Structural, Optical, Magnetic, and Dielectric Investigations of Pure and Co-Doped La0.67Sr0.33Mn1-x-yZnxCoyO3 Manganites with (0.00 < x + y < 0.20)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. XRD and SEM Analysis
3.2. FTIR Analysis
3.3. Optical Behavior
3.4. Magnetic Behaviors
3.5. Dielectric Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Londoño-Calderón, V.; Rave-Osorio, L.C.; Restrepo, J.; Játiva, J.; Jurado, J.F.; Arnache, O.; Restrepo-Parra, E. Structural and magnetic properties of La1−x(Ca,Sr)xMnO3 powders produced by the hydro-thermal method. J. Supercond. Nov. Magn. 2018, 31, 4153–4162. [Google Scholar] [CrossRef]
- McBride, K.; Cook, J.; Gray, S.; Felton, S.; Stellaab, L.; Poulidi, S. Evaluation of La1−xSrxMnO3 (0 ≤ x < 0.4) synthesised via a modified sol–gel method as mediators for magnetic fluid hyperthermia. CrystEngComm 2016, 18, 407. [Google Scholar]
- Kumari, S.; Mottaghi, N.; Huang, C.-Y.; Trappen, R.; Bhandari, G.; Yousefi, S.; Cabrera, G.; Seehra, M.S.; Holcomb, M.B. Effects of Oxygen Modification on the Structural and Magnetic Properties of Highly Epitaxial La0.7Sr0.3MnO3 (LSMO) thin films. Sci. Rep. 2020, 10, 3659. [Google Scholar] [CrossRef]
- Jayakumar, G.; Poomagal, D.S.; Irudayaraj, A.A.; Raj, A.D.; Thresa, S.K.; Akshadha, P. Study on structural, magnetic and electrical properties of perovskite lanthanum strontium manganite nanoparticles. J. Mater. Sci. Mater. Electron. 2020, 31, 20945–20953. [Google Scholar] [CrossRef]
- Lloyd-Hughes, J.; Mosley, C.D.; Jones, S.P.; Lees, M.R.; Chen, A.; Jia, Q.X.; Choi, E.M.; MacManus-Driscoll, J.L. Colossal terahertz magnetoresistance at room temperature in epitaxial La0.7Sr0.3MnO3 nanocomposites and single-phase thin films. Nano Lett. 2017, 17, 2506–2511. [Google Scholar] [CrossRef]
- Trappen, R.; Mosley, C.D.; Jones, S.P.; Lees, M.R.; Chen, A.; Jia, Q.X.; Choi, E.M.; MacManus-Driscoll, J.L. Electrostatic potential and valence modulation in La0.7Sr0.3MnO3 thin flms. Sci. Rep. 2018, 8, 14313. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Liu, X.; Chen, Q.; Chen, Q. Electrical and magnetic properties of La1−xSrxMnO3 (0.1 ≤ x ≤ 0.25) ceramics prepared by sol–gel technique. Ceram. Int. 2019, 45, 16323–16330. [Google Scholar] [CrossRef]
- Soleymani, M.; Edrissi, M.; Alizadeh, A.M. Thermosensitive polymer-coated La0.73Sr0.27MnO3 nanoparticles: Potential applications in cancer hyperthermia therapy and magnetically activated drug delivery systems. Polym. J. 2015, 47, 797–801. [Google Scholar] [CrossRef]
- Schlottmann, P. Spin, charge, orbital and lattice degrees of freedom in quasi-cubic manganites: A brief review. Phys. B Condens. Matter 2009, 404, 2699–2704. [Google Scholar] [CrossRef]
- Loy, A.C.M.; Quitain, A.T.; Lam, M.K.; Yusup, S.; Sasaki, M.; Kida, T. Development of high microwave-absorptive bifunctional graphene oxide-based catalyst for biodiesel production. Energy Convers. Manag. 2019, 180, 1013–1025. [Google Scholar] [CrossRef]
- Lang, X.; Sun, X.; Liu, Z.; Nan, H.; Li, C.; Hu, X.; Tian, H. Ag nanoparticles decorated perovskite La0.85Sr0.15MnO3 as electrode materials for supercapacitors. Mater. Lett. 2019, 243, 34–37. [Google Scholar] [CrossRef]
