Assessment of Classical Force-Fields for Graphene Mechanics
Abstract
:1. Introduction
2. Model and Methods
2.1. Illustration of the Structure
2.2. Description of the Used Potentials [47]
3. Results and Discussion
3.1. Pristine Graphene
3.2. Pre-Cracked Graphene
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Cao, K.; Feng, S.; Han, Y.; Gao, L.; Hue Ly, T.; Xu, Z.; Lu, Y. Elastic straining of free-standing monolayer graphene. Nat. Commun. 2020, 11, 284. [Google Scholar] [CrossRef] [PubMed]
- Gamboa-Suárez, A.; Seuret-Hernández, H.Y.; Leyssale, J.-M. Mechanical properties of pristine and nanocrystalline graphene up to ultra-high temperatures. Carbon Trends 2022, 9, 100197. [Google Scholar] [CrossRef]
- Zandiatashbar, A.; Lee, G.-H.; An, S.J.; Lee, S.; Mathew, N.; Terrones, M.; Hayashi, T.; Picu, C.R.; Hone, J.; Koratkar, N. Effect of defects on the intrinsic strength and stiffness of graphene. Nat. Commun. 2014, 5, 3186. [Google Scholar] [CrossRef]
- Gavallas, P.; Savvas, D.; Stefanou, G. Mechanical properties of graphene nanoplatelets containing random structural defects. Mech. Mater. 2023, 180, 104611. [Google Scholar] [CrossRef]
- Balog, R.; Jørgensen, B.; Nilsson, L.; Andersen, M.; Rienks, E.; Bianchi, M.; Fanetti, M.; Lægsgaard, E.; Baraldi, A.; Lizzit, S.; et al. Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 2010, 9, 315–319. [Google Scholar] [CrossRef]
- Zhu, C.; Ji, J.; Zhang, Z.; Dong, S.; Wei, N.; Zhao, J. Huge stretchability and reversibility of helical graphenes using molecular dynamics simulations and simplified theoretical models. Mech. Mater. 2021, 153, 103683. [Google Scholar] [CrossRef]
- Torkaman-Asadi, M.A.; Kouchakzadeh, M.A. Atomistic simulations of mechanical properties and fracture of graphene: A review. Comput. Mater. Sci. 2022, 210, 111457. [Google Scholar] [CrossRef]
- Marconcini, P.; Macucci, M. Transport Simulation of Graphene Devices with a Generic Potential in the Presence of an Orthogonal Magnetic Field. Nanomaterials 2022, 12, 1087. [Google Scholar] [CrossRef]
- Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496. [Google Scholar] [CrossRef]
- Wei, Y.; Yang, R. Nanomechanics of graphene. Natl. Sci. Rev. 2019, 6, 2. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jin, H.; Zhou, W.; Wang, Z.; Lin, Z.; Mirkin, C.; Espinosa, H. Ultrastrong colloidal crystal metamaterials engineered with DNA. Sci. Adv. 2023, 9, 39. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Zhan, H.; Liu, L.; Gai, T.; Zhao, D.; Wei, W. A ratiometric fluorescent biosensing platform based on CDs and AuNCs@CGO for patulin detection. Anal. Chim. Acta 2024, 1330, 343279. [Google Scholar] [CrossRef]
- Bottelli, E.; Lima, L.; Paixão, T.; Araujo, W. Laser-scribed graphene toward scalable fabrication of electrochemical paper-based devices for lidocaine detection in forensic and pharmaceutical sample. Electrochim. Acta 2024, 507, 145162. [Google Scholar] [CrossRef]
- Xie, W.; Wei, Y. Roughening for Strengthening and Toughening in Monolayer Carbon Based Composites. Nano Lett. 2021, 21, 11. [Google Scholar] [CrossRef]
- Rajesh, K.; Sumanta, S.; Raghvendra, P.; Ednan, J.; Ram, M. Electromagnetic irradiation-assisted synthesis, exfoliation and modification of graphene-based materials for energy storage and sensing applications. Mater. Sci. Eng. R. 2024, 161, 100860. [Google Scholar]
