Investigating Exchange Efficiencies of Sodium and Magnesium to Access Lithium from β-Spodumene and Li-Stuffed β-Quartz (γ-Spodumene)
Abstract
:1. Introduction
2. Methods
2.1. Characterization
2.1.1. X-Ray Diffraction
2.1.2. Raman Spectroscopy
2.1.3. Electron Probe X-Ray Microanalysis
2.1.4. Automated Phase Analysis
2.1.5. Compositional Space
2.2. Materials Synthesis
2.2.1. Glass
2.2.2. Li-Stuffed Silica Derivatives Endmembers
2.3. Solid-State Crystallization
2.4. Ion Exchange in Molten Media
3. Results and Discussion
3.1. Solid-State Crystallization
3.1.1. LiAlSi2O6—NaAlSi2O6
3.1.2. LiAlSi2O6—Mg0.5AlSi2O6
3.2. Melt Crystallization
3.3. Ion Exchange in Molten Salts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ellestad, R.B.; Leute, K.M. Method Extracting Lithium Values from Spodumene Ores. U.S. Patent 2,516,109, 25 July 1950. [Google Scholar] [CrossRef]
- Choubey, P.K.; Kim, M.-S.; Srivastava, R.R.; Lee, J.-C.; Lee, J.-Y. Advance review on the exploitation of the prominent energy-storage element: Lithium. Part 1: From mineral and brine resources. Miner. Eng. 2016, 89, 119–137. [Google Scholar] [CrossRef]
- Li, H.; Eksteen, J.; Kuang, G. Recovery of lithium from mineral resources: State-of-the-art and perspectives—A review. Hydrometallurgy 2019, 189, 105129. [Google Scholar] [CrossRef]
- Li, C.-T.; Peacor, D.R. The crystal structure of LiAlSi2O6 II (“β-spodumene”). Z. Kristallogr. 1968, 126, 46–65. [Google Scholar] [CrossRef]
- Beall, G.H. Chapter 14: Industrial Applications of Silica. In Reviews in Mineralogy, Silica: Physical Behaviour, Geochemistry, and Materials Applications; Heaney, P.J., Prewitt, C.T., Gibbs, G.V., Eds.; Mineralogical Society of America: Boston, MA, USA; De Gruyter: Berlin, Germany, 1994; Volume 29, pp. 469–505. [Google Scholar] [CrossRef]
- Roy, R.; Roy, D.M.; Osborn, E.F. Compositional and stability relationships among the lithium aluminosilicates: Eucryptite, spodumene, and petalite. J. Am. Ceram. Soc. 1950, 33, 152–159. [Google Scholar] [CrossRef]
- Edgar, A.D. The α-β-LiAlSi2O6 (spodumene) transition from 5000 to 45000 lb/in2 PH2O. In Proceedings of the Papers and Proceedings of the International Mineralogical Association, 5th General Meeting, Cambridge, UK, 30 August–3 September 1966; Mineralogical Society of London: London, UK, 1968; pp. 222–231. [Google Scholar]
- Munoz, J.L. Stability Relations of LiAlSi2O6 at High Pressure. In Mineralogical Society of America Special Paper 2, Pyroxenes and Amphiboles: Crystal Chemistry and Phase Petrology; Papike, J.J., Ed.; Mineralogical Society of America: Menasha, WI, USA, 1969; pp. 203–209. [Google Scholar]
- Thibault, Y.; Gamage McEvoy, J. Alkali-induced phase transition to β-spodumene along the LiAlSi2O6-LiAlSi4O10 join. Crystals 2023, 13, 1182. [Google Scholar] [CrossRef]
- Peltosaari, O.; Tanskanen, P.; Heikkinen, E.-P.; Fabritius, T. α→γ→β-phase transformation of spodumene with hybrid microwave and conventional furnaces. Miner. Eng. 2015, 82, 54–60. [Google Scholar] [CrossRef]
- Salakjani, N.K.; Singh, P.; Nikoloski, N. Mineralogical transformations of spodumene concentrate from Greenbushes, Western Australia. Part 1: Conventional heating. Miner. Eng. 2016, 98, 71–79. [Google Scholar] [CrossRef]
- Salakjani, N.K.; Nikoloski, N.; Singh, P. Mineralogical transformations of spodumene concentrate from Greenbushes, Western Australia. Part 2: Microwave heating. Miner. Eng. 2017, 100, 191–199. [Google Scholar] [CrossRef]
- Moore, R.H.; Mann, J.P.; Montoya, A.; Haynes, B.S. In situ synchrotron XRD analysis of the kinetics of spodumene transitions. Phys. Chem. Chem. Phys. 2018, 20, 10753–10761. [Google Scholar] [CrossRef]
- Abdullah, A.A.; Oskierski, H.C.; Altarawneh, M.; Senanayake, G.; Lumpkin, G.; Dlugogorski, B.Z. Phase transformation mechanism of spodumene during its calcination. Miner. Eng. 2019, 140, 105883. [Google Scholar] [CrossRef]
