Nanoporous Copper Films: How to Grow Porous Films by Magnetron Sputter Deposition
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion on the Growth Mechanism for Porous Metals
4.1. Insight from Known Zn and Mg Systems
4.2. Proposed Mechanism for Cu
4.3. A General Blueprint for Porous Growth of Metal Films
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hung, C.M.; Van Duy, L.; Thanh Le, D.T.; Nguyen, H.; Van Duy, N.; Hoa, N.D. ZnO Coral-like Nanoplates Decorated with Pd Nanoparticles for Enhanced VOC Gas Sensing. J. Sci. Adv. Mater. Devices 2021, 6, 453–461. [Google Scholar] [CrossRef]
- Ramírez-González, F.; García-Salgado, G.; Rosendo, E.; Díaz, T.; Nieto-Caballero, F.; Coyopol, A.; Romano, R.; Luna, A.; Monfil, K.; Gastellou, E. Porous Silicon Gas Sensors: The Role of the Layer Thickness and the Silicon Conductivity. Sensors 2020, 20, 4942. [Google Scholar] [CrossRef] [PubMed]
- Davoodi, E.; Montazerian, H.; Haghniaz, R.; Rashidi, A.; Ahadian, S.; Sheikhi, A.; Chen, J.; Khademhosseini, A.; Milani, A.S.; Hoorfar, M.; et al. 3D-Printed Ultra-Robust Surface-Doped Porous Silicone Sensors for Wearable Biomonitoring. ACS Nano 2020, 14, 1520–1532. [Google Scholar] [CrossRef]
- Campbell, M.G.; Dincă, M. Metal–Organic Frameworks as Active Materials in Electronic Sensor Devices. Sensors 2017, 17, 1108. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Chen, J.; Gomard, G.; Hölscher, H.; Lemmer, U. Recent Progress in Light-Scattering Porous Polymers and Their Applications. Adv. Opt. Mater. 2023, 11, 2203134. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.; Shao, Y.; Wu, Y.; Sun, C.; Huo, Q.; Zhang, B.; Hu, H.; Hao, X. One-Step Fabrication of Porous GaN Crystal Membrane and Its Application in Energy Storage. Sci. Rep. 2017, 7, srep44063. [Google Scholar] [CrossRef]
- Feng, D.; Lei, T.; Lukatskaya, M.R.; Park, J.; Huang, Z.; Lee, M.; Shaw, L.; Chen, S.; Yakovenko, A.A.; Kulkarni, A.; et al. Robust and Conductive Two-Dimensional Metal-Organic Frameworks with Exceptionally High Volumetric and Areal Capacitance. Nat. Energy 2018, 3, 30–36. [Google Scholar] [CrossRef]
- Ahmad, S.; Siddiqi, W.A.; Ahmad, S. Sustainable Nanocomposite Porous Absorbent and Membrane Sieves: Definition, Classification, History, Properties, Synthesis, Applications, and Future Prospects. J. Environ. Chem. Eng. 2023, 11, 109367. [Google Scholar] [CrossRef]
- Wang, C.; Wang, W. Advances in Porous Organic Catalysis. Acta Chim. Sin. 2015, 73, 498–529. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Zhang, R.; Jiao, L.; Jiang, H.L. Metal–Organic Framework-Derived Porous Materials for Catalysis. Coord. Chem. Rev. 2018, 362, 1–23. [Google Scholar] [CrossRef]
- Du, H.; Lu, D.; Qi, J.; Shen, Y.; Yin, L.; Wang, Y.; Zheng, Z.; Xiong, T. Heat Dissipation Performance of Porous Copper with Elongated Cylindrical Pores. J. Mater. Sci. Technol. 2014, 30, 934–938. [Google Scholar] [CrossRef]