- Hao, Y.; Cui, Y.; Wang, J.; Li, A.; Li, F.; Yang, S. Interface engineering-induced enhancements in sodium-ion batteries: A nexus of ZnS nanoparticles and reduced graphene oxide for augmented storage and conductivity. J. Alloys Compd. 2024, 1009, 176837. [Google Scholar] [CrossRef]
- Chen, J.; Song, T.; Sun, M.; Qi, S.; Chen, C.; Zhao, Y.; Wu, X. Cobalt nickel selenide with MXene and graphene dual support system to enhance electrochemical activity and stability for supercapacitors. J. Alloys Compd. 2024, 1009, 176786. [Google Scholar] [CrossRef]
- Gao, Y.; Xie, Y.; Wei, A.; Wei, Y.; Chen, T.; Yao, H. Tension-compression asymmetry of the stress-strain behavior of the stacked graphene assembly: Experimental measurement and theoretical interpretation. JMPS 2021, 157, 104642. [Google Scholar] [CrossRef]
- Grima, J.; Gatt, R.; Farrugia, P. On the properties of auxetic meta-tetrachiral structures. Phys. Status Solidi B 2008, 245, 3. [Google Scholar] [CrossRef]
- Hou, X.; Deng, Z.; Zhang, K. Dynamic crushing strength analysis of auxetic honeycombs. Acta Mech. Solida Sin. 2016, 29, 12. [Google Scholar] [CrossRef]
- Tang, Y.; Yin, J. Design of cut unit geometry in hierarchical kirigami-based auxetic metamaterials for high stretchability and compressibility. Extrem. Mech. Lett. 2017, 12, 9. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Chang, Z.; Li, H.; Wang, S.; Lin, L.; Peng, H.; Wei, Y.; Sun, L.; Liu, Z. Slip-Line-Guided Growth of Graphene. Adv. Mater. 2022, 34, 2201188. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wen, J.; Tian, Y.; Ning, H.; Yang, H.; Shu, Q.; Hu, N. Flexible supercapacitors based on in-situ synthesis of composite nickel manganite@reduced graphene oxide nanosheets cathode: An integration of high mechanical flexibility and energy storage. J. Alloys Compd. 2024, 1009, 176873. [Google Scholar] [CrossRef]
- Körner, C.; Liebold-Ribeiro, Y. A systematic approach to identify cellular auxetic materials. Smart Mater. Struct. 2014, 24, 025013. [Google Scholar] [CrossRef]
- Aadithya, M.; Suni, R.; Gomosta, S.; Maliyekkal, M.; Rahul, A. Behavior of functionalized graphene in fresh and hydrated cement matrix: Role of carboxyl and amine functional group. Constr. Build. Mater. 2024, 450, 138542. [Google Scholar] [CrossRef]
- Chao, Y.; Qing, P. Mechanical Stabilities and Properties of Graphene-like 2D III-Nitrides: A Review. Crystal 2023, 13, 1. [Google Scholar]
- Lim, M.; Kim, J.; Kang, H.; Yun, T.; Cho, H.; Choa, Y. Room temperature-based hydrogen gas sensing over Laser-Induced Graphene electrode supported Pt nanoparticles for low LOD. Sens. Actuators Rep. 2024, 8, 100247. [Google Scholar] [CrossRef]
- Das, D.; Gouda, G.; Jinesh, K. Observation of novel carbon nanocorals during the synthesis of graphene and investigations on their composition, morphological and structural properties. Carbon Trends 2024, 17, 100411. [Google Scholar] [CrossRef]
- Pang, M.; Wang, Y.; Shi, T.; Zhang, X.; Fang, Y.; Zhang, Y. A Lennard-Jones potential based cohesive zone model and its application in multiscale damage simulation of graphene reinforced nanocomposites. Comput. Mater. Sci. 2025, 246, 113355. [Google Scholar] [CrossRef]
- Sripaturad, P.; Karton, A.; Stevens, K.; Thamwattana, N.; Baowan, D.; Cox, B. Catalytic effect of graphene on the inversion of corannulene using a continuum approach with the Lennard-Jones potential. Nanoscale Adv. 2023, 5, 4571–4578. [Google Scholar] [CrossRef] [PubMed]
