Micro-Computed Tomographic Evaluation of the Shaping Ability of Vortex Blue and TruNatomyTM Ni-Ti Rotary Systems
Abstract
:1. Introduction
2. Materials and Methods
3. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elnaghy, A.M. Cyclic fatigue resistance of ProTaper Next nickel-titanium rotary files. Int. Endod. J. 2014, 47, 1034–1039. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.C.; Sung, S.Y.; Ha, J.H.; Solomonov, M.; Lee, J.M.; Lee, C.J.; Kim, B.M. Stress generation during self-adjusting file movement: Minimally invasive instrumentation. J. Endod. 2013, 39, 1572–1575. [Google Scholar] [CrossRef]
- Pirani, C.; Iacono, F.; Generali, L.; Sassatelli, P.; Nucci, C.; Lusvarghi, L.; Gandolfi, M.G.; Prati, C. HyFlex EDM: Superficial features, metallurgical analysis and fatigue resistance of innovative electro discharge machined NiTi rotary instruments. Int. Endod. J. 2016, 49, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Alapati, S.B.; Brantley, W.A.; Iijima, M.; Clark, W.A.; Kovarik, L.; Buie, C.; Liu, J.; Ben Johnson, W. Metallurgical characterization of a new nickel-titanium wire for rotary endodontic instruments. J. Endod. 2009, 35, 1589–1593. [Google Scholar] [CrossRef]
- Silva, E.; Martins, J.N.R.; Ajuz, N.C.; Antunes, H.S.; Vieira, V.T.L.; Braz Fernandes, F.M.; Belladonna, F.G.; Versiani, M.A. A Multimethod Assessment of a New Customized Heat-Treated Nickel-Titanium Rotary File System. Materials 2022, 15, 5288. [Google Scholar] [CrossRef]
- Falakaloglu, S.; Silva, E.; Topal, B.; Iriboz, E.; Gundogar, M. Shaping ability of modern Nickel-Titanium rotary systems on the preparation of printed mandibular molars. J. Conserv. Dent. 2022, 25, 498–503. [Google Scholar] [CrossRef]
- Falakaloglu, S.; Silva, E.; Yeniceri Ozata, M.; Gundogar, M. Shaping ability of different NiTi rotary systems during the preparation of printed mandibular molars. Aust. Endod. J. 2023, 49, 256–261. [Google Scholar] [CrossRef]
- Elnaghy, A.M.; Elsaka, S.E.; Elshazli, A.H. Dynamic cyclic and torsional fatigue resistance of TruNatomy compared with different nickel-titanium rotary instruments. Aust. Endod. J. 2020, 46, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Elnaghy, A.M.; Elsaka, S.E.; Mandorah, A.O. In vitro comparison of cyclic fatigue resistance of TruNatomy in single and double curvature canals compared with different nickel-titanium rotary instruments. BMC Oral. Health 2020, 20, 38. [Google Scholar] [CrossRef]
- Versiani, M.A.; Pecora, J.D.; de Sousa-Neto, M.D. Root and root canal morphology of four-rooted maxillary second molars: A micro-computed tomography study. J. Endod. 2012, 38, 977–982. [Google Scholar] [CrossRef]
- Alsofi, L.; Rajkhan, W.; Al-Habib, M.; Ashe, H.; Alnowailaty, Y.; Balto, K. Characterization of the differential efficacy of austenitic vs martensitic NiTi rotary files in non-surgical root canal retreatment: A micro-CT analysis. Front. Biosci. (Landmark Ed.) 2021, 26, 465–474. [Google Scholar]
- Alsofi, L.; Al Harbi, M.; Al-Habib, M.; Stauber, M.; Balto, K. Micro-cleanliness of Hard Tissue Debris After Advanced Irrigation and Comparison Between EndoVac and XP-endo Finisher: A Microcomputed Tomographic Study. J. Int. Soc. Prev. Community Dent. 2021, 11, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.W. A comparison of canal preparations in straight and curved root canals. Oral. Surg. Oral. Med. Oral. Pathol. 1971, 32, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, S.V.; Tiwari, R.; Bhullar, R.K.; Bansal, H.; Bhandari, R.; Kakkar, T.; Bhusri, R. Sterilization of extracted human teeth: A comparative analysis. J. Oral. Biol. Craniofac Res. 2012, 2, 170–175. [Google Scholar] [CrossRef]
