Exploring Multi-Parameter Effects on Iron Oxide Nanoparticle Synthesis by SAXS Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrument Settings
2.2. Synthetic Parameters
2.3. SAXS Data Analysis
2.3.1. Guinier Region Analysis
2.3.2. Starting Point
2.3.3. Slope Analysis
2.3.4. Endpoint Calculation
2.3.5. Response Surface Methodology (RSM)
2.4. WAXS Data Analysis
3. Results and Discussion
3.1. RSM Analysis of Starting Point
3.2. RSM Analysis of Slope
3.3. RSM Analysis of the Endpoint Particle Size
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. WAXS Data Plots
Appendix A.2. Statistical Analysis
coef. | std. err. | t | P > |t| | [0.025 | 0.975] | |
Intercept | −842.9686 | 3550.179 | −0.237 | 0.818 | −8874.032 | 7188.095 |
A | 426.1208 | 1757.904 | 0.242 | 0.814 | −3550.535 | 4402.776 |
B | 435.4094 | 1789.391 | 0.243 | 0.813 | −3612.473 | 4483.292 |
C | 569.6892 | 2366.665 | 0.241 | 0.815 | −4784.080 | 5923.458 |
D | 568.1735 | 2366.364 | 0.240 | 0.816 | −4784.913 | 5921.260 |
E | −570.2061 | 2366.706 | −0.241 | 0.815 | −5924.067 | 4783.654 |
F | 456.3835 | 1893.237 | 0.241 | 0.815 | −3826.415 | 4739.182 |
A–B | 857.0640 | 3550.097 | 0.241 | 0.815 | −7173.814 | 8887.942 |
A–C | −571.4257 | 2365.252 | −0.242 | 0.815 | −5921.997 | 4779.146 |
A–D | −569.4814 | 2366.945 | −0.241 | 0.815 | −5923.882 | 4784.919 |
A–E | 570.8060 | 2364.412 | 0.241 | 0.815 | −4777.865 | 5919.477 |
A–F | −454.3472 | 1890.490 | −0.240 | 0.815 | −4730.933 | 3822.239 |
B–C | −563.3839 | 2365.556 | −0.238 | 0.817 | −5914.643 | 4787.876 |
B–D | −566.8439 | 2364.165 | −0.240 | 0.816 | −5914.957 | 4781.270 |
B–E | 563.4867 | 2366.356 | 0.238 | 0.817 | −4789.583 | 5916.556 |
B–F | −452.8683 | 1894.253 | −0.239 | 0.816 | −4737.965 | 3832.229 |
C–D | −2.2129 | 2.068 | −1.070 | 0.312 | −6.891 | 2.466 |
C–E | −2.5247 | 1.962 | −1.287 | 0.230 | −6.964 | 1.914 |
C–F | 2.8983 | 1.582 | 1.832 | 0.100 | −0.681 | 6.477 |
D–E | 0.5874 | 2.317 | 0.253 | 0.806 | −4.655 | 5.829 |
D–F | 0.2099 | 2.416 | 0.087 | 0.933 | −5.256 | 5.676 |
E–F | −1.8872 | 1.001 | −1.885 | 0.092 | −4.152 | 0.377 |
I(A) ** | 429.8288 | 1792.032 | 0.240 | 0.816 | −3624.030 | 4483.688 |
I(B) ** | 423.7768 | 1759.641 | 0.241 | 0.815 | −3556.809 | 4404.362 |
I(C) ** | 1.3066 | 2.458 | 0.532 | 0.608 | −4.255 | 6.868 |
I(D) ** | −10.1404 | 3.281 | −3.090 | 0.013 | −17.563 | −2.718 |
I(E) ** | 7.9543 | 3.797 | 2.095 | 0.066 | −0.636 | 16.544 |
I(F) ** | 1.7173 | 4.239 | 0.405 | 0.695 | −7.873 | 11.307 |
coef. | std. err. | t | P > |t| | [0.025 | 0.975] | |
Intercept | 0.2659 | 0.167 | 1.592 | 0.155 | −0.129 | 0.661 |
A | 0.0854 | 0.076 | 1.129 | 0.296 | −0.093 | 0.264 |
B | −0.0914 | 0.053 | −1.716 | 0.130 | −0.217 | 0.035 |
C | −0.0307 | 0.044 | −0.699 | 0.507 | −0.135 | 0.073 |
D | −0.1022 | 0.082 | −1.244 | 0.254 | −0.297 | 0.092 |
E | −0.0004 | 0.065 | −0.007 | 0.995 | −0.155 | 0.154 |
F | 0.0381 | 0.047 | 0.819 | 0.440 | −0.072 | 0.148 |
A–B | −0.2818 | 0.098 | −2.876 | 0.024 | −0.514 | −0.050 |