- Inui, N.; Iwasaki, S. Interaction Energy between Graphene and a Silicon Substrate Using Pairwise Summation of the Lennard-Jones Potential. e-J. Surf. Sci. Nanotechnol. 2017, 15, 40–49. [Google Scholar] [CrossRef]
- Wang, L.; Jin, J.; Yang, P.; Zong, Y.; Peng, Q. Graphene Adhesion Mechanics on Iron Substrates: Insight from Molecular Dynamic Simulations. Crystals 2019, 9, 579. [Google Scholar] [CrossRef]
- Süle, P.; Szendrő, M. The classical molecular dynamics simulation of graphene on Ru(0001) using a fitted Tersoff interface potential. Surf. Interface Anal. 2014, 46, 42–47. [Google Scholar] [CrossRef]
- Rajasekaran, G.; Kumar, R.; Parashar, A. Tersoff potential with improved accuracy for simulating graphene in molecular dynamics environment. Mater. Res. Express 2016, 3, 035011. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Z.; Chen, H.; Xu, L. Comparative studies of thermal conductivity for bilayer graphene with different potential functions in molecular dynamic simulations. Results Phys. 2021, 22, 103894. [Google Scholar] [CrossRef]
- Davini, C.; Favata, A.; Paroni, R. A REBO-Potential-Based Model for Graphene Bending by -Convergence. Arch. Ration. Mech. Anal. 2018, 229, 1153–1195. [Google Scholar] [CrossRef]
- Connor, T.; Andzelm, J.; Robbins, M. AIREBO-M: A reactive model for hydrocarbons at extreme pressures. J. Chem. Phys. 2015, 142, 024903. [Google Scholar]
- Averitt, J.; Pourianejad, S.; Ayodele, O.; Schmidt, K.; Trofe, A.; Starobin, J.; Ignatova, T. Efficient high-throughput method utilizing neural network potentials to calculate interaction energies, validated by clean transfer experiment of CVD graphene with polymer mixtures. Carbon 2024, 229, 119336. [Google Scholar] [CrossRef]
- Singh, A.; Li, Y. Reliable machine learning potentials based on artificial neural network for graphene. Comput. Mater. Sci. 2023, 227, 112272. [Google Scholar] [CrossRef]
- Dewapriya, M.A.N.; Meguid, S.A.; Rajapakse, R.K.N.D. Atomistic modelling of crack-inclusion interaction in graphene. Eng. Fract. Mech. 2018, 195, 92–103. [Google Scholar] [CrossRef]
- Yin, Y.; Niu, Y.; Ding, M.; Liu, H.; Liang, Z. Transport and Conductance in Fibonacci Graphene Superlattices with Electric and Magnetic Potentials. Chin. Phys. Lett. 2016, 33, 5. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Li, W.; Zhang, G. Thermal conductivity of GeTe crystals based on machine learning potentials. Chin. Phys. B 2024, 33, 4. [Google Scholar] [CrossRef]
- Zhang, C.; Fu, X. Applications and potentials of machine learning in optoelectronic materials research: An overview and perspectives. Chin. Phys. B 2023, 32, 12. [Google Scholar] [CrossRef]
- Ouyang, Y.; Yu, C.; Yan, G.; Chen, J. Machine learning approach for the prediction and optimization of thermal transport properties. Front. Phys. 2023, 16, 4. [Google Scholar] [CrossRef]
- Wu, L.; Xu, Z.; Wang, Z.; Chen, Z.; Huang, Z.; Peng, C.; Zhao, H. Machine learning accelerated carbon neutrality research using big data--from predictive models to interatomic potentials. Sci. China (Technol. Sci.) 2022, 65, 10. [Google Scholar] [CrossRef]
- Lammps.org. LAMMPS Molecular Dynamics Simulator. 2021. Available online: https://www.lammps.org/ (accessed on 1 July 2021).
