Effect of Molybdenum Concentration and Deposition Temperature on the Structure and Tribological Properties of the Diamond-like Carbon Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Elemental Composition Analysis
3.2. Surface Morphology
3.3. Raman Spectroscopy Data
3.4. Determination of Friction Coefficient
3.5. Mechanical Properties Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ohtake, N.; Hiratsuka, M.; Kanda, K.; Akasaka, H.; Tsujioka, M.; Hirakuri, K.; Hirata, A.; Ohana, T.; Inaba, H.; Kano, M.; et al. Properties and Classification of Diamond-Like Carbon Films. Materials 2021, 14, 315. [Google Scholar] [CrossRef] [PubMed]
- Leonard, R.L.; Hasan, S.A.; Terekhov, A.Y.; Thompson, C.; Erck, R.A.; Dickerson, J.H.; Johnson, J.A. Protective Coatings for Enhanced Performance in Biomedical Applications. Surf. Eng. 2012, 28, 473–479. [Google Scholar] [CrossRef]
- Zhang, M.; Xie, T.; Qian, X.; Zhu, Y.; Liu, X. Mechanical Properties and Biocompatibility of Ti-Doped Diamond-like Carbon Films. ACS Omega 2020, 5, 22772–22777. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yang, T.; Cao, H.; Deng, Q.; Pan, C.; Wen, F. Diamond-like Carbon Films for Tribological Modification of Rubber. Nanotechnol. Rev. 2022, 11, 2839–2856. [Google Scholar] [CrossRef]
- Gayathri, S.; Kumar, N.; Krishnan, R.; Ravindran, T.R.; Amirthapandian, S.; Dash, S.; Tyagi, A.K.; Sridharan, M. Influence of Transition Metal Doping on the Tribological Properties of Pulsed Laser Deposited DLC Films. Ceram. Int. 2015, 41, 1797–1805. [Google Scholar] [CrossRef]
- Swiatek, L.; Olejnik, A.; Grabarczyk, J.; Jedrzejczak, A.; Sobczyk-Guzenda, A.; Kaminska, M.; Jakubowski, W.; Szymanski, W.; Bociaga, D. Multi-Doped Diamond like-Carbon Coatings (DLC-Si/Ag) for Biomedical Applications Fabricated Using the Modified Chemical Vapour Deposition Method. Diam. Relat. Mater. 2016, 67, 54–62. [Google Scholar] [CrossRef]
- Zhairabany, H.; Dovydaitis, V.; Khaksar, H.; Vanags, E.; Gnecco, E.; Marcinauskas, L. Influence of Molybdenum Concentration on the Microstructure and Nanotribological Properties of Diamond-like Carbon Films. J. Mater. Sci. 2023, 58, 13437–13448. [Google Scholar] [CrossRef]
- Su, Y.; Gong, X.; Huang, W.; Zhang, T.; Hu, R.; Zhang, P.; Ruan, H.; Ma, Y. Enhancing the Tribological Property of Mo-Doped DLC Films in Methanol Using Appropriate Bias Voltage. Diam. Relat. Mater. 2023, 135, 109795. [Google Scholar] [CrossRef]
- Constantinou, M.; Pervolaraki, M.; Koutsokeras, L.; Prouskas, C.; Patsalas, P.; Kelires, P.; Giapintzakis, J.; Constantinides, G. Enhancing the Nanoscratch Resistance of Pulsed Laser Deposited DLC Films through Molybdenum-Doping. Surf. Coat. Technol. 2017, 330, 185–195. [Google Scholar] [CrossRef]
- Sun, H.; Yang, L.; Wu, H.; Zhao, L. Effects of Element Doping on the Structure and Properties of Diamond-like Carbon Films: A Review. Lubricants 2023, 11, 186. [Google Scholar] [CrossRef]
- Zhu, S.; Qiao, Z. Tribology International High Temperature Solid-Lubricating Materials: A Review. Tribiology Int. 2019, 133, 206–223. [Google Scholar] [CrossRef]
- Bahce, E.; Cakir, N. Tribological Investigation of Multilayer CrN/CrCN/TaN Films Deposited by Close Field Unbalanced Magnettron Sputtering. Rev. Adv. Mater. Sci. 2019, 58, 271–279. [Google Scholar] [CrossRef]
- Zeng, Q.; Ning, Z. High-Temperature Tribological Properties of Diamond-like Carbon Films: A Review. Rev. Adv. Mater. Sci. 2021, 60, 276–292. [Google Scholar] [CrossRef]
- Ghadai, R.K.; Shanmugasundar, G.; Vanitha, M.; Čep, R.; Das, S.; Swain, B.P. Investigation of Mechanical Properties of Silver-Doped Diamond-like Carbon Coating by Varying Deposition Temperature. Front. Mech. Eng. 2024, 10, 1354903. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Su, F.; Ma, G.; Li, Q.; Sun, J.; Lin, S. Friction and Wear Behavior of Molybdenum-Disulfide Doped Hydrogen-Free Diamond-like Carbon Films Sliding against Al2O3 Balls at Elevated Temperature. Wear 2024, 544–545, 205296. [Google Scholar] [CrossRef]
- Huang, B.; Liu, L.; Han, S.; Du, H.; Zhou, Q.; Zhang, E. Effect of Deposition Temperature on the Microstructure and Tribological Properties of Si-DLC Coatings Prepared by PECVD. Diam. Relat. Mater. 2022, 129, 109345. [Google Scholar] [CrossRef]
- Dovydaitis, V.; Marcinauskas, L.; Ayala, P.; Gnecco, E.; Chimborazo, J.; Zhairabany, H.; Zabels, R. The Influence of Cr and Ni Doping on the Microstructure of Oxygen Containing Diamond-like Carbon Films. Vacuum 2021, 191, 110351. [Google Scholar] [CrossRef]
- Nečas, D.; Klapetek, P. Gwyddion: An Open-Source Software for SPM Data Analysis. Open Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
- Gwyddion, Statistical Analysis Chapter 4. Data Processing and Analysis. Available online: http://gwyddion.net/documentation/user-guide-en/statistical-analysis.html#stat-quantities (accessed on 1 October 2024).
