The Structure and Optical Properties of Luminescent Terbium Terephthalate Metal–Organic Frameworks Doped with Yttrium, Gadolinium, and Lanthanum Ions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Structure and Morphology
3.2. Vibrational Spectroscopy
3.3. Thermogravimetric Analysis
3.4. Luminescent Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, Y.; Chen, B.; Qian, G. Lanthanide Metal–Organic Frameworks for Luminescent Sensing and Light-Emitting Applications. Coord. Chem. Rev. 2014, 273–274, 76–86. [Google Scholar] [CrossRef]
- Chen, B.; Wang, L.; Xiao, Y.; Fronczek, F.R.; Xue, M.; Cui, Y.; Qian, G. A Luminescent Metal–Organic Framework with Lewis Basic Pyridyl Sites for the Sensing of Metal Ions. Angew. Chem. Int. Ed. 2009, 48, 500–503. [Google Scholar] [CrossRef] [PubMed]
- Pellé, F.; Aschehoug, P.; Surblé, S.; Millange, F.; Serre, C.; Férey, G. Interactions between Eu3+ Ions in Inorganic-Organic Hybrid Materials. J. Solid State Chem. 2010, 183, 795–802. [Google Scholar] [CrossRef]
- Lee, J.; Farha, O.K.; Roberts, J.; Scheidt, K.A.; Nguyen, S.T.; Hupp, J.T. Metal–Organic Framework Materials as Catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459. [Google Scholar] [CrossRef]
- Massi, M.; Ogden, M.I. Luminescent Lanthanoid Calixarene Complexes and Materials. Materials 2017, 10, 1369. [Google Scholar] [CrossRef]
- Liu, D.; Lu, K.; Poon, C.; Lin, W. Metal–Organic Frameworks as Sensory Materials and Imaging Agents. Inorg. Chem. 2014, 53, 1916–1924. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, H.; Jiang, S.; Xiang, G.; Tang, X.; Luo, X.; Li, L.; Zhou, X. Multifunctional Luminescent Material Eu(III) and Tb(III) Complexes with Pyridine-3,5-Dicarboxylic Acid Linker: Crystal Structures, Tunable Emission, Energy Transfer, and Temperature Sensing. Inorg. Chem. 2019, 58, 3780–3788. [Google Scholar] [CrossRef]
- Shurygin, A.V.; Vovna, V.I.; Korochentsev, V.V.; Mirochnik, A.G.; Kalinovskaya, I.V.; Sergienko, V.I. Optical Properties and Electronic Structure of Eu(III) Complexes with HMPA and TPPO. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 250, 119397. [Google Scholar] [CrossRef]
- Khudoleeva, V.; Tcelykh, L.; Kovalenko, A.; Kalyakina, A.; Goloveshkin, A.; Lepnev, L.; Utochnikova, V. Terbium-Europium Fluorides Surface Modified with Benzoate and Terephthalate Anions for Temperature Sensing: Does Sensitivity Depend on the Ligand? J. Lumin. 2018, 201, 500–508. [Google Scholar] [CrossRef]
- Aslandukov, A.N.; Utochnikova, V.V.; Goriachiy, D.O.; Vashchenko, A.A.; Tsymbarenko, D.M.; Hoffmann, M.; Pietraszkiewicz, M.; Kuzmina, N.P. The Development of a New Approach toward Lanthanide-Based OLED Fabrication: New Host Materials for Tb-Based Emitters. Dalt. Trans. 2018, 47, 16350–16357. [Google Scholar] [CrossRef]
- Kozlov, M.I.; Aslandukov, A.N.; Vashchenko, A.A.; Medvedko, A.V.; Aleksandrov, A.E.; Grzibovskis, R.; Goloveshkin, A.S.; Lepnev, L.S.; Tameev, A.R.; Vembris, A.; et al. On the Development of a New Approach to the Design of Lanthanide-Based Materials for Solution-Processed OLEDs. Dalt. Trans. 2019, 48, 17298–17309. [Google Scholar] [CrossRef] [PubMed]