A–C | 0.2387 | 0.081 | 2.957 | 0.021 | 0.048 | 0.430 |
A–D | −0.0182 | 0.165 | −0.111 | 0.915 | −0.408 | 0.371 |
A–E | −0.1685 | 0.105 | −1.598 | 0.154 | −0.418 | 0.081 |
A–F | −0.1870 | 0.081 | −2.309 | 0.054 | −0.378 | 0.004 |
B–C | −0.0957 | 0.091 | −1.048 | 0.329 | −0.312 | 0.120 |
B–D | 0.1696 | 0.111 | 1.524 | 0.171 | −0.094 | 0.433 |
B–E | 0.2347 | 0.065 | 3.613 | 0.009 | 0.081 | 0.388 |
B–F | 0.0807 | 0.070 | 1.150 | 0.288 | −0.085 | 0.247 |
C–D | 0.0281 | 0.085 | 0.331 | 0.751 | −0.173 | 0.229 |
C–E | −0.1711 | 0.061 | −2.802 | 0.026 | −0.316 | −0.027 |
C–F | −0.0116 | 0.063 | −0.184 | 0.859 | −0.160 | 0.137 |
D–E | −0.0412 | 0.128 | −0.321 | 0.757 | −0.344 | 0.262 |
D–F | 0.0805 | 0.066 | 1.226 | 0.260 | −0.075 | 0.236 |
E–F | 0.1423 | 0.088 | 1.615 | 0.150 | −0.066 | 0.351 |
I(A) ** | 0.1045 | 0.072 | 1.447 | 0.191 | −0.066 | 0.275 |
I(B) ** | 0.0998 | 0.079 | 1.256 | 0.249 | −0.088 | 0.288 |
I(C) ** | 0.1673 | 0.077 | 2.184 | 0.065 | −0.014 | 0.348 |
I(D) ** | −0.1391 | 0.075 | −1.843 | 0.108 | −0.317 | 0.039 |
I(E) ** | 0.0789 | 0.213 | 0.370 | 0.723 | −0.426 | 0.584 |
I(F) ** | −0.3032 | 0.101 | −2.998 | 0.020 | −0.542 | −0.064 |
coef. | std. err. | t | P > |t| | [0.025 | 0.975] | |
Intercept | 78.0686 | 4.665 | 16.733 | 0.000 | 67.310 | 88.827 |
A | 3.3778 | 1.938 | 1.743 | 0.120 | −1.091 | 7.847 |
B | −3.8613 | 2.130 | −1.812 | 0.107 | −8.774 | 1.052 |
C | 4.1408 | 2.034 | 2.036 | 0.076 | −0.549 | 8.831 |
D | 11.8782 | 2.081 | 5.708 | 0.000 | 7.079 | 16.677 |
E | −3.1578 | 2.036 | −1.551 | 0.159 | −7.852 | 1.537 |
F | −1.7741 | 1.984 | −0.894 | 0.397 | −6.349 | 2.801 |
A–B | 7.0448 | 2.630 | 2.678 | 0.028 | 0.979 | 13.111 |
A–C | 0.7316 | 2.487 | 0.294 | 0.776 | −5.003 | 6.466 |
A–D | 0.4087 | 2.536 | 0.161 | 0.876 | −5.438 | 6.256 |
A–E | 8.0901 | 2.397 | 3.375 | 0.010 | 2.563 | 13.617 |
A–F | 0.3619 | 2.456 | 0.147 | 0.887 | −5.303 | 6.027 |
B–C | 5.4117 | 2.519 | 2.148 | 0.064 | −0.397 | 11.221 |
B–D | −0.6871 | 2.595 | −0.265 | 0.798 | −6.671 | 5.297 |
B–E | −2.0634 | 2.588 | −0.797 | 0.448 | −8.030 | 3.903 |
B–F | −1.3129 | 2.714 | −0.484 | 0.642 | −7.572 | 4.947 |
C–D | 3.0157 | 2.466 | 1.223 | 0.256 | −2.672 | 8.703 |
C–E | −5.0761 | 2.455 | −2.068 | 0.073 | −10.738 | 0.585 |
C–F | 1.6900 | 2.471 | 0.684 | 0.513 | −4.009 | 7.389 |
D–E | 6.2209 | 2.534 | 2.455 | 0.040 | 0.378 | 12.064 |
D–F | 0.6270 | 2.617 | 0.240 | 0.817 | −5.407 | 6.661 |
E–F | −0.0233 | 2.445 | −0.010 | 0.993 | −5.663 | 5.616 |
I(A) ** | −2.9300 | 3.622 | −0.809 | 0.442 | −11.282 | 5.422 |
I(B) ** | −6.4246 | 3.768 | −1.705 | 0.127 | −15.113 | 2.264 |
I(C) ** | −13.9334 | 4.072 | −3.422 | 0.009 | −23.324 | −4.543 |
I(D) ** | 6.8123 | 3.819 | 1.784 | 0.112 | −1.993 | 15.618 |
I(E) ** | −4.6823 | 4.122 | −1.136 | 0.289 | −14.187 | 4.822 |
I(F) ** | 2.5178 | 3.981 | 0.632 | 0.545 | −6.662 | 11.698 |
References