- Dessemond, C.; Soucy, G.; Harveu, J.-F.; Ouzilleau, P. Phase transitions in the α→γ→β spodumene thermodynamic system and impact of γ-spodumene on the efficiency of lithium extraction by acid leaching. Minerals 2020, 10, 519. [Google Scholar] [CrossRef]
- Salakjani, N.K.; Singh, P.; Nikoloski, N. Production of lithium—A literature review part 1: Pretreatment of spodumene. Min. Proc. Ext. Met. Rev. 2020, 41, 335–348. [Google Scholar] [CrossRef]
- Alhadad, M.F.; Oskierski, H.S.; Ghischi, J.; Senanayake, G.; Dlugogorski, B.Z. Lithium extraction from β-spodumene: A comparison of keatite and analcime process. Hydrometallurgy 2023, 215, 105985. [Google Scholar] [CrossRef]
- Xing, P.; Wang, C.; Zeng, L.; Ma, B.; Wang, L.; Chen, Y.; Yang, C. Lithium extraction and hydroxysodalite zeolite synthesis by hydrothermal conversion of α-spodumene. ACS Sustain. Chem. Eng. 2019, 7, 9498–9505. [Google Scholar] [CrossRef]
- Necke, T.; Stein, J.; Kleebe, H.-J.; Balke-Grünewald, B. Lithium extraction and zeolite synthesis via mechanochemical treatment of the silicate minerals lepidolite, spodumene, and petalite. Minerals 2023, 13, 1030. [Google Scholar] [CrossRef]
- Ibsaine, F.; Azizi, D.; Dionnne, J.; Tran, L.H.; Coudert, L.; Pasquier, L.-C.; Blais, J.-F. Conversion of aluminosilicate residue generated from lithium extraction process to NaX zeolite. Minerals 2023, 13, 1467. [Google Scholar] [CrossRef]
- Chen, Y.; Tian, Q.; Chen, B.; Shi, X.; Liao, T. Preparation of lithium carbonate from spodumene by a sodium carbonate autoclave process. Hydrometallurgy 2011, 109, 43–46. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Beall, G.H.; Karsetter, B.R.; Rittler, H.L. Crystallization and chemical strengthening of stuffed β-quartz glass-ceramics. J. Am. Ceram. Soc. 1967, 50, 181–190. [Google Scholar] [CrossRef]
- Ray, S.; Muchow, G.M. High-quartz solid solution phases from thermally crystallized glasses of compositions (Li2O, MgO)-Al2O3-n SiO2. J. Am. Ceram. Soc. 1968, 51, 678–682. [Google Scholar] [CrossRef]
- Schulz, H.; Hoffmann, W.; Muchow, G.M. The average structure of Mg(Al2Si3O10), a stuffed derivative of the high-quartz structure. Z. Kristallogr. 1971, 134, 1–27. [Google Scholar] [CrossRef]
- Salman, S.M.; Omar, A.A. Solid solution phases from thermally crystallized Li2O-MgO-Al2O3-SiO2 glasses. Mater. Chem. Phys. 1984, 11, 145–160. [Google Scholar] [CrossRef]
- Ray, S. Solid solutions in the keatite crystal lattice. J. Amer. Ceram. Soc. 1971, 54, 213–215. [Google Scholar] [CrossRef]
- Beall, G.H.; Comte, M.; Dejneka, M.J.; Marques, P.; Pradeau, P.; Smith, C. Ion-exchange in glass-ceramics. Front. Mater. 2016, 3, 214480. [Google Scholar] [CrossRef]
- Zandonà, A.; Rüdinger, B.; Hochrein, O.; Deubener, J. Crystallization sequence within the keatite solid solution—cordierite mixed compositional triangle with TiO2 as nucleating agent. J. Non-Cryst. Solids 2019, 505, 320–332. [Google Scholar] [CrossRef]
- Deubener, J.; Zandonà, A.; Helsch, G. Nomenclature of functional crystals in glass-ceramics: A recommendation based on aluminosilicate solid solutions. J. Non-Cryst. Solids 2024, 633, 122954. [Google Scholar] [CrossRef]
- Li, C.-T. The crystal structure of LiAlSi2O6 III (high quartz solid solution). Z. Kristallogr. 1968, 127, 327–348. [Google Scholar] [CrossRef]
- Buerger, M.J. The stuffed derivatives of the silica structures. Am. Mineral. 1954, 39, 600–614. [Google Scholar]
- Smith, D.L.; Evans, B. Diffusional crack healing in quartz. J. Geophys. Res. 1984, 89, 4125–4135. [Google Scholar] [CrossRef]
- Nordmann, A.; Cheng, Y.-B.; Bastow, T.J.; Hill, A.J. Structural characterization of lithium aluminosilicate glass and glass ceramics derived from spodumene mineral. J. Phys. Condens. Matter 1995, 7, 3115–3128. [Google Scholar] [CrossRef]