- Chen, M.; Pang, D.; Yan, H. Highly Solar Reflectance and Infrared Transparent Porous Coating for Non-Contact Heat Dissipations. iScience 2022, 25, 104726. [Google Scholar] [CrossRef]
- Lo, T.Y.; Cui, H.Z. Effect of Porous Lightweight Aggregate on Strength of Concrete. Mater. Lett. 2004, 58, 916–919. [Google Scholar] [CrossRef]
- Sun, Y.; Chu, Y.; Wu, W.; Xiao, H. Nanocellulose-Based Lightweight Porous Materials: A Review. Carbohydr. Polym. 2021, 255, 117489. [Google Scholar] [CrossRef]
- Xu, H.; Wu, P. New Progress in Zeolite Synthesis and Catalysis. Natl. Sci. Rev. 2022, 9, nwac045. [Google Scholar] [CrossRef]
- Xie, L.S.; Skorupskii, G.; Dincǎ, M. Electrically Conductive Metal-Organic Frameworks. Chem. Rev. 2020, 120, 8536–8580. [Google Scholar] [CrossRef]
- Behymer, N.; Morsi, K. Review: Closed-Cell Metallic Foams Produced via Powder Metallurgy. Metals 2023, 13, 959. [Google Scholar] [CrossRef]
- Ru, J.; Kong, B.; Liu, Y.; Wang, X.; Fan, T.; Zhang, D. Microstructure and Sound Absorption of Porous Copper Prepared by Resin Curing and Foaming Method. Mater. Lett. 2015, 139, 318–321. [Google Scholar] [CrossRef]
- Tian, Q.; Guo, X. Manufacturing Microporous Foam Zinc Materials with High Porosity by Electrodeposition. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2011, 26, 843–846. [Google Scholar] [CrossRef]
- Kern, P.; Veh, J.; Michler, J. New Developments in Through-Mask Electrochemical Micromachining of Titanium. J. Micromechanics Microengineering 2007, 17, 1168–1177. [Google Scholar] [CrossRef]
- Gan, Y.X.; Zhang, Y.; Gan, J.B. Nanoporous Metals Processed by Dealloying and Their Applications. AIMS Mater. Sci. 2018, 5, 1141–1183. [Google Scholar] [CrossRef]
- Li, Y.; Jia, W.Z.; Song, Y.Y.; Xia, X.H. Superhydrophobicity of 3D Porous Copper Films Prepared Using the Hydrogen Bubble Dynamic Template. Chem. Mater. 2007, 19, 5758–5764. [Google Scholar] [CrossRef]
- Niu, J.; Liu, X.; Xia, K.; Xu, L.; Xu, Y.; Fang, X.; Lu, W. Effect of Electrodeposition Parameters on the Morphology of Three-Dimensional Porous Copper Foams. Int. J. Electrochem. Sci. 2015, 10, 7331–7340. [Google Scholar] [CrossRef]
- Wang, N.; Hu, W.C.; Lu, Y.H.; Deng, Y.F.; Wan, X.B.; Zhang, Y.W.; Du, K.; Zhang, L. Role of Surfactants in Construction of Porous Copper Film by Electrodeposition Approach. Trans. Inst. Met. Finish. 2011, 89, 261–267. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Z.; Gao, H.; Niu, J.; Ma, W.; Qin, J.; Peng, Z.; Zhang, Z. A Self-Supported, Three-Dimensional Porous Copper Film as a Current Collector for Advanced Lithium Metal Batteries. J. Mater. Chem. A 2019, 7, 1092–1098. [Google Scholar] [CrossRef]