- Available online: https://www.nanosurf.com/en/products/driveafm (accessed on 1 October 2024).
- Available online: https://www.nanoandmore.com/AFM-Probe-PPP-LFMR (accessed on 1 October 2024).
- Bhushan, B. Nanotribology, Nanomechanics and Materials Characterization. In Springer Handbook of Nanotechnology; Springer: Berlin/Heidelberg, Germany, 2007; pp. 988–989. [Google Scholar] [CrossRef]
- Qiang, L.; Gao, K.; Zhang, L.; Wang, J.; Zhang, B.; Zhang, J. Further Improving the Mechanical and Tribological Properties of Low Content Ti-Doped DLC Film by W Incorporating. Appl. Surf. Sci. 2015, 353, 522–529. [Google Scholar] [CrossRef]
- Zhang, H.S.; Endrino, J.L.; Anders, A. Comparative Surface and Nano-Tribological Characteristics of Nanocomposite Diamond-like Carbon Thin Films Doped by Silver. Appl. Surf. Sci. 2008, 255, 2551–2556. [Google Scholar] [CrossRef]
- Yadav, V.S.; Sahu, D.K.; Singh, M.R.; Kumar, K. Study of Raman Spectra of Nano-Crystalline Diamond Like Carbon (DLC) Films Composition (Sp 2:Sp 3) with Substrate Temperature. In Proceedings of the World Congress on Engineering and Computer Science, San Francisco, CA, USA, 20–22 October 2009. [Google Scholar]
- Tang, X.S.; Wang, H.J.; Feng, L.; Shao, L.X.; Zou, C.W. Mo Doped DLC Nanocomposite Coatings with Improved Mechanical and Blood Compatibility Properties. Appl. Surf. Sci. 2014, 311, 758–762. [Google Scholar] [CrossRef]
- Marcinauskas, L.; Šilinskas, M.; Grigonis, A. Influence of Standoff Distance on the Structure and Properties of Carbon Coatings Deposited by Atmospheric Plasma Jet. Appl. Surf. Sci. 2011, 257, 2694–2699. [Google Scholar] [CrossRef]
- Li, H.; Guo, P.; Zhang, D.; Chen, R.; Zuo, X.; Ke, P.; Saito, H.; Wang, A. Influence of Deposition Temperature on the Structure, Optical and Electrical Properties of a-C Films by DCMS. Appl. Surf. Sci. 2020, 503, 144310. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, Z.; Fan, D.; Bai, L. Friction Behaviors of DLC Films in an Oxygen Environment: An Atomistic Understanding from ReaxFF Simulations. Tribol. Int. 2022, 168, 107448. [Google Scholar] [CrossRef]
- Tomala, A.; Pauschitz, A.; Roy, M. Nanotribology of Pulsed Direct Current Magnetron Sputtered Diamond like Carbon Films. Surf. Sci. 2013, 616, 60–70. [Google Scholar] [CrossRef]
- Zhang, S.; Bui, X.L.; Jiang, J.; Li, X. Microstructure and Tribological Properties of Magnetron Sputtered Nc-TiC/a-C Nanocomposite. Surf. Coat. Technol. 2005, 198, 206–211. [Google Scholar] [CrossRef]
- Pei, Y.T.; Chen, C.Q.; Shaha, K.P.; de Hosson, J.T.M.; Bradley, J.W.; Voronin, S.A.; Čada, M. Microstructural Control of TiC/a-C Nanocomposite Coatings with Pulsed Magnetron Sputtering. Acta Mater. 2008, 56, 696–709. [Google Scholar] [CrossRef]
- Zhao, D.; Mei, H.; Ding, J.C.; Cheng, Y.; Zhang, L.; Zhang, T.F.; Kwang, H.K.; Zheng, J. Microstructure and Properties of Mo Doped DLC Nanocomposite Films Deposited by a Hybrid Sputtering System. Vacuum 2023, 208, 111732. [Google Scholar] [CrossRef]