- Afje, F.R.; Ehsani, M.H. Size-dependent photocatalytic activity of La0.8Sr0.2MnO3 nanoparticles prepared by hydrothermal synthesis. Mater. Res. Express 2018, 5, 045012. [Google Scholar] [CrossRef]
- Fkhar, L.; Lamouri, R.; Mahmoud, A.; Boschini, F.; Hamedoun, M.; Ez-Zahraouy, H.; Benyoussef, A.; Hlil, E.-K.; Ali, M.A.; Mounkachi, O. Enhanced Magnetic and Magnetocaloric Properties of La0.45Nd0.25Sr0.3MnO3/CuO Composite. J. Supercond. Nov. Magn. 2020, 33, 2543–2549. [Google Scholar] [CrossRef]
- Kumar, R.D.; Thangappan, R.; Jayavel, R. Enhanced visible light photocatalytic activity of LaMnO3 nanostructures for water purifcation. Res. Chem. Intermed. 2018, 44, 4323–4337. [Google Scholar] [CrossRef]
- Jain, M.; Li, Y.; Hundley, M.F.; Hawley, M.; Maiorov, B.; Campbell, I.H.; Civale, L.; Jia, Q.X.; Shukla, P.; Burrell, A.K.; et al. Magnetoresistance in polymer-assisted deposited Sr- and Ca-doped lanthanum manganite films. Appl. Phys. Lett. 2006, 88, 232510. [Google Scholar] [CrossRef]
- Ma, J.; Hu, J.; Li, Z.; Nan, C. Recent Progress in Multiferroic Magnetoelectric Composites: From Bulk to Thin Films. Adv. Mater. 2011, 23, 1062–1087. [Google Scholar] [CrossRef]
- Asín, L.; Ibarra, M.R.; Tres, A.; Goya, G.F. Controlled Cell Death by Magnetic Hyperthermia: Effects of Exposure Time, Field Amplitude, and Nanoparticle Concentration. Pharm. Res. 2012, 29, 1319–1327. [Google Scholar] [CrossRef]
- Sedky, A.; Ali, A.M.; Algarni, H. Structural, FTIR, optical and dielectric properties of Zn1−xAlxO ceramics for advanced applications. Opt. Quantum Electron. 2022, 54, 376. [Google Scholar] [CrossRef]
- Sedky, A.; Afify, N.; Almohammedi, A.; Sayed, M.; Ali, A.M.; Abd-Elnaiem, A.M. Structural, optical, and dielectric properties of M/SnO2 (M = Al2O3, NiO, Mn3O4) nanocomposites. Ceram. Int. 2023, 50, 3409–3421. [Google Scholar] [CrossRef]
- Sedky, A.; Afify, N.; Ali, A.M.; Algarni, H. On the dielectric behaviors of Zn1−x−yFexMyO ceramics for nonlinear optical and solar cell devices. Appl. Phys. A 2022, 128, 102. [Google Scholar] [CrossRef]
- Singh, J.; Singh, R.C. Structural, optical, dielectric and transport properties of ball mill synthesized ZnO–V2O5 nano-composites. J. Mol. Struct. 2020, 1215, 128261. [Google Scholar] [CrossRef]
- Acharya, A.D.; Sarwan, B. Tunability of Electronic Properties and Magnetic Behaviour of Nickel Oxide: A Review. Curr. Nanosci. 2019, 15, 354–370. [Google Scholar] [CrossRef]
- Sedky, A.; Afify, N.; Hakamy, A.; Abd-Elnaiem, A.M. Structural, optical, and dielectric properties of hydrothermally synthesized SnO2 nanoparticles, Cu/SnO2, and Fe/SnO2 nanocomposites. Phys. Scr. 2023, 98, 125929. [Google Scholar] [CrossRef]
- Parveen, A.; Ahmad, S.A.; Agrawal, S.; Azam, A. Room temperature variation in dielectric and electrical properties of Mn doped SnO2 nanoparticles. Mater. Today Proc. 2017, 4, 9429–9433. [Google Scholar] [CrossRef]
- Gupta, R.; Kumar, A.; Biswas, A.; Singh, R.; Gehlot, A.; Akram, S.V.; Verma, A.S. Advances in micro and nano-engineered materials for high-value capacitors for miniaturized electronics. J. Energy Storage 2022, 55, 105591. [Google Scholar] [CrossRef]
- Belkhaoui, C.; Mzabi, N.; Smaoui, H.; Daniel, P. Enhancing the structural, optical and electrical properties of ZnO nanopowders through (Al + Mn) doping. Results Phys. 2019, 12, 1686–1696. [Google Scholar] [CrossRef]