- Bairagi, S.; Järrendahl, K.; Eriksson, F.; Hultman, L.; Birch, J.; Hsiao, C.L. Glancing Angle Deposition and Growth Mechanism of Inclined AlN Nanostructures Using Reactive Magnetron Sputtering. Coatings 2020, 10, 768. [Google Scholar] [CrossRef]
- Hawkeye, M.M.; Brett, M.J. Glancing Angle Deposition: Fabrication, Properties, and Applications of Micro- and Nanostructured Thin Films. J. Vac. Sci. Technol. A Vacuum Surfaces Film. 2007, 25, 1317. [Google Scholar] [CrossRef]
- Borysiewicz, M.A.; Dynowska, E.; Kolkovsky, V.; Dyczewski, J.; Wielgus, M.; Kamińska, E.; Piotrowska, A. From Porous to Dense Thin ZnO Films through Reactive DC Sputter Deposition onto Si (100) Substrates. Phys. Status Solidi Appl. Mater. Sci. 2012, 209, 2463–2469. [Google Scholar] [CrossRef]
- Masłyk, M.; Borysiewicz, M.A.; Wzorek, M.; Wojciechowski, T.; Kwoka, M.; Kamińska, E. Influence of Absolute Argon and Oxygen Flow Values at a Constant Ratio on the Growth of Zn/ZnO Nanostructures Obtained by DC Reactive Magnetron Sputtering. Appl. Surf. Sci. 2016, 389, 287–293. [Google Scholar] [CrossRef]
- Borysiewicz, M.A.; Barańczyk, P.; Wójcicka, A.; Zawadzki, J.; Wzorek, M.; Zybała, R. Mg Nanostructures with Controlled Dominant C-Plane or m-Plane Facets by DC Magnetron Sputter Depositio. arXiv 2024, arXiv:2402.03298. [Google Scholar] [CrossRef]
- Straumanis, M.E.; Yu, L.S. Lattice Parameters, Densities, Expansion Coefficients and Perfection of Structure of Cu and of Cu–In α Phase. Acta Crystallogr. Sect. A 1969, 25, 676–682. [Google Scholar] [CrossRef]
- Diao, F.; Xiao, X.; Luo, B.; Sun, H.; Ding, F.; Ci, L.; Si, P. Two-Step Fabrication of Nanoporous Copper Films with Tunable Morphology for SERS Application. Appl. Surf. Sci. 2018, 427, 1271–1279. [Google Scholar] [CrossRef]
- Yu, B.; Wang, Y.; Zhang, Y.; Zhang, Z. Self-Supporting Nanoporous Copper Film with High Porosity and Broadband Light Absorption for Efficient Solar Steam Generation. Nano-Micro Lett. 2023, 15, 94. [Google Scholar] [CrossRef]
- Hoang, T.T.H.; Ma, S.; Gold, J.I.; Kenis, P.J.A.; Gewirth, A.A. Nanoporous Copper Films by Additive-Controlled Electrodeposition: CO2 Reduction Catalysis. ACS Catal. 2017, 7, 3313–3321. [Google Scholar] [CrossRef]
- Bastos, C.A.P.; Faria, N.; Wills, J.; Malmberg, P.; Scheers, N.; Rees, P.; Powell, J.J. Copper Nanoparticles Have Negligible Direct Antibacterial Impact. NanoImpact 2020, 17, 100192. [Google Scholar] [CrossRef]
- Wu, L.; Ashworth, M.A.; Wilcox, G.D. Zinc Whisker Growth from Electroplated Finishes—A Review. Trans. Inst. Met. Finish. 2015, 93, 1–8. [Google Scholar] [CrossRef]
- Clapeyron, É. Mémoire Sur La Puissance Motrice de La Chaleur. J. l’ Ec. Polytech. 1834, 14, 153–190. [Google Scholar]
- Schmid, M. Vapor Pressure Calculator. Available online: https://www2.iap.tuwien.ac.at/www/surface/vapor_pressure (accessed on 31 October 2024).