- Favela-Camacho, S.E.; Samaniego-Benítez, E.J.; Godínez-García, A.; Avilés-Arellano, L.M.; Pérez-Robles, J.F. How to decrease the agglomeration of magnetite nanoparticles and increase their stability using surface properties. Colloids Surf. A Physicochem. Eng. Asp. 2019, 574, 29–35. [Google Scholar] [CrossRef]
- Paunovic, J.; Vucevic, D.; Radosavljevic, T.; Mandić-Rajčević, S.; Pantic, I. Iron-based nanoparticles and their potential toxicity: Focus on oxidative stress and apoptosis. Chem. Biol. Interact. 2020, 316, 108935. [Google Scholar] [CrossRef] [PubMed]
- Fraga-García, P.; Kubbutat, P.; Brammen, M.; Schwaminger, S.; Berensmeier, S. Bare Iron Oxide Nanoparticles for Magnetic Harvesting of Microalgae: From Interaction Behavior to Process Realization. Nanomaterials 2018, 8, 292. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, J.Y.; Ma, S.; Zhang, Y.J.; Zhao, X.; Zhang, X.D.; Zhang, Z.D. Synthesis of PVP-coated ultra-small Fe3O4 nanoparticles as a MRI contrast agent. J. Mater. Sci. Mater. Med. 2010, 21, 1205–1210. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.; Villanova, J.; Ines, D.M.; Chen, J.; Lee, S.S.; Xiao, Z.; Guo, X.; Dunn, J.A.; Stueber, D.D.; Decuzzi, P.; et al. Sensitive T2 MRI Contrast Agents from the Rational Design of Iron Oxide Nanoparticle Surface Coatings. J. Phys. Chem. C 2023, 127, 1057–1070. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhou, Z.; Bao, J.; Wang, Z.; Hu, J.; Chi, X.; Ni, K.; Wang, R.; Chen, X.; Chen, Z.; et al. Octapod iron oxide nanoparticles as high-performance T2 contrast agents for magnetic resonance imaging. Nat. Commun. 2013, 4, 2266. [Google Scholar] [CrossRef]
- Ghosh, D.; Lee, Y.; Thomas, S.; Kohli, A.G.; Yun, D.S.; Belcher, A.M.; Kelly, K.A. M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer. Nat. Nanotechnol. 2012, 7, 677–682. [Google Scholar] [CrossRef]
- Crezee, J.; Franken, N.A.P.; Oei, A.L. Hyperthermia-Based Anti-Cancer Treatments. Cancers 2021, 13, 1240. [Google Scholar] [CrossRef]
- Hervault, A.; Thanh, N.T.K. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale 2014, 6, 11553–11573. [Google Scholar] [CrossRef]
- Blanco-Andujar, C.; Walter, A.; Cotin, G.; Bordeianu, C.; Mertz, D.; Felder-Flesch, D.; Begin-Colin, S. Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia. Nanomedicine 2016, 11, 1889–1910. [Google Scholar] [CrossRef]
- Avval, Z.M.; Malekpour, L.; Raeisi, F.; Babapoor, A.; Mousavi, S.M.; Hashemi, S.A.; Salari, M. Introduction of magnetic and supermagnetic nanoparticles in new approach of targeting drug delivery and cancer therapy application. Drug Metab. Rev. 2020, 52, 157–184. [Google Scholar] [CrossRef] [PubMed]
- Massart, R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 1981, 17, 1247–1248. [Google Scholar] [CrossRef]
- Schwaminger, S.P.; Syhr, C.; Berensmeier, S. Controlled Synthesis of Magnetic Iron Oxide Nanoparticles: Magnetite or Maghemite? Crystals 2020, 10, 214. [Google Scholar] [CrossRef]
- Adrianzen Herrera, D.; Ashai, N.; Perez-Soler, R.; Cheng, H. Nanoparticle albumin bound-paclitaxel for treatment of advanced non-small cell lung cancer: An evaluation of the clinical evidence. Expert. Opin. Pharmacother. 2019, 20, 95–102. [Google Scholar] [CrossRef]