- Girotto, E.; Pereira, A.; Arantes, C.; Cremona, M.; Bortoluzzi, A.J.; Salla, C.A.M.; Bechtold, I.H.; Gallardo, H. Efficient Terbium Complex Based on a Novel Pyrazolone Derivative Ligand Used in Solution-Processed OLEDs. J. Lumin. 2019, 208, 57–62. [Google Scholar] [CrossRef]
- Sravani, V.V.; Gupta, S.K.; Sreenivasulu, B.; Gangopadhyay, P.; Rao, C.V.S.B.; Suresh, A.; Sivaraman, N. Bright Green Emitting Terbium-MOF with High Quantum Yield Achieved through Post Synthetic Modifications. Opt. Mater. 2022, 133, 112944. [Google Scholar] [CrossRef]
- Özgür, E.; Patra, H.K.; Turner, A.P.F.; Denizli, A.; Uzun, L. Lanthanide [Terbium(III)]-Doped Molecularly Imprinted Nanoarchitectures for the Fluorimetric Detection of Melatonin. Ind. Eng. Chem. Res. 2020, 59, 16068–16076. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Han, P.; Liu, Q. A Luminescent Probe Based on Terbium-Based Metal–Organic Frameworks for Organophosphorus Pesticides Detection. Microchim. Acta 2022, 189, 438. [Google Scholar] [CrossRef]
- Yang, M.; Shi, J.; Luo, T.; Yang, X. Luminescence Detection of Cr3+, Bi3+, and Acetone in Aqueous Solution by Core-Shell Tb-MOF. Curr. Anal. Chem. 2025, 21, 57–67. [Google Scholar] [CrossRef]
- Wang, X.; Cong, Q.; Feng, C.; Sun, Z.; Cai, Z.; Fan, C.; Pei, L. Terbium Vanadate Nanowires-Based Electrochemical Sensors for Mercury Ions. Appl. Biochem. Biotechnol. 2024. [Google Scholar] [CrossRef]
- Yue, X.; Fu, L.; Li, Y.; Xu, S.; Lin, X.; Bai, Y. Lanthanide Bimetallic MOF-Based Fluorescent Sensor for Sensitive and Visual Detection of Sulfamerazine and Malachite. Food Chem. 2023, 410, 135390. [Google Scholar] [CrossRef]
- Yin, H.Q.; Wang, X.Y.; Yin, X.B. Rotation Restricted Emission and Antenna Effect in Single Metal–Organic Frameworks. J. Am. Chem. Soc. 2019, 141, 15166–15173. [Google Scholar] [CrossRef]
- Cao, W.; Tang, Y.; Cui, Y.; Qian, G. Energy Transfer in Metal–Organic Frameworks and Its Applications. Small Struct. 2020, 1, 2000019. [Google Scholar] [CrossRef]
- Alpha, B.; Ballardini, R.; Balzani, V.; Lehn, J.-M.; Perathoner, S.; Sabbatini, N. Antenna Effect in Luminescent Lanthanide Cryptates: A Photophysical Study. Photochem. Photobiol. 1990, 52, 299–306. [Google Scholar] [CrossRef]
- Kolesnik, S.S.; Nosov, V.G.; Kolesnikov, I.E.; Khairullina, E.M.; Tumkin, I.I.; Vidyakina, A.A.; Sysoeva, A.A.; Ryazantsev, M.N.; Panov, M.S.; Khripun, V.D.; et al. Ultrasound-Assisted Synthesis of Luminescent Micro-and Nanocrystalline Eu-Based Mofs as Luminescent Probes for Heavy Metal Ions. Nanomaterials 2021, 11, 2448. [Google Scholar] [CrossRef] [PubMed]
- Orlova, A.V.; Kozhevnikova, V.Y.; Lepnev, L.S.; Goloveshkin, A.S.; Le-Deigen, I.M.; Utochnikova, V.V. NIR Emitting Terephthalates (SmxDyyGd1−x-y)2(Tph)3(H2O)4 for Luminescence Thermometry in the Physiological Range. J. Rare Earths 2020, 38, 492–497. [Google Scholar] [CrossRef]