- Peters, O.A.; Schonenberger, K.; Laib, A. Effects of four Ni-Ti preparation techniques on root canal geometry assessed by micro computed tomography. Int. Endod. J. 2001, 34, 221–230. [Google Scholar] [CrossRef]
- Peters, O.A.; Laib, A.; Göhring, T.N.; Barbakow, F. Changes in root canal geometry after preparation assessed by high-resolution computed tomography. J. Endod. 2001, 27, 1–6. [Google Scholar] [CrossRef]
- Komabayashi, T.; Colmenar, D.; Cvach, N.; Bhat, A.; Primus, C.; Imai, Y. Comprehensive review of current endodontic sealers. Dent. Mater. J. 2020, 39, 703–720. [Google Scholar] [CrossRef]
- Paque, F.; Balmer, M.; Attin, T.; Peters, O.A. Preparation of oval-shaped root canals in mandibular molars using nickel-titanium rotary instruments: A micro-computed tomography study. J. Endod. 2010, 36, 703–707. [Google Scholar] [CrossRef]
- Alghamdi, A.; Alsofi, L.; Balto, K. Effects of a Novel NiTi Thermomechanical Treatment on the Geometric Features of the Prepared Root Canal System. Materials 2020, 13, 5546. [Google Scholar] [CrossRef]
- Shuping, G.B.; Orstavik, D.; Sigurdsson, A.; Trope, M. Reduction of intracanal bacteria using nickel-titanium rotary instrumentation and various medications. J. Endod. 2000, 26, 751–755. [Google Scholar] [CrossRef]
- Evans, G.E.; Speight, P.M.; Gulabivala, K. The influence of preparation technique and sodium hypochlorite on removal of pulp and predentine from root canals of posterior teeth. Int. Endod. J. 2001, 34, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Bystrom, A.; Sundqvist, G. Bacteriologic evaluation of the efficacy of mechanical root canal instrumentation in endodontic therapy. Scand. J. Dent. Res. 1981, 89, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Plotino, G.; Grande, N.M.; Cotti, E.; Testarelli, L.; Gambarini, G. Blue treatment enhances cyclic fatigue resistance of vortex nickel-titanium rotary files. J. Endod. 2014, 40, 1451–1453. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Seo, M.S.; Moon, Y.M. Root canal volume change and transportation by Vortex Blue, ProTaper Next, and ProTaper Universal in curved root canals. Restor. Dent. Endod. 2018, 43, e3. [Google Scholar] [CrossRef]
- Peters, O.A.; Arias, A.; Choi, A. Mechanical Properties of a Novel Nickel-titanium Root Canal Instrument: Stationary and Dynamic Tests. J. Endod. 2020, 46, 994–1001. [Google Scholar] [CrossRef]
- Wu, M.K.; Wesselink, P.R. A primary observation on the preparation and obturation of oval canals. Int. Endod. J. 2001, 34, 137–141. [Google Scholar] [CrossRef]
- Peters, O.A.; Boessler, C.; Paque, F. Root canal preparation with a novel nickel-titanium instrument evaluated with micro-computed tomography: Canal surface preparation over time. J. Endod. 2010, 36, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Versiani, M.A.; Leoni, G.B.; Steier, L.; De-Deus, G.; Tassani, S.; Pecora, J.D.; de Sousa-Neto, M.D. Micro-computed tomography study of oval-shaped canals prepared with the self-adjusting file, Reciproc, WaveOne, and ProTaper universal systems. J. Endod. 2013, 39, 1060–1066. [Google Scholar] [CrossRef]
- Peters, O.A.; Arias, A.; Paque, F. A Micro-computed Tomographic Assessment of Root Canal Preparation with a Novel Instrument, TRUShape, in Mesial Roots of Mandibular Molars. J. Endod. 2015, 41, 1545–1550. [Google Scholar] [CrossRef]