- Ankamwar, B.; Lai, T.C.; Huang, J.H.; Liu, R.S.; Hsiao, M.; Chen, C.H.; Hwu, Y.K. Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology 2010, 21, 075102. [Google Scholar] [CrossRef] [PubMed]
- Baskar, G.; Ravi, M.; Panda, J.J.; Khatri, A.; Dev, B.; Santosham, R.; Sathiya, S.; Babu, C.S.; Chauhan, V.S.; Rayala, S.K.; et al. Efficacy of Dipeptide-Coated Magnetic Nanoparticles in Lung Cancer Models Under Pulsed Electromagnetic Field. Cancer Investig. 2017, 35, 431–442. [Google Scholar] [CrossRef]
- Saadat, M.; Manshadi, M.K.D.; Mohammadi, M.; Zare, M.J.; Zarei, M.; Kamali, R.; Sanati-Nezhad, A. Magnetic particle targeting for diagnosis and therapy of lung cancers. J. Control. Release 2020, 328, 776–791. [Google Scholar] [CrossRef]
- Theodosiou, M.; Sakellis, E.; Boukos, N.; Kusigerski, V.; Kalska-Szostko, B.; Efthimiadou, E. Iron oxide nanoflowers encapsulated in thermosensitive fluorescent liposomes for hyperthermia treatment of lung adenocarcinoma. Sci. Rep. 2022, 12, 8697. [Google Scholar] [CrossRef]
- Marcuello, C.; Chambel, L.; Rodrigues, M.S.; Ferreira, L.P.; Cruz, M.M. Magnetotactic Bacteria: Magnetism Beyond Magnetosomes. IEEE Trans. NanoBioscience 2018, 17, 555–559. [Google Scholar] [CrossRef]
- Patsula, V.; Kosinová, L.; Lovrić, M.; Ferhatovic Hamzić, L.; Rabyk, M.; Konefal, R.; Paruzel, A.; Šlouf, M.; Herynek, V.; Gajović, S.; et al. Superparamagnetic Fe3O4 Nanoparticles: Synthesis by Thermal Decomposition of Iron(III) Glucuronate and Application in Magnetic Resonance Imaging. ACS Appl. Mater. Interfaces 2016, 8, 7238–7247. [Google Scholar] [CrossRef]
- Nam, N.H.; Luong, N.H. Chapter 7—Nanoparticles: Synthesis and applications. In Materials for Biomedical Engineering; Grumezescu, V., Grumezescu, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 211–240. [Google Scholar]
- Dudchenko, N.; Pawar, S.; Perelshtein, I.; Fixler, D. Magnetite Nanoparticles: Synthesis and Applications in Optics and Nanophotonics. Materials 2022, 15, 2601. [Google Scholar] [CrossRef] [PubMed]
- Unni, M.; Uhl, A.M.; Savliwala, S.; Savitzky, B.H.; Dhavalikar, R.; Garraud, N.; Arnold, D.P.; Kourkoutis, L.F.; Andrew, J.S.; Rinaldi, C. Thermal Decomposition Synthesis of Iron Oxide Nanoparticles with Diminished Magnetic Dead Layer by Controlled Addition of Oxygen. ACS Nano 2017, 11, 2284–2303. [Google Scholar] [CrossRef] [PubMed]
- Darr, J.A.; Zhang, J.; Makwana, N.M.; Weng, X. Continuous Hydrothermal Synthesis of Inorganic Nanoparticles: Applications and Future Directions. Chem. Rev. 2017, 117, 11125–11238. [Google Scholar] [CrossRef] [PubMed]
- Jafari Eskandari, M.; Hasanzadeh, I. Size-controlled synthesis of Fe3O4 magnetic nanoparticles via an alternating magnetic field and ultrasonic-assisted chemical co-precipitation. Mater. Sci. Eng. B 2021, 266, 115050. [Google Scholar] [CrossRef]