- Ehsani, M.; Kameli, P.; Razavi, F.; Ghazi, M.; Aslibeiki, B. Infuence of Sm-doping on the structural, magnetic, and electrical properties of La0.8−xSmxSr0.2MnO3. J. Alloys Compd. 2013, 579, 406–414. [Google Scholar] [CrossRef]
- Ehsani, M.H.; Kameli, P.; Ghazi, M.E.; Razavi, F.S.; Taheri, M. Tunable magnetic and magnetocaloric properties of La0.6Sr0.4MnO3 nanoparticles. J. Appl. Phys. 2013, 114, 223907. [Google Scholar] [CrossRef]
- Ehsani, M.; Raouf, T.; Razavi, F. Impact of Gd ion substitution on the magneto-caloric efect of La0.6-xGdxSr0.4MnO3 (x = 0, 0.0125, 0.05, 0.10) manganites. J. Magn. Magn. Mater. 2019, 475, 484–492. [Google Scholar] [CrossRef]
- Samoshkina, Y.E.; Edelman, I.; Rautskii, M.; Molokeev, M. Correlation between magneto-optical and transport properties of Sr-doped manganite flms. J. Alloys Compd. 2019, 782, 334–342. [Google Scholar] [CrossRef]
- Awana, V.P.; Schmitt, E.; Gmelin, E.; Gupta, A.; Sedky, A.; Narlikar, A.V.; de Lima, O.F.; Cardoso, C.A.; Malik, S.K.; Yelon, W.B. Effect of Zn substitution on para-to ferromagnetic transition temperature in La0.67Ca0.33Mn1−xZnxO3 colossal magnetoresistance material. J. Appl. Phys. 2000, 87, 5034. [Google Scholar] [CrossRef]
- El-Maghraby, E.M.; Sedky, A.; Yehia, A. The Effect of Zn-Substitution on the Anomalous Resistance Behavior of La1−x Ca x Mn1−y Zn y O3 Compounds. J. Low Temp. Phys. 2003, 133, 387–389. [Google Scholar] [CrossRef]
- Das, A.; De, S.; Bandyopadhyay, S.; Chatterjee, S.; Das, D. Modifed dielectric and magnetic properties of Fe and Co-substituted TbMnO3 nanoparticles. J. Alloys Compd. 2019, 778, 839–847. [Google Scholar] [CrossRef]
- Razi, Z.J.; Sebt, S.A.; Khajehnezhad, A. Magnetoresistance temperature dependence of LSMO and LBMO perovskite manganites. J. Theor. Appl. Phys. 2018, 12, 243–248. [Google Scholar] [CrossRef]
- Lim, K.P.; Ng, S.W.; Halim, S.A.; Chen, S.K.; Wong, J.K. Effect of Divalent Ions (A = Ca, Ba and Sr) Substitution in La-A-Mn-O Manganite on Structural, Magnetic and Electrical Transport Properties. Am. J. Appl. Sci. 2009, 6, 1153–1157. [Google Scholar] [CrossRef]
- Kurniawan, B.; Winarsih, S.; Ramadhan, M.R.; Naomi, A.; Laksmi, W. The effect of Ca-doping on structure and microstructure of La0.7(Ba1−xCax)0.3MnO3. AIP Conf. Proc. 2017, 1862, 030054. [Google Scholar]
- Gaur, A.; Gaur, U.K.; Yadav, K.; Varma, G.D. Study of structural, magnetic and magneto-transport properties of nanocrystalline La2/3Ca1/3MnO3 manganite. J. Optoelectron. Adv. Mater. 2010, 4, 989–994. [Google Scholar]
- Kameli, P.; Salamati, H.; Aezami, A. Infuence of grain size on magnetic and transport properties of polycrystalline La0.8Sr0.2MnO3 manganites. J. Alloys Comp. 2008, 450, 7–11. [Google Scholar] [CrossRef]
- Zhao, L.F.; Chen, W.; Shang, J.L.; Wang, Y.Q.; Yu, G.Q.; Xiao, X.; Miao, J.H.; Xia, Z.C.; Yuan, S.L. Low feld magnetoresistance observed in polycrystalline La0.67Ca0.33Mn1−xO3 sintered at low temperature. Mater. Sci. Eng. B 2006, 127, 193–197. [Google Scholar] [CrossRef]
- Chandrasekhar, K.D.; Das, A.K.; Mitra, C.; Venimadhav, A. The extrinsic origin of the magnetodielectric effect in the double perovskite La2NiMnO6. J. Phys. Condens. Matter. 2012, 24, 495901. [Google Scholar] [CrossRef]