- Paque, F.; Peters, O.A. Micro-computed tomography evaluation of the preparation of long oval root canals in mandibular molars with the self-adjusting file. J. Endod. 2011, 37, 517–521. [Google Scholar] [CrossRef]
- Peters, O.A.; Paque, F. Root canal preparation of maxillary molars with the self-adjusting file: A micro-computed tomography study. J. Endod. 2011, 37, 53–57. [Google Scholar] [CrossRef] [PubMed]
- de Siqueira Zuolo, A.; Zuolo, M.L.; da Silveira Bueno, C.E.; Chu, R.; Cunha, R.S. Evaluation of the Efficacy of TRUShape and Reciproc File Systems in the Removal of Root Filling Material: An Ex Vivo Micro-Computed Tomographic Study. J. Endod. 2016, 42, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Metzger, Z.; Zary, R.; Cohen, R.; Teperovich, E.; Paque, F. The quality of root canal preparation and root canal obturation in canals treated with rotary versus self-adjusting files: A three-dimensional micro-computed tomographic study. J. Endod. 2010, 36, 1569–1573. [Google Scholar] [CrossRef]
- Perez Morales, M.L.N.; Gonzalez Sanchez, J.A.; Olivieri, J.G.; Elmsmari, F.; Salmon, P.; Jaramillo, D.E.; Terol, F.D. Micro-computed Tomographic Assessment and Comparative Study of the Shaping Ability of 6 Nickel-Titanium Files: An In Vitro Study. J. Endod. 2021, 47, 812–819. [Google Scholar] [CrossRef] [PubMed]
- Azim, A.A.; Piasecki, L.; da Silva Neto, U.X.; Cruz, A.T.G.; Azim, K.A.; Shaper, X.P. A Novel Adaptive Core Rotary Instrument: Micro-computed Tomographic Analysis of Its Shaping Abilities. J. Endod. 2017, 43, 1532–1538. [Google Scholar] [CrossRef]
- Jensen, L.E.; Murphy, S.; Williamson, A.E.; Teixeira, F.B.; Johnson, W.T.; Friedl, C.C.; Peters, O.A. Root canal preparation in mandibular premolars with TRUShape and Vortex Blue: A micro-computed tomography study. Aust. Endod. J. 2019, 45, 12–19. [Google Scholar] [CrossRef]
- Denna, J.; Shafie, L.A.; Alsofi, L.; Al-Habib, M.; AlShwaimi, E. Efficacy of the Rotary Instrument XP-Endo Finisher in the Removal of Calcium Hydroxide Intracanal Medicament in Combination with Different Irrigation Techniques: A Microtomographic Study. Materials 2020, 13, 2222. [Google Scholar] [CrossRef]
- Martins, S.; Garcia, P.; Viana, A.; Buono, V.; Santos, L. Off-Centered Geometry and Influence on NiTi Endodontic File Performance Evaluated by Finite Element Analysis. J. Mater. Eng. Perform. 2020, 29, 2095–2102. [Google Scholar] [CrossRef]
- Aazzouzi-Raiss, K.; Ramirez-Munoz, A.; Mendez, S.P.; Vieira, G.C.S.; Aranguren, J.; Perez, A.R. Effects of Conservative Access and Apical Enlargement on Shaping and Dentin Preservation with Traditional and Modern Instruments: A Micro-computed Tomographic Study. J. Endod. 2023, 49, 430–437. [Google Scholar] [CrossRef]
- Silva, E.; Lima, C.O.; Barbosa, A.F.A.; Lopes, R.T.; Sassone, L.M.; Versiani, M.A. The Impact of TruNatomy and ProTaper Gold Instruments on the Preservation of the Periradicular Dentin and on the Enlargement of the Apical Canal of Mandibular Molars. J. Endod. 2022, 48, 650–658. [Google Scholar] [CrossRef]