- Besenhard, M.O.; LaGrow, A.P.; Hodzic, A.; Kriechbaum, M.; Panariello, L.; Bais, G.; Loizou, K.; Damilos, S.; Margarida Cruz, M.; Thanh, N.T.K.; et al. Co-precipitation synthesis of stable iron oxide nanoparticles with NaOH: New insights and continuous production via flow chemistry. Chem. Eng. J. 2020, 399, 125740. [Google Scholar] [CrossRef]
- Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale 2018, 10, 12871–12934. [Google Scholar] [CrossRef]
- Gommes, C.J. Ostwald ripening of confined nanoparticles: Chemomechanical coupling in nanopores. Nanoscale 2019, 11, 7386–7393. [Google Scholar] [CrossRef]
- Eigenfeld, M.; Wittmann, L.; Kerpes, R.; Schwaminger, S.P.; Becker, T. Studying the impact of cell age on the yeast growth behaviour of Saccharomyces pastorianus var. carlsbergensis by magnetic separation. Biotechnol. J. 2023, 18, 2200610. [Google Scholar] [CrossRef] [PubMed]
- Turrina, C.; Berensmeier, S.; Schwaminger, S.P. Bare Iron Oxide Nanoparticles as Drug Delivery Carrier for the Short Cationic Peptide Lasioglossin. Pharmaceuticals 2021, 14, 405. [Google Scholar] [CrossRef]
- Mao, Y.; Li, Y.; Guo, Z.; Chen, B.; Qin, Z.; Zhang, Z.; Sun, J.; Gu, N. The coprecipitation formation study of iron oxide nanoparticles with the assist of a gas/liquid mixed phase fluidic reactor. Colloids Surf. A Physicochem. Eng. Asp. 2022, 647, 129107. [Google Scholar] [CrossRef]
- Li, T.; Senesi, A.J.; Lee, B. Small Angle X-ray Scattering for Nanoparticle Research. Chem. Rev. 2016, 116, 11128–11180. [Google Scholar] [CrossRef] [PubMed]
- Haas, S.; Sun, X.; Conceicao, A.L.C.; Horbach, J.; Pfeffer, S. The new small-angle X-ray scattering beamline for materials research at PETRA III: SAXSMAT beamline P62. J. Synchrotron Radiat. 2023, 6, 1156–1167. [Google Scholar] [CrossRef] [PubMed]
- Cleveland, W.S.; Devlin, S.J. Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting. J. Am. Stat. Assoc. 1988, 83, 596–610. [Google Scholar] [CrossRef]
- Schmid, M.; Rath, D.; Diebold, U. Why and How Savitzky–Golay Filters Should Be Replaced. ACS Meas. Sci. Au 2022, 2, 185–196. [Google Scholar] [CrossRef]
- Ravikumar, C. Unveiling the formation mechanism of polydisperse iron oxide nanoparticles in coprecipitation route. J. Cryst. Growth 2023, 624, 127419. [Google Scholar] [CrossRef]
- Pearce, A.K.; Wilks, T.R.; Arno, M.C.; O’Reilly, R.K. Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions. Nat. Rev. Chem. 2021, 5, 21–45. [Google Scholar] [CrossRef]
- Roth, H.C.; Schwaminger, S.P.; Peng, F.; Berensmeier, S. Immobilization of Cellulase on Magnetic Nanocarriers. ChemistryOpen 2016, 5, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Winsett, J.; Moilanen, A.; Paudel, K.; Kamali, S.; Ding, K.; Cribb, W.; Seifu, D.; Neupane, S. Quantitative determination of magnetite and maghemite in iron oxide nanoparticles using Mössbauer spectroscopy. SN Appl. Sci. 2019, 1, 1636. [Google Scholar] [CrossRef]