- Tran, H.; Winczewski, S. Central-force decomposition of the Tersoff potential. TASK Q. Sci. Bull. Acad. Comput. Cent. Gdan. 2017, 21, 261–283. [Google Scholar]
- Li, X.; Wang, A.; Lee, K. Comparison of empirical potentials for calculating structural properties of amorphous carbon films by molecular dynamics simulation. Comput. Mater. Sci. 2018, 151, 9. [Google Scholar] [CrossRef]
- Li, X.; Guo, J. Theoretical Investigation on Failure Strength and Fracture Toughness of Precracked Single-Layer Graphene Sheets. J. Nanomater. 2019, 2019, 11. [Google Scholar] [CrossRef]
- Jaddi, S.; Malik, M.W.; Wang, B.; Pugno, N.M.; Zeng, Y.; Coulombier, M.; Raskin, J.P.; Pardoen, T. Definitive engineering strength and fracture toughness of graphene through on-chip nanomechanics. Nat. Commun. 2024, 15, 5863. [Google Scholar] [CrossRef]
- Zhang, T.; Li, X.; Gao, H. Fracture of graphene: A review. Int. J. Fract. 2015, 196, 1–31. [Google Scholar] [CrossRef]
- Ma, H.; Yang, Y.; Jing, H.; Jiang, W.; Guo, W.; Ren, H. Semi-Empirical Model to Retrieve Finite Temperature Terahertz Absorption Spectra using Morse Potential. Chin. J. Chem. Phys. 2023, 36, 1. [Google Scholar] [CrossRef]
- Dong, H.; Shu, X.; Wang, R. Point defects in L10 FePt studied by molecular dynamics simulations based on an analytic bond-order potential. Sci. China (Phys. Mech. Astron.) 2011, 54, 8. [Google Scholar] [CrossRef]
- Ward, D.; Zhou, X.; Wong, B.; Doty, F.; Zimmerman, J. Analytical bond-order potential for the cadmium telluride binary system. Phys. Rev. B 2012, 85, 115206. [Google Scholar] [CrossRef]
- Los, J.; Fasolino, A. Intrinsic long-range bond-order potential for carbon: Performance in Monte Carlo simulations of graphitization. Phys. Rev. B 2003, 68, 024107. [Google Scholar] [CrossRef]
- Jang, H.; Seol, D.; Lee, B. Modified embedded-atom method interatomic potentials for Mg-Al-Ca and Mg-Al-Zn ternary systems. J. Magnes. Alloys 2021, 9, 1. [Google Scholar] [CrossRef]
- Khazieva, E.O.; Shchelkatchev, N.M.; Tipeev, A.O.; Ryltsev, R.E. Accuracy, Performance, and Transferability of Interparticle Potentials for Al–Cu Alloys: Comparison of Embedded Atom and Deep Machine Learning Models. J. Exp. Theor. Phys. 2024, 137, 864–877. [Google Scholar] [CrossRef]
- Chistyakova, N. A study of the applicability of different types of interatomic potentials to compute elastic properties of metals with molecular dynamics methods. AIP Conf. Proc. 2016, 1772, 060019. [Google Scholar]
- Vella, J.; Stillinger, F.; Anagiotopoulos, A.; Debenedetti, P. A Comparison of the Predictive Capabilities of the Embedded-Atom Method and Modified Embedded-Atom Method Potentials for Lithium. J. Phys. Chem. B 2014, 119, 9. [Google Scholar] [CrossRef]
- ‘Solid’|Definition & Facts, Encyclopedia Britannica. 2021. Available online: https://www.britannica.com/science/solid-state-of-matter (accessed on 1 March 2021).