- Kabil, E.; Katic, M.; Anic, I.; Bago, I. Micro-computed Evaluation of Canal Transportation and Centering Ability of 5 Rotary and Reciprocating Systems with Different Metallurgical Properties and Surface Treatments in Curved Root Canals. J. Endod. 2021, 47, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Berutti, E.; Moccia, E.; Lavino, S.; Multari, S.; Carpegna, G.; Scotti, N.; Pasqualini, D.; Alovisi, M. Micro-Computed Tomography Evaluation of Minimally Invasive Shaping Systems in Mandibular First Molars. J. Clin. Med. 2022, 11, 4607. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, G.; Martin, V.; Rodrigues, C.; Gomes, P. Comparative Evaluation of the Canal Shaping Ability, Pericervical Dentin Preservation, and Smear Layer Removal of TruNatomy, WaveOne Gold, and ProTaper Ultimate-An Ex Vivo Study in Human Teeth. J. Endod. 2023, 49, 1733–1738. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, N.A.; Elhelbawy, N.G.E. Shaping Ability and Buckling Resistance of TruNatomy, WaveOne gold, and XP-Endo Shaper Single-File Systems. Contemp. Clin. Dent. 2022, 13, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Jeon, S.J.; Seo, M.S. Comparison of the canal transportation of ProTaper GOLD, WaveOne GOLD, and TruNatomy in simulated double-curved canals. BMC Oral. Health 2021, 21, 533. [Google Scholar] [CrossRef]
- Clark, D.; Khademi, J. Modern molar endodontic access and directed dentin conservation. Dent. Clin. N. Am. 2010, 54, 249–273. [Google Scholar] [CrossRef]
- de Albuquerque, M.S.; Nascimento, A.S.; Gialain, I.O.; de Lima, E.A.; Nery, J.A.; de Souza Araujo, P.R.; de Menezes, R.F.; Kato, A.S.; Braz, R. Canal Transportation, Centering Ability, and Dentin Removal after Instrumentation: A Micro-CT Evaluation. J. Contemp. Dent. Pract. 2019, 20, 806–811. [Google Scholar] [CrossRef]
- Duque, J.A.; Vivan, R.R.; Cavenago, B.C.; Amoroso-Silva, P.A.; Bernardes, R.A.; Vasconcelos, B.C.; Duarte, M.A. Influence of NiTi alloy on the root canal shaping capabilities of the ProTaper Universal and ProTaper Gold rotary instrument systems. J. Appl. Oral. Sci. 2017, 25, 27–33. [Google Scholar] [CrossRef]
- Zhou, H.; Peng, B.; Zheng, Y. An overview of the mechanical properties of nickel–titanium endodontic instruments. Endod. Top. 2013, 29, 42–54. [Google Scholar] [CrossRef]
- Gavini, G.; Santos, M.D.; Caldeira, C.L.; Machado, M.E.L.; Freire, L.G.; Iglecias, E.F.; Peters, O.A.; Candeiro, G.T.M. Nickel-titanium instruments in endodontics: A concise review of the state of the art. Braz. Oral. Res. 2018, 32 (Suppl. S1), e67. [Google Scholar] [CrossRef]
- Zupanc, J.; Vahdat-Pajouh, N.; Schafer, E. New thermomechanically treated NiTi alloys—A review. Int. Endod. J. 2018, 51, 1088–1103. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.; Lagoudas, D. Influence of cold work and heat treatment on the shape memory effect and plastic development of NiTi. Mater. Sci. Eng. A 2001, 308, 161–175. [Google Scholar] [CrossRef]
- Duke, F.; Shen, Y.; Zhou, H.; Ruse, N.D.; Wang, Z.J.; Hieawy, A.; Haapasalo, M. Cyclic Fatigue of ProFile Vortex and Vortex Blue Nickel-Titanium Files in Single and Double Curvatures. J. Endod. 2015, 41, 1686–1690. [Google Scholar] [CrossRef]
- Martins, J.N.R.; Silva, E.; Marques, D.; Pereira, M.R.; Vieira, V.T.L.; Arantes-Oliveira, S.; Martins, R.F.; Braz Fernandes, F.; Versiani, M. Design, Metallurgical Features, and Mechanical Behaviour of NiTi Endodontic Instruments from Five Different Heat-Treated Rotary Systems. Materials 2022, 15, 1009. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.J.; Rodrigues, C.; Vieira, V.T.; Belladonna, F.G.; De-Deus, G.; Lopes, H.P. Bending resistance and cyclic fatigue of a new heat-treated reciprocating instrument. Scanning 2016, 38, 837–841. [Google Scholar] [CrossRef]
- Martins, J.N.R.; Silva, E.; Marques, D.; Belladonna, F.G.; Simoes-Carvalho, M.; da Costa, R.P.; Ginjeira, A.; Braz Fernandes, F.M.; Versiani, M.A. Comparison of five rotary systems regarding design, metallurgy, mechanical performance, and canal preparation-a multimethod research. Clin. Oral. Investig. 2022, 26, 3299–3310. [Google Scholar] [CrossRef]