- Sharma, S.K.; Simons, B. Raman study of crystalline polymorphs and glasses of spodumene composition quenched from various pressures. Am. Mineral. 1981, 66, 118–126. [Google Scholar]
- Matson, D.W.; Sharma, S.K.; Philpotts, J.A. Raman spectra of some tectosilicates and of glasses along the orthoclase-anorthite and nepheline-anorthite joins. Am. Mineral. 1986, 71, 694–704. [Google Scholar]
- Baumgartner, B.; Müller, G. Framework distortion by large ions in MAlSi2O6 aluminosilicates with keatite structure. Eur. J. Mineral. 1990, 2, 155–162. [Google Scholar] [CrossRef]
- Perry, G.S.; Fletcher, H. The magnesium chloride-potassium chloride phase diagram. J. Phase Equilib. 1993, 14, 172–178. [Google Scholar] [CrossRef]
- Bale, C.W.; Bélisle, E.; Chartrand, P.; Decterov, S.A.; Eriksson, G.; Gheribi, A.E.; Hack, K.; Jung, I.-H.; Kang, Y.-B.; Melançon, J.; et al. FactSage thermochemical software and databases, 2010–2016. CALPHAD Comput. Coupling Ph. Diagr. Thermochem. 2016, 54, 35–53. [Google Scholar] [CrossRef]
- Kumar, A.; Dhoble, S.J.; Peshwe, D.R.; Bhatt, J. Structural and photoluminescence properties of nepheline-structure NaAlSiO4:Dy3+ nanophosphors. J. Alloys Compd. 2014, 609, 100–106. [Google Scholar] [CrossRef]
Unit Cell Parameter | β-quartzss | β-spodumeness | ||||
---|---|---|---|---|---|---|
a (Å) | c (Å) | V (Å3) | a (Å) | c (Å) | V (Å3) | |
Li-stuffed silica derivative endmembers | ||||||
β-quartzss | 5.220 | 5.451 | 128.62 | |||
β-spodumeness | 7.549 | 9.203 | 524.39 | |||
Solid-state heat treatment | ||||||
LiAlSi2O6 (β-quartzss)—NaAlSi2O6 | 5.236 | 5.451 | 129.41 | |||
LiAlSi2O6 (β-spodumeness)—NaAlSi2O6 | 7.516 | 9.399 | 530.95 | |||
LiAlSi2O6 (β-quartzss)—Mg0.5AlSi2O6 | 5.207 | 5.412 | 127.07 | |||
LiAlSi2O6 (β-spodumeness)—Mg0.5AlSi2O6 | 5.197 | 5.417 | 126.72 | 7.538 | 9.176 | 521.39 |
Unit Cell Parameter | β-quartzss | β-spodumeness | ||||
---|---|---|---|---|---|---|
a (Å) | c (Å) | V (Å3) | a (Å) | c (Å) | V (Å3) | |
Synthetic coexistingβ-spodumeness/β-quartzss (ion exchange duration: 24 h) | ||||||
Pristine | 5.227 | 5.459 | 129.16 | 7.549 | 9.179 | 523.04 |
Exchange with NaNO3 (320 °C) | 5.231 | 5.464 | 129.49 | 7.494 | 9.648 | 541.90 |
Exchange with MgCl2/KCl (525 °C) | 5.168 | 5.383 | 124.49 | 7.501 | 9.118 | 513.00 |
Natural spodumene/quartz intergrowth heat-treated at 1100 °C (ion exchange duration: 2 h) | ||||||
Pristine | 5.223 | 5.462 | 129.05 | 7.546 | 9.174 | 522.38 |
Exchange with NaNO3 (320 °C) | 5.219 | 5.470 | 129.00 | 7.502 | 9.595 | 539.98 |
Exchange with MgCl2/KCl (525 °C) | 5.171 | 5.392 | 124.84 | 7.503 | 9.130 | 513.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gamage McEvoy, J.; Thibault, Y.; Duguay, D. Investigating Exchange Efficiencies of Sodium and Magnesium to Access Lithium from β-Spodumene and Li-Stuffed β-Quartz (γ-Spodumene). Crystals 2024, 14, 988. https://doi.org/10.3390/cryst14110988
Gamage McEvoy J, Thibault Y, Duguay D. Investigating Exchange Efficiencies of Sodium and Magnesium to Access Lithium from β-Spodumene and Li-Stuffed β-Quartz (γ-Spodumene). Crystals. 2024; 14(11):988. https://doi.org/10.3390/cryst14110988
Chicago/Turabian StyleGamage McEvoy, Joanne, Yves Thibault, and Dominique Duguay. 2024. "Investigating Exchange Efficiencies of Sodium and Magnesium to Access Lithium from β-Spodumene and Li-Stuffed β-Quartz (γ-Spodumene)" Crystals 14, no. 11: 988. https://doi.org/10.3390/cryst14110988
APA StyleGamage McEvoy, J., Thibault, Y., & Duguay, D. (2024). Investigating Exchange Efficiencies of Sodium and Magnesium to Access Lithium from β-Spodumene and Li-Stuffed β-Quartz (γ-Spodumene). Crystals, 14(11), 988. https://doi.org/10.3390/cryst14110988