- Kumar, P.; Mahanty, M. Chattopadhyay, An Overview of Stress-Strain Analysis for Elasticity Equations. In Elasticity of Materials-Basic Principles and Design of Structures; IntechOpen: Dhanbad, Jharkhand, India, 29 November 2018. [Google Scholar]
- Wojciechowski, K. Two-dimensional isotropic system with a negative Poisson ratio. Phys. Lett. A 1989, 137, 1–2. [Google Scholar] [CrossRef]
- Vimalanathan, A.; Vijaya, J.; Lohedan, H.; Jayavel, R. Evaluation of antiviral efficacy of graphene oxide nanosheets on dengue virus-infected Vero cells: In-vitro and in-silico approaches. Phys. Scr. 2024, 99, 115012. [Google Scholar] [CrossRef]
- Amit, K.; Mihir, K.; Jyoti, R.; Sarojrani, P. Free vibration analysis of an O-pattern graphene reinforced axial functionally graded polymer matrix nano-composite non-uniform beam. J. Elastomers Plast. 2024, 56, 897–906. [Google Scholar]
- Caddock, B.; Evans, K. Microporous materials with negative Poisson’s ratios. I. Microstructure and mechanical properties. J. Phys. D Appl. Phys. 1989, 22, 12. [Google Scholar] [CrossRef]
- Evans, K.; Alderson, A. Auxetic materials: Functional materials and structures from lateral thinking. Adv. Mater. 2000, 12, 9. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, L.; Fan, F.; Zeng, Z.; Peng, C.; Loya, P.; Liu, Z.; Gong, Y.; Zhang, J.; Zhang, X.; et al. Fracture toughness of graphene. Nat. Commun. 2014, 5, 3782. [Google Scholar] [CrossRef]
- Holec, D.; Dumitraschkewitz, P.; Vollath, D.; Fischer, F. Surface Energy of Au Nanoparticles Depending on Their Size and Shape. Nanomaterials 2020, 10, 484. [Google Scholar] [CrossRef]
- Steinhauser, M.; Hiermaier, S. A Review of Computational Methods in Materials Science: Examples from Shock-Wave and Polymer Physics. Int. J. Mol. Sci. 2009, 10, 5135–5216. [Google Scholar] [CrossRef]
- Chen, J. The Development and Comparison of Molecular Dynamics Simulation and Monte Carlo Simulation. IOP Conf. Ser. Earth Environ. Sci. 2018, 128, 012110. [Google Scholar] [CrossRef]
- Farjadian, F.; Abbaspour, S.; Sadatlu, M.; Mirkiani, S.; Ghasemi, A.; Hoseini-Ghahfarokhi, M.; Mozaffari, N.; Karimi, M.; Hamblin, M. Recent Developments in Graphene and Graphene Oxide: Properties, Synthesis, and Modifications: A Review. Chem. Sel. 2020, 5, 33. [Google Scholar] [CrossRef]
- Kha, F. Applications of Nanomaterials in Human Health; Springer: Singapore, 2020. [Google Scholar]
- Ebrahim, M.; Siavash, I. MXene-Graphene Composites: A Perspective on Biomedical Potentials. Nano-Micro Lett. 2022, 14, 8. [Google Scholar]
- Liu, C.; Wang, J. Spectroscopic Evidence for Electron Correlations in Epitaxial Bilayer Graphene with Interface-Reconstructed Superlattice Potentials. Chin. Phys. Lett. 2022, 39, 7. [Google Scholar] [CrossRef]
Potential Name | Young’s Modulus (GPa) | Failure Strength (GPa) | Fracture Strain | Toughness (GPa) |
---|---|---|---|---|