- Utochnikova, V.V.; Kuzmina, N.P. Photoluminescence of Lanthanide Aromatic Carboxylates. Russ. J. Coord. Chem. Khimiya 2016, 42, 679–694. [Google Scholar] [CrossRef]
- Wang, P.; Li, Z.F.; Song, L.P.; Wang, C.X.; Chen, Y. Catena-Poly[[[μ-Benzene-1,4-Dicarboxylato-Bis[Tetraaqualutetium(III)]] -Di-μ-Benzene-1,4-Dicarboxylato] Dihydrate]. Acta Crystallogr. Sect. E Struct. Rep. Online 2006, 62, 253–255. [Google Scholar] [CrossRef]
- Do Nascimento, J.F.S.; De Araújo, A.M.U.; Kulesza, J.; De Farias Monteiro, A.F.; Júnior, S.A.; Barros, B.S. Solid-State Tunable Photoluminescence in Gadolinium-Organic Frameworks: Effects of the Eu3+ Content and Co-Doping with Tb3+. New J. Chem. 2018, 42, 5514–5522. [Google Scholar] [CrossRef]
- Nosov, V.G.; Kupryakov, A.S.; Kolesnikov, I.E.; Vidyakina, A.A.; Tumkin, I.I.; Kolesnik, S.S.; Ryazantsev, M.N.; Bogachev, N.A.; Skripkin, M.Y.; Mereshchenko, A.S. Heterometallic Europium(III)–Lutetium(III) Terephthalates as Bright Luminescent Antenna MOFs. Molecules 2022, 27, 5763. [Google Scholar] [CrossRef]
- Nosov, V.G.; Toikka, Y.N.; Petrova, A.S.; Butorlin, O.S.; Kolesnikov, I.E.; Orlov, S.N.; Ryazantsev, M.N.; Kolesnik, S.S.; Bogachev, N.A.; Skripkin, M.Y.; et al. Brightly Luminescent (TbxLu1−x)2bdc3·nH2O MOFs: Effect of Synthesis Conditions on Structure and Luminescent Properties. Molecules 2023, 28, 2378. [Google Scholar] [CrossRef]
- Kolesnik, S.S.; Bogachev, N.A.; Kolesnikov, I.E.; Orlov, S.N.; Ryazantsev, M.N.; González, G.; Skripkin, M.Y.; Mereshchenko, A.S. Microcrystalline Luminescent (Eu1−xLnx)2bdc3·nH2O (Ln = La, Gd, Lu) Antenna MOFs: Effect of Dopant Content on Structure, Particle Morphology, and Luminescent Properties. Molecules 2024, 29, 532. [Google Scholar] [CrossRef]
- Toikka, Y.N.; Badikov, A.R.; Bogachev, N.A.; Kolesnikov, I.E.; Skripkin, M.Y.; Orlov, S.N.; Mereshchenko, A.S. Luminescent Properties and Thermal Stability of (Lu0.98Eu0.02)2bdc3·10H2O Metal–Organic Frameworks. Mendeleev Commun. 2024, 34, 634–636. [Google Scholar] [CrossRef]
- Butorlin, O.S.; Petrova, A.S.; Toikka, Y.N.; Kolesnikov, I.E.; Orlov, S.N.; Ryazantsev, M.N.; Bogachev, N.A.; Skripkin, M.Y.; Mereshchenko, A.S. The Structure and Optical Properties of Luminescent Europium Terephthalate Antenna Metal–Organic Frameworks Doped by Yttrium, Gadolinium, and Lanthanum Ions. Molecules 2024, 29, 3558. [Google Scholar] [CrossRef] [PubMed]
- Utochnikova, V.V.; Grishko, A.Y.; Koshelev, D.S.; Averin, A.A.; Lepnev, L.S.; Kuzmina, N.P. Lanthanide Heterometallic Terephthalates: Concentration Quenching and the Principles of the “Multiphotonic Emission”. Opt. Mater. 2017, 74, 201–208. [Google Scholar] [CrossRef]
- Alammar, T.; Hlova, I.Z.; Gupta, S.; Biswas, A.; Ma, T.; Zhou, L.; Balema, V.; Pecharsky, V.K.; Mudring, A.V. Mechanochemical Synthesis, Luminescent and Magnetic Properties of Lanthanide Benzene-1,4-Dicarboxylate Coordination Polymers (Ln0.5Gd0.5)2 (1,4-BDC)3(H2O)4; Ln = Sm, Eu, Tb. New J. Chem. 2020, 44, 1054–1062. [Google Scholar] [CrossRef]
