholar]
- Mizutani, N.; Tajima, Y.; Kato, M. Phase Relations in the System Y2O3-TiO2. J. Am. Ceram. Soc. 1976, 59, 168. [Google Scholar] [CrossRef]
- Villars, P. (Ed.) O-Ti-Y Vertical Section of Ternary Phase Diagram; Pauling File in: Inorganic Solid Phases, Springer Materials (online database); Springer: Berlin/Heidelberg, Germany, 2023; Available online: https://materials.springer.com/isp/phase-diagram/docs/c_0210439 (accessed on 1 January 2021).
- Shepelev, Y.F.; Petrova, M.A. Crystal Structures of Ln2TiO5 (Ln = Gd, Dy) Polymorphs. Inorg. Mater. 2008, 44, 1354–1361. [Google Scholar] [CrossRef]
- Palmer, R.A.; Doan, T.M.; Lloyd, P.G.; Jarvis, B.L.; Ahmed, N.U. Reduction of TiO2 with Hydrogen Plasma. Plasma Chem. Plasma Process. 2002, 22, 335–350. [Google Scholar] [CrossRef]
- Zheng, Q.; Li, Y.; Ma, C.; Sun, J.; Li, H.; Yue, X. Formation mechanism of the TiN containing coating on the Al2O3-Ti2O3 composite at 1400 °C nitrogen-blowing. Ceram. Int. 2023, 49, 13119–13124. [Google Scholar] [CrossRef]
- Spengler, W.; Kaiser, R.; Christensen, A.N.; Müller-Vogt, G. Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN. Phys. Rev. B 1978, 17, 1095–1101. [Google Scholar] [CrossRef]
- Torgovkin, A.; Chaudhuri, S.; Ruhtinas, A.; Lahtinen, M.; Sajavaara, T.; Maasilta, I.J. High quality superconducting titanium nitride thin film growth using infrared pulsed laser deposition. Supercond. Sci. Technol. 2018, 31, 055017. [Google Scholar] [CrossRef]
Starting materials | Stoichiometric ratio YTiO3 | Y2O3 + Ti2O3 → 2YTiO3 |
Oxygen deficient YTiO2.925 | Y2O3 + 0.95Ti2O3 + 0.1Ti → 2YTiO2.925 | |
Oxygen deficient YTiO2.85 | Y2O3 + 0.9Ti2O3 + 0.2Ti → 2YTiO2.85 | |
Gas atmosphere | Argon | |
97% Ar + 3% H2 | ||
95% N2 + 5% H2 | ||
Growth rate | Slow 2 mm/h | The growth rate indicates the travelling speed of seed rod. The feed rod moves 5–10% faster than the seed rod to maintain the stable molten zone and uniform shape of as-grown rod. |
Middle 4–5 mm/h | ||
Fast 10 mm/h | ||
Pressure | Atmosphere pressure | Gas flow rate 80–120 mL/min |
2 bar | 97% Ar + 3% H2 | |
Rotation speed | 15 rpm | The upper and lower shafts rotate in an opposite direction but at the same speed. |
Batch | A | B | C | |
---|---|---|---|---|
a (Å) | 5.6807(3) | 5.6860(3) | 5.6995(1) | |
b (Å) | 7.6204(4) | 7.6108(3) | 7.6297(2) | |
c (Å) | 5.3391(2) | 5.3378(2) | 5.3455(1) | |
V (Å3) | 231.13(2) | 230.99(2) | 232.45(1) | |
Bond angles (°) Ti1—O1—Ti1 | 143.69(9) | 144.04(9) | 143.35(6) | |
Bond angles (°) Ti1—O2—Ti1 | 140.97(13) | 140.73(13) | 140.09(10) | |
Atoms | ||||
Y(1) | x | 0.42721(6) | 0.42719(7) | 0.42690(4) |
y | 0.25 | 0.25 | 0.25 | |
z | 0.02056(6) | 0.02060(6) | 0.02084(5) | |
Occ | 1 4c | 1 4c | 1 4c | |
Ti(1) | x | 0 | 0 | 0 |
y | 0 | 0 | 0 | |
z | 0 | 0 | 0 | |
Occ | 1 4a | 1 4a | 1 4a | |
O(1) | x | 0.04130(4) | 0.04140(4) | 0.04290(3) |
y | 0.25 | 0.25 | 0.25 | |
z | −0.11860(5) | −0.11930(5) | −0.12120(3) | |
Occ | 1 4c | 1 4c | 1 4c | |
O(2) | x | 0.19050(3) | 0.19160(3) | 0.19030(2) |
y | 0.05800(2) | 0.05750(2) | 0.05883(16) | |
z | 0.30900(3) | 0.3090(3) | 0.30970(2) | |
Occ | 1 8d | 1 8d | 1 8d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Bi, D.W.; Magrez, A. Growth and Characterization of High-Quality YTiO3 Single Crystals: Minimizing Ti4+ Containing Impurities and TiN Formation. Crystals 2024, 14, 989. https://doi.org/10.3390/cryst14110989
Liu Y, Bi DW, Magrez A. Growth and Characterization of High-Quality YTiO3 Single Crystals: Minimizing Ti4+ Containing Impurities and TiN Formation. Crystals. 2024; 14(11):989. https://doi.org/10.3390/cryst14110989
Chicago/Turabian StyleLiu, Yong, David Wenhua Bi, and Arnaud Magrez. 2024. "Growth and Characterization of High-Quality YTiO3 Single Crystals: Minimizing Ti4+ Containing Impurities and TiN Formation" Crystals 14, no. 11: 989. https://doi.org/10.3390/cryst14110989
APA StyleLiu, Y., Bi, D. W., & Magrez, A. (2024). Growth and Characterization of High-Quality YTiO3 Single Crystals: Minimizing Ti4+ Containing Impurities and TiN Formation. Crystals, 14(11), 989. https://doi.org/10.3390/cryst14110989