- Suharyana; Febriani, R.R.; Prasetya, N.P.; Utari; Wibowo, N.A.; Suharno; Supriyanto, A.; Ramelan, A.H.; Purnama, B. Sodium-hydroxide molarities influence the structural and magnetic properties of strontium-substituted cobalt ferrite nanoparticles produced via co-precipitation. Kuwait J. Sci. 2023, 50, 575–579. [Google Scholar] [CrossRef]
- Siregar, N.; Indrayana, I.P.T.; Suharyadi, E.; Kato, T.; Iwata, S. Effect of Synthesis Temperature and NaOH Concentration on Microstructural and Magnetic Properties of Mn0.5Zn0.5Fe2O4 Nanoparticles. IOP Conf. Ser. Mater. Sci. Eng. 2017, 202, 012048. [Google Scholar] [CrossRef]
- Karaagac, O.; Köçkar, H. Effect of Synthesis Parameters on the Properties of Superparamagnetic Iron Oxide Nanoparticles. J. Supercond. Nov. Magn. 2012, 25, 2777–2781. [Google Scholar] [CrossRef]
- Alibeigi, S.; Vaezi, M.R. Phase Transformation of Iron Oxide Nanoparticles by Varying the Molar Ratio of Fe2+:Fe3+. Chem. Eng. Technol. 2008, 31, 1591–1596. [Google Scholar] [CrossRef]
- Lu, A.-H.; Salabas, E.L.; Schüth, F. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew. Chem. Int. Ed. 2007, 46, 1222–1244. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Yang, H.; Yang, N.; Fan, Y.; Zhu, H.; Zou, G. The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles. Mater. Lett. 2006, 60, 3548–3552. [Google Scholar] [CrossRef]
- Wicaksono, S.T.; Wahfiudin, A.; Pramata, A.D.; Sagadevan, S. Effect of Fe (III)/Fe (II) cation molar ratio variation on magnetite Fe3O4 nanoparticles synthesized from natural iron sand by co-precipitation method. MRS Adv. 2024. [Google Scholar] [CrossRef]
- Mona, L.P.; Songca, S.P.; Ajibade, P.A. Effects of Temperature and Precursor Concentration on the Morphological and Optical Properties of Iron Oxide Nanoparticles. Chem. Afr. 2024, 7, 4581–4591. [Google Scholar] [CrossRef]
Parameter | −1 | 0 | 1 |
---|---|---|---|
A: Iron(II)chloride in g | 0.35 | 0.7 | |
B: Iron(III)chloride in g | 0.519 | 1.037 | |
C: Sodium hydroxide in g | 0.72 | 1.44 | |
D: Temperature T in °C | 30 | 55 | 80 |
E: Stirring speed in rpm | 0 | 500 | 1000 |
F: Dosing rate in s | 10 | 30 | 600 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eigenfeld, M.; Reindl, M.; Sun, X.; Schwaminger, S.P. Exploring Multi-Parameter Effects on Iron Oxide Nanoparticle Synthesis by SAXS Analysis. Crystals 2024, 14, 961. https://doi.org/10.3390/cryst14110961
Eigenfeld M, Reindl M, Sun X, Schwaminger SP. Exploring Multi-Parameter Effects on Iron Oxide Nanoparticle Synthesis by SAXS Analysis. Crystals. 2024; 14(11):961. https://doi.org/10.3390/cryst14110961
Chicago/Turabian StyleEigenfeld, Marco, Marco Reindl, Xiao Sun, and Sebastian P. Schwaminger. 2024. "Exploring Multi-Parameter Effects on Iron Oxide Nanoparticle Synthesis by SAXS Analysis" Crystals 14, no. 11: 961. https://doi.org/10.3390/cryst14110961
APA StyleEigenfeld, M., Reindl, M., Sun, X., & Schwaminger, S. P. (2024). Exploring Multi-Parameter Effects on Iron Oxide Nanoparticle Synthesis by SAXS Analysis. Crystals, 14(11), 961. https://doi.org/10.3390/cryst14110961