- Haquin, V.; Etienne, M.; Daiguebonne, C.; Freslon, S.; Calvez, G.; Bernot, K.; Le Pollès, L.; Ashbrook, S.E.; Mitchell, M.R.; Bünzli, J.C.; et al. Color and Brightness Tuning in Heteronuclear Lanthanide Terephthalate Coordination Polymers. Eur. J. Inorg. Chem. 2013, 2013, 3464–3476. [Google Scholar] [CrossRef]
- Reineke, T.M.; Eddaoudi, M.; Fehr, M.; Kelley, D.; Yaghi, O.M. From Condensed Lanthanide Coordination Solids to Microporous Frameworks Having Accessible Metal Sites. J. Am. Chem. Soc. 1999, 121, 1651–1657. [Google Scholar] [CrossRef]
- Pawley, G.S. Unit-cell refinement from powder diffraction scans. J. Appl. Crystallogr. 1981, 14, 357–361. [Google Scholar] [CrossRef]
- Denton, A.R.; Ashcroft, N.W. Vegard’s Law. Phys. Rev. A 1991, 43, 3161–3164. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Costa, B.A.; Nunes, W.D.G.; Bembo, L.H.; Siqueira, A.B.; Caires, F.; Leles, M.I.G.; Ionashiro, E.Y. Study of Thermoanalytical Behavior of Heavier Lanthanides Terephthalates in Air Atmosphere. J. Therm. Anal. Calorim. 2018, 134, 1205–1210. [Google Scholar] [CrossRef]
- Nunes, W.D.G.; Teixeira, J.A.; do Nascimento, A.L.C.S.; Caires, F.J.; Ionashiro, E.Y.; Ionashiro, M. A Comparative Study on Thermal Behavior of Solid-State Light Trivalent Lanthanide Isonicotinates in Dynamic Dry Air and Nitrogen Atmospheres. J. Therm. Anal. Calorim. 2016, 125, 397–405. [Google Scholar] [CrossRef]
- Daiguebonne, C.; Kerbellec, N.; Guillou, O.; Bünzli, J.C.; Gumy, F.; Catala, L.; Mallah, T.; Audebrand, N.; Gérault, Y.; Bernot, K.; et al. Structural and Luminescent Properties of Micro- and Nanosized Particles of Lanthanide Terephthalate Coordination Polymers. Inorg. Chem. 2008, 47, 3700–3708. [Google Scholar] [CrossRef]
- Latva, M.; Takalob, H.; Mukkala, V.M.; Matachescu, C.; Rodríguez-Ubis, J.C.; Kankare, J. Correlation between the Lowest Triplet State Energy Level of the Ligand and Lanthanide(III) Luminescence Quantum Yield. J. Lumin. 1997, 75, 149–169. [Google Scholar] [CrossRef]
- Binnemans, K. Interpretation of Europium(III) Spectra. Coord. Chem. Rev. 2015, 295, 1–45. [Google Scholar] [CrossRef]
- Holsa, J.; Leskela, M.; Niinisto, L. Concentration quenching of Tb3+ luminescence in laobr and Gd202S phosphors. Mat. Res. Bull. 1979, 14, 1403–1409. [Google Scholar] [CrossRef]
- Zhang, W.; Kou, H.; Ge, L.; Zhang, Y.; Lin, L.; Li, W. Effects of Doping Ions on the Luminescence Performance of Terbium Doped Gadolinium Polysulfide Phosphor. J. Phys. Conf. Ser. 2020, 1549, 032064. [Google Scholar] [CrossRef]
- Kolesnikov, I.E.; Mamonova, D.V.; Lähderanta, E.; Kurochkin, A.V.; Mikhailov, M.D. The Impact of Doping Concentration on Structure and Photoluminescence of Lu2O3:Eu3+ Nanocrystals. J. Lumin. 2017, 187, 26–32. [Google Scholar] [CrossRef]
- Kolesnikov, I.E.; Kalinichev, A.A.; Kurochkin, M.A.; Golyeva, E.V.; Terentyeva, A.S.; Kolesnikov, E.Y.; Lähderanta, E. Structural, Luminescence and Thermometric Properties of Nanocrystalline YVO4:Dy3+ Temperature and Concentration Series. Sci. Rep. 2019, 9, 2043. [Google Scholar] [CrossRef]