Experiment [50,51,52] | 1000 ± 100 | 130 ± 10 | 0.25 | 21.1 |
CH.airebo-m | 1025.11 | 93.93 | 0.169 | 10.5 |
CH.rebo | 1043.13 | 131.53 | 0.282 | 18.08 |
C.meam | 1022.26 | 83.81 | 0.400 | 7.42 |
CCu | 798.76 | 109.33 | 0.400 | 14.45 |
C.lcbop | 950.93 | 175.37 | 0.400 | 39.83 |
BNC | 1009.93 | 125.65 | 0.235 | 18.36 |
SiCGe | 1164.12 | 148.07 | 0.270 | 18.03 |
SiC-a | 1151.20 | 150.19 | 0.275 | 18.64 |
SiC-b | 1046.34 | 142.19 | 0.284 | 18.48 |
SiC-c | 1164.12 | 148.07 | 0.270 | 18.03 |
SiC-d | 583.48 | 106.43 | 0.400 | 12.77 |
SiC-e | 300.08 | 42.24 | 0.400 | 5.59 |
SiC-gw | 310.06 | 41.62 | 0.400 | 5.59 |
FeC | 828.16 | 131.78 | 0.400 | 22.13 |
SiC-f | 574.29 | 98.10 | 0.400 | 10.99 |
Cracked Graphene Data for Different Potentials | ||||||
---|---|---|---|---|---|---|
Potential Name | Crack’s Length a0 (nm) | Fracture Stress σc (GPa) | Young’s Modulus E (GPa) | Surface Energy | ||
CH.airebo-m | 0.615 | 70.39 | 3.09 | 978.72 | 8.859 | 4.16 |
1.107 | 57.87 | 3.41 | 1001.38 | 4.21 | ||
1.599 | 50.48 | 3.58 | 952.17 | 4.11 | ||
2.091 | 51.32 | 4.16 | 936.53 | 4.07 | ||
2.583 | 45.42 | 4.09 | 899.32 | 3.99 | ||
CH.rebo | 0.615 | 60.92 | 2.65 | 873.14 | 9.985 | 4.18 |
1.107 | 56.33 | 3.23 | 872.51 | 4.17 | ||
1.599 | 53.41 | 3.51 | 851.74 | 4.12 | ||
2.091 | 49.12 | 3.52 | 820.72 | 4.05 | ||
2.583 | 43.66 | 3.61 | 794.49 | 3.98 | ||
C.meam | 0.615 | 60.92 | 2.68 | 1002.78 | 8.674 | 4.17 |
1.107 | 56.33 | 3.32 | 983.72 | 4.13 | ||
1.599 | 53.41 | 3.79 | 956.01 | 4.07 | ||
2.091 | 49.12 | 3.98 | 933.93 | 4.03 | ||
2.583 | 43.66 | 3.93 | 905.29 | 3.96 | ||
BNC | 0.615 | 87.37 | 3.84 | 988.04 | 1.573 | 1.76 |
1.107 | 73.22 | 4.32 | 1001.08 | 1.77 | ||
1.599 | 69.16 | 4.90 | 972.47 | 1.75 | ||
2.091 | 66.71 | 5.41 | 971.18 | 1.75 | ||
2.583 | 62.33 | 5.61 | 910.52 | 1.69 | ||
SiC-b | 0.615 | 98.73 | 5.53 | 1054.56 | 2.852 | 2.45 |
1.107 | 81.75 | 5.43 | 1022.52 | 2.41 | ||
1.599 | 73.75 | 5.23 | 999.83 | 2.39 | ||
2.091 | 66.94 | 4.82 | 956.89 | 2.34 | ||
2.583 | 61.39 | 4.34 | 947.21 | 2.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; Tan, Y.; Cai, X.; Chen, X.; Shi, T.; Jin, J.; Ouyang, Y.; Peng, Q. Assessment of Classical Force-Fields for Graphene Mechanics. Crystals 2024, 14, 960. https://doi.org/10.3390/cryst14110960
Ma Z, Tan Y, Cai X, Chen X, Shi T, Jin J, Ouyang Y, Peng Q. Assessment of Classical Force-Fields for Graphene Mechanics. Crystals. 2024; 14(11):960. https://doi.org/10.3390/cryst14110960
Chicago/Turabian StyleMa, Zhiwei, Yongkang Tan, Xintian Cai, Xue Chen, Tan Shi, Jianfeng Jin, Yifang Ouyang, and Qing Peng. 2024. "Assessment of Classical Force-Fields for Graphene Mechanics" Crystals 14, no. 11: 960. https://doi.org/10.3390/cryst14110960
APA StyleMa, Z., Tan, Y., Cai, X., Chen, X., Shi, T., Jin, J., Ouyang, Y., & Peng, Q. (2024). Assessment of Classical Force-Fields for Graphene Mechanics. Crystals, 14(11), 960. https://doi.org/10.3390/cryst14110960