- Su, Y.; Huang, W.; Wang, J.; Gong, X.; Zhang, T.; Hu, R.; Yu, W.; Ruan, H.; Ma, Y. Binary Elements (Si, Mo) Co-Doping Strategy Enhanced the Tribological Performance of Diamond-like Carbon Films. Surf. Coat. Technol. 2023, 471, 129905. [Google Scholar] [CrossRef]
- Kant Tripathi, R.; Singh Panwar, O.; Chockalingam, S. Nanoindentation Study on Nitrogenated Tetrahedral Amorphous Carbon Thin Films with Ultra Low Load. Indian J. Pure Appl. Phys. (IJPAP) 2016, 54, 543–550. [Google Scholar]
- Charitidis, C.A. Nanomechanical and Nanotribological Properties of Carbon-Based Thin Films: A Review. Int. J. Refract. Met. Hard Mater. 2010, 28, 51–70. [Google Scholar] [CrossRef]
Samples | Target-Substrate Distance [cm] | Slit Opening [mm] | Temperature [°C] | Carbon [at.%] | Oxygen [at.%] | Molybdenum [at.%] |
---|---|---|---|---|---|---|
DLC1 | 4 | --- | 235 | 92.5 ± 1.0 | 7.5 ± 0.3 | --- |
DLC2 | 6 | --- | 210 | 93.4 ± 2.3 | 6.6 ± 1.2 | --- |
DLC3 | 8 | --- | 185 | 91.2 ± 2.1 | 8.8 ± 1.3 | --- |
Mo-DLC1 | 4 | 28 | 235 | 79.9 ± 1.3 | 8.2 ± 0.6 | 11.9 ± 0.3 |
Mo-DLC2 | 6 | 28 | 220 | 80.2 ± 0.5 | 11.3 ± 1.0 | 8.5 ± 0.2 |
Mo-DLC3 | 8 | 28 | 185 | 79.6 ± 1.3 | 14.1 ± 0.7 | 6.3 ± 0.17 |
Samples | Hardness (H) [GPa] | Young’s Modulus (E) [GPa] | H/E | H3/E2 [GPa] | H2/E [GPa] |
---|---|---|---|---|---|
DLC1 | 8.03 ± 0.65 | 60.56 ± 3.13 | 0.133 ± 0.004 | 0.141 ± 0.020 | 1.064 ± 0.119 |
DLC2 | 5.16 ± 0.25 | 41.68 ± 1.73 | 0.124 ± 0.003 | 0.079 ± 0.007 | 0.639 ± 0.041 |
DLC3 | 3.86 ± 0.08 | 30.60 ± 0.69 | 0.126 ± 0.004 | 0.062 ± 0.005 | 0.488 ± 0.025 |
Mo-DLC1 | 10.99 ± 0.46 | 120.99 ± 7.52 | 0.091 ± 0.007 | 0.091 ± 0.017 | 0.998 ± 0.110 |
Mo-DLC2 | 6.72 ± 0.27 | 93.34 ± 7.53 | 0.072 ± 0.003 | 0.035 ± 0.002 | 0.483 ± 0.009 |
Mo-DLC3 | 6.76 ± 0.12 | 67.93 ± 2.07 | 0.099 ± 0.003 | 0.067 ± 0.005 | 0.672 ± 0.031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhairabany, H.; Khaksar, H.; Vanags, E.; Marcinauskas, L. Effect of Molybdenum Concentration and Deposition Temperature on the Structure and Tribological Properties of the Diamond-like Carbon Films. Crystals 2024, 14, 962. https://doi.org/10.3390/cryst14110962
Zhairabany H, Khaksar H, Vanags E, Marcinauskas L. Effect of Molybdenum Concentration and Deposition Temperature on the Structure and Tribological Properties of the Diamond-like Carbon Films. Crystals. 2024; 14(11):962. https://doi.org/10.3390/cryst14110962
Chicago/Turabian StyleZhairabany, Hassan, Hesam Khaksar, Edgars Vanags, and Liutauras Marcinauskas. 2024. "Effect of Molybdenum Concentration and Deposition Temperature on the Structure and Tribological Properties of the Diamond-like Carbon Films" Crystals 14, no. 11: 962. https://doi.org/10.3390/cryst14110962
APA StyleZhairabany, H., Khaksar, H., Vanags, E., & Marcinauskas, L. (2024). Effect of Molybdenum Concentration and Deposition Temperature on the Structure and Tribological Properties of the Diamond-like Carbon Films. Crystals, 14(11), 962. https://doi.org/10.3390/cryst14110962