Compound | Tdeh., °C |
---|---|
Y2(1,4-bdc)3·4H2O | 104.8 |
Tb2(1,4-bdc)3·4H2O | 120.1 |
Gd2(1,4-bdc)3·4H2O | 142.5 |
La2(1,4-bdc)3·4H2O | 158.9 |
TbY(1,4-bdc)3·4H2O | 108.3 |
TbGd(1,4-bdc)3·4H2O | 126.3 |
TbLa(1,4-bdc)3·4H2O | 132.6 |
χ(Tb3+), at.% | S × 107, a.u. | ||
---|---|---|---|
M = Gd | M = La | M = Y | |
0.1 | 3.99 | 4.01 | 2.50 |
0.2 | 4.69 | 3.32 | 4.16 |
0.4 | 9.16 | 6.17 | 6.84 |
0.6 | 10.02 | 9.46 | 8.51 |
0.8 | 9.87 | 10.92 | 1.01 |
1 | 15.26 | 10.06 | 7.96 |
2 | 13.26 | 15.97 | 15.56 |
4 | 10.40 | 22.58 | 35.00 |
6 | 42.02 | 24.21 | 43.95 |
8 | 58.79 | 30.00 | 44.57 |
10 | 36.87 | 31.40 | 64.56 |
20 | 56.62 | 33.10 | 46.84 |
30 | 32.05 | 22.64 | 52.51 |
40 | 50.33 | 20.87 | 43.18 |
50 | 69.91 | 31.31 | 47.53 |
60 | 50.38 | 38.78 | 42.33 |
70 | 57.49 | 38.96 | 42.80 |
80 | 60.45 | 38.29 | 48.83 |
90 | 35.23 | 27.22 | 34.12 |
100 | 38.18 | 23.52 | 36.10 |
Compound | χ(Tb3+), at.% | τ, ms | PLQY, % |
---|---|---|---|
Tb2(1,4-bdc)3·4H2O | 100 | 0.68 ± 0.01 | 46 ± 1 |
(TbxY1−x)2(1,4-bdc)3·4H2O | 1 | 1.10 ± 0.01 | 27 ± 1 |
10 | 1.01 ± 0.01 | 57 ± 1 | |
50 | 0.93 ± 0.01 | 60 ± 1 | |
90 | 0.74 ± 0.01 | 48 ± 1 | |
(TbxLa1−x)2(1,4-bdc)3·4H2O | 1 | 1.02 ± 0.01 | 24 ± 1 |
10 | 0.99 ± 0.01 | 55 ± 1 | |
50 | 0.95 ± 0.01 | 66 ± 1 | |
90 | 0.78 ± 0.02 | 49 ± 1 | |
(TbxGd1−x)2(1,4-bdc)3·4H2O | 1 | 1.05 ± 0.01 | 23 ± 1 |
10 | 1.00 ± 0.01 | 47 ± 1 | |
50 | 0.93 ± 0.01 | 63 ± 1 | |
90 | 0.75 ± 0.01 | 52 ± 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrova, A.S.; Butorlin, O.S.; Toikka, Y.N.; Kolesnikov, I.E.; Orlov, S.N.; Ryazantsev, M.N.; Bogachev, N.A.; Skripkin, M.Y.; Mereshchenko, A.S. The Structure and Optical Properties of Luminescent Terbium Terephthalate Metal–Organic Frameworks Doped with Yttrium, Gadolinium, and Lanthanum Ions. Crystals 2024, 14, 966. https://doi.org/10.3390/cryst14110966
Petrova AS, Butorlin OS, Toikka YN, Kolesnikov IE, Orlov SN, Ryazantsev MN, Bogachev NA, Skripkin MY, Mereshchenko AS. The Structure and Optical Properties of Luminescent Terbium Terephthalate Metal–Organic Frameworks Doped with Yttrium, Gadolinium, and Lanthanum Ions. Crystals. 2024; 14(11):966. https://doi.org/10.3390/cryst14110966
Chicago/Turabian StylePetrova, Anna S., Oleg S. Butorlin, Yulia N. Toikka, Ilya E. Kolesnikov, Sergey N. Orlov, Mikhail N. Ryazantsev, Nikita A. Bogachev, Mikhail Yu. Skripkin, and Andrey S. Mereshchenko. 2024. "The Structure and Optical Properties of Luminescent Terbium Terephthalate Metal–Organic Frameworks Doped with Yttrium, Gadolinium, and Lanthanum Ions" Crystals 14, no. 11: 966. https://doi.org/10.3390/cryst14110966
APA StylePetrova, A. S., Butorlin, O. S., Toikka, Y. N., Kolesnikov, I. E., Orlov, S. N., Ryazantsev, M. N., Bogachev, N. A., Skripkin, M. Y., & Mereshchenko, A. S. (2024). The Structure and Optical Properties of Luminescent Terbium Terephthalate Metal–Organic Frameworks Doped with Yttrium, Gadolinium, and Lanthanum Ions. Crystals, 14(11), 966. https://doi.org/10.3390/cryst14110966