Parameter | VB Mean ± SD | TN Mean ± SD | p-Value |
---|---|---|---|
Untouched surface area [17] | 27.81 ± 17.46 | 22.74 ± 16.28 | 0.2 † |
Changes in surface area (mm2) | 3.68 ± 2.63 | 3.27 ± 1.87 | 0.6 ‡ |
Parameter | VB Mean ± SD | TN Mean ± SD | p-Value |
---|---|---|---|
Pre Vol (mm3) | 2.39 ± 0.87 | 2.41 ± 0.74 | 0.9 † |
Post Vol (mm3) | 3.36 ± 0.89 | 3.17 ± 0.92 | 0.3 † |
p-value | <0.001 ¶* | <0.001 ¶* | |
Changes in canal volume | 0.97 ± 0.64 | 0.76 ± 0.46 | 0.2 † |
Pre SMI | 2.89 ± 0.44 | 2.92 ± 0.15 | 0.7 ‡ |
Post SMI | 3.0 ± 0.24 | 2.93 ± 0.15 | 0.6 ‡ |
p-value | 0.4 § | 1.0 § | |
Changes in SMI | 0.11 ± 0.36 | 0.0008 ± 0.15 | 0.3 ‡ |
Parameter | Pre Instrumentation Mean ± SD | Post Instrumentation Mean ± SD | p-Value † |
---|---|---|---|
TN | 162.25 ± 8.7 | 162.60 ± 9.4 | 0.7 |
VB | 165.60 ± 8.2 | 163.90 ± 7.5 | 0.3 |
p-value ‡ | 0.3 | 0.2 |
Parameter | Level | VB Mean ± SD | TN Mean ± SD | p-Value |
---|---|---|---|---|
Changes in dentin thickness | Apical 3 mm | 0.08 ± 0.08 a | 0.08 ± 0.06 ab | 0.7 † |
Middle 5 mm | 0.07 ± 0.05 a | 0.06 ± 0.04 a | 0.7 † | |
Coronal 7 mm | 0.06 ± 0.05 a | 0.04 ± 0.02 c | 0.2 † | |
p-value ¶ | 0.7 | 0.03 * | ||
Overall changes in dentin thickness | 0.07 ± 0.012 | 0.06 ± 0.016 | 0.4 † |
Parameter | Level | VB Mean ± SD | TN Mean ± SD | p-Value |
---|---|---|---|---|
Canal transportation | 1 mm | 0.01 ± 0.1 | 0.02 ± 0.12 | 0.7 ‡ |
3 mm | −0.005 ± 0.1 | 0.03 ± 0.13 | 0.3 ‡ | |
5 mm | −0.01 ± 0.1 | 0.03 ± 0.08 | 0.1 ‡ | |
7 mm | −0.008 ± 0.1 | −0.03 ± 0.09 | 0.5 ‡ | |
p-value | 0.9 ¶ | 0.2 ¶ | ||
Overall canal transportation | −0.003 ± 0.01 | 0.01 ± 0.03 | 0.4 ‡ |
Parameter | Level | VB Mean ± SD | TN Mean ± SD | p-Value |
---|---|---|---|---|
Centering ability ratio | Apical 1 mm | 0.51 ± 0.31 a | 0.48 ± 0.28 a | 0.9 ‡ |
Apical 3 mm | 0.50 ± 0.33 a | 0.42 ± 0.31 a | 0.4 ‡ | |
Middle 5 mm | 0.40 ± 0.28 a | 0.46 ± 0.39 a | 0.7 ‡ | |
Coronal 7 mm | 0.46 ± 0.35 a | 0.45 ± 0.33 a | 0.9 ‡ | |
p-value ¶ | 0.7 ¶ | 0.9 ¶ | ||
Overall centering ability ratio | 0.47 ± 0.05 | 0.45 ± 0.024 | 0.6 ‡ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghamdi, B.; Al-Habib, M.; Alsulaiman, M.; Bahanan, L.; Alrahlah, A.; Bautista, L.S.J.; Bukhari, S.; Howait, M.; Alsofi, L. Micro-Computed Tomographic Evaluation of the Shaping Ability of Vortex Blue and TruNatomyTM Ni-Ti Rotary Systems. Crystals 2024, 14, 980. https://doi.org/10.3390/cryst14110980
Alghamdi B, Al-Habib M, Alsulaiman M, Bahanan L, Alrahlah A, Bautista LSJ, Bukhari S, Howait M, Alsofi L. Micro-Computed Tomographic Evaluation of the Shaping Ability of Vortex Blue and TruNatomyTM Ni-Ti Rotary Systems. Crystals. 2024; 14(11):980. https://doi.org/10.3390/cryst14110980
Chicago/Turabian StyleAlghamdi, Batool, Mey Al-Habib, Mona Alsulaiman, Lina Bahanan, Ali Alrahlah, Leonel S. J. Bautista, Sarah Bukhari, Mohammed Howait, and Loai Alsofi. 2024. "Micro-Computed Tomographic Evaluation of the Shaping Ability of Vortex Blue and TruNatomyTM Ni-Ti Rotary Systems" Crystals 14, no. 11: 980. https://doi.org/10.3390/cryst14110980
APA StyleAlghamdi, B., Al-Habib, M., Alsulaiman, M., Bahanan, L., Alrahlah, A., Bautista, L. S. J., Bukhari, S., Howait, M., & Alsofi, L. (2024). Micro-Computed Tomographic Evaluation of the Shaping Ability of Vortex Blue and TruNatomyTM Ni-Ti Rotary Systems. Crystals, 14(11), 980. https://doi.org/10.3390/cryst14110980