- Wulfhekel, W.; Lipkin, N.N.; Kliewer, J.; Rosenfeld, G.; Jorritsma, L.C.; Poelsema, B.; Comsa, G. Conventional and Manipulated Growth of Cu/Cu(111). Surf. Sci. 1996, 348, 227–242. [Google Scholar] [CrossRef]
- Narula, M.L.; Tare, V.B.; Worrell, W.L. Diffusivity and Solubility of Oxygen in Solid Copper Using Potentiostatic and Potentiometric Techniques. Metall. Trans. B 1983, 14, 673–677. [Google Scholar] [CrossRef]
- Mahieu, S.; Ghekiere, P.; Depla, D.; De Gryse, R. Biaxial Alignment in Sputter Deposited Thin Films. Thin Solid Films 2006, 515, 1229–1249. [Google Scholar] [CrossRef]
Sample Name | Flow Ratio | Ar Flow (sccm) | O2 Flow (sccm) |
---|---|---|---|
101A | 3 | 0.3 | |
101B | 6 | 0.6 | |
101C | 10:1 | 10 | 1 |
101D | 20 | 2 | |
101E | 30 | 3 | |
102A | 3 | 0.6 | |
102B | 6 | 1.2 | |
102C | 10:2 | 10 | 2 |
102D | 20 | 4 | |
102E | 30 | 6 | |
151A | 4.5 | 0.3 | |
151B | 6 | 0.4 | |
151C | 15:1 | 7.5 | 0.5 |
151D | 9 | 0.6 | |
151E | 10.5 | 0.7 | |
201A | 6 | 0.3 | |
201B | 10 | 0.5 | |
201C | 20:1 | 14 | 0.7 |
201D | 18 | 0.9 | |
201E | 22 | 1.1 | |
251A | 7.5 | 0.3 | |
251B | 12.5 | 0.5 | |
251C | 25:1 | 17.5 | 0.7 |
251D | 22.5 | 0.9 | |
251E | 27.5 | 1.1 |
Temperature (°C) | dCu (Å) | ΔdCu (Å) | Crystallite Size (nm) | Max. Pore Size (nm) |
---|---|---|---|---|
RT | 3.5988 | 0.0161 | <10 | <5 |
50 | 3.6093 | 0.0057 | <10 | 5 |
100 | 3.6050 | 0.0099 | 10 | 10 |
150 | 3.6114 | 0.0035 | 10 | 30 |
200 | 3.6070 | 0.0079 | 20 | 47 |
250 | 3.6148 | 0.0001 | 40 | 50 |
300 | 3.6087 | 0.0062 | 54 | 60 |
400 | 3.6078 | 0.0071 | 90 | 120 |
500 | 3.6054 | 0.0095 | 111 | Open pores |
600 | 3.6107 | 0.0042 | 400 | Open pores |
700 | 3.6084 | 0.0065 | Nonporous | Nonporous |
800 | 3.6139 | 0.0011 | Nonporous | Nonporous |
Element | Temperature (°C) |
---|---|
Zn | −79 |
Mg | −61 |
Yb | 6 |
Pb | 31 |
Mn | 108 |
Ag | 149 |
Sn | 202 |
Al | 219 |
Cu | 226 |
Fe | 314 |
Co | 341 |
Ni | 344 |
Y | 347 |
Ti | 409 |
V | 464 |
Rh | 544 |
Au | 549 |
Pt | 556 |
Zr | 623 |
Hf | 631 |
Mo | 652 |
Ru | 660 |
Ir | 706 |
Nb | 771 |
Ta | 894 |
W | 1016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borysiewicz, M.A.; Barańczyk, P.; Zawadzki, J.; Wzorek, M.; Zybała, R.; Synkiewicz-Musialska, B.; Krzyściak, P. Nanoporous Copper Films: How to Grow Porous Films by Magnetron Sputter Deposition. Crystals 2024, 14, 965. https://doi.org/10.3390/cryst14110965
Borysiewicz MA, Barańczyk P, Zawadzki J, Wzorek M, Zybała R, Synkiewicz-Musialska B, Krzyściak P. Nanoporous Copper Films: How to Grow Porous Films by Magnetron Sputter Deposition. Crystals. 2024; 14(11):965. https://doi.org/10.3390/cryst14110965
Chicago/Turabian StyleBorysiewicz, Michał A., Patrycja Barańczyk, Jakub Zawadzki, Marek Wzorek, Rafał Zybała, Beata Synkiewicz-Musialska, and Paweł Krzyściak. 2024. "Nanoporous Copper Films: How to Grow Porous Films by Magnetron Sputter Deposition" Crystals 14, no. 11: 965. https://doi.org/10.3390/cryst14110965
APA StyleBorysiewicz, M. A., Barańczyk, P., Zawadzki, J., Wzorek, M., Zybała, R., Synkiewicz-Musialska, B., & Krzyściak, P. (2024). Nanoporous Copper Films: How to Grow Porous Films by Magnetron Sputter Deposition. Crystals, 14(11), 965. https://doi.org/10.3390/cryst14110965