- Turky, A.O.; Rashad, M.M.; Hassan, A.M.; Elnaggar, E.M.; Bechelany, M. Optical, electrical and magnetic properties of lanthanum strontium manganite La1−xSrxMnO3 synthesized through the citrate combustion method. Phys. Chem. Chem. Phys. 2017, 19, 6878–6886. [Google Scholar] [CrossRef] [PubMed]
- Nassar, K.I.; Rammeh, N.; Teixeira, S.S.; Graça, M.P.F. Effect of Pr substitution in the A site on the structural, dielectric and magnetic properties of double perovskite La2NiMnO6. Appl. Phys. A 2022, 128, 373. [Google Scholar] [CrossRef]
- Sayagues, M.J.; Cordoba, J.M.; Gotor, F.J. Room temperature mechanosynthesis of the La1−xSrxMnO3±δ (0 ≤ x ≤ 1) system and microstructural study. J. Solid State Chem. 2012, 188, 11–16. [Google Scholar] [CrossRef]
- Gupta, M.; Khan, W.; Yadav, P.; Kotnala, R.K.; Azam, A.; Naqvi, A.H. Synthesis and evolution of magnetic properties of Ni doped La2/3Sr1/3Mn1−xNixO3 nanoparticles. J. Appl. Phys. 2012, 111, 093706. [Google Scholar] [CrossRef]
- Afify, M.S.; El Faham, M.M.; Eldemerdash, U.; El Rouby, W.M.; El-Dek, S. Room temperature ferromagnetism in Ag doped LaMnO3 nanoparticles. J. Alloy. Compd. 2020, 861, 158570. [Google Scholar] [CrossRef]
- Ali, A.; Shah, W.H.; Safeen, A.; Ali, L.; Tufail, M.; Ullah, Z.; Safeen, K.; Eldin, S.M.; Ali, M.R.; Sohail, M.; et al. Effect of Ca doping on the arbitrary canting of magnetic exchange interactions in La1−xCaxMnO3 nanoparticles. Front. Mater. 2023, 10, 1117793. [Google Scholar] [CrossRef]
- Flores-Lasluisa, J.; Huerta, F.; Cazorla-Amorós, D.; Morallón, E. Manganese oxides/LaMnO3 perovskite materials and their application in the oxygen reduction reaction. Energy 2022, 247, 123456. [Google Scholar] [CrossRef]
- Sedky, A.; Hakamy, A.; Afify, N.; Bouhmaidi, S.; Setti, L.; Hamad, D.; AbdElnaiem, A.M. Comparative investigation of structural, photoluminescence, and magnetic characteristics of MxSn1−xOy nanocomposites. Appl. Phys. A 2023, 129, 669. [Google Scholar] [CrossRef]
- Li, X.; Cao, X.; Xu, L.; Liu, L.; Wang, Y.; Meng, C.; Wang, Z. High dielectric constant in Al-doped ZnO ceramics using high-pressure treated powders. J. Alloys Compd. 2016, 675, 90–94. [Google Scholar] [CrossRef]
- Hassan, A.A.S.; Khan, W.; Husain, S.; Dhiman, P.; Singh, M. Investigation of structural, optical, electrical, and magnetic properties of Fe-doped La0.7Sr0.3MnO3 manganites. Int. J. Appl. Ceram. Technol. 2020, 17, 2430–2438. [Google Scholar] [CrossRef]
- Karthik, K.; Dhanuskodi, S.; Gobinath, C.; Prabukumar, S.; Sivaramakrishnan, S. Nanostructured CdO-NiO composite for multifunctional applications. J. Phys. Chem. Solids 2018, 112, 106–118. [Google Scholar] [CrossRef]
- Soleymani, M.; Moheb, A.; Joudaki, E. High surface area nano-sized La0.6Ca0.4MnO3 perovskite powder prepared by low temperature pyrolysis of a modified citrate gel. Open Chem. 2009, 7, 809–817. [Google Scholar] [CrossRef]
- Wang, X.; Cui, Q.; Pan, Y.; Zou, G. X-Ray photoelectron and infrared transmission spectra of manganite system La0.5−xBixCa0.5MnO3 (0 ≤ x ≤ 0.25). J. Alloy. Compd. 2003, 354, 91–94. [Google Scholar] [CrossRef]
- Kumar, P.S.; Selvakumar, M.; Bhagabati, P.; Bharathi, B.; Karuthapandian, S.; Balakumar, S. CdO/ZnO nanohybrids: Facile synthesis and morphologically enhanced photocatalytic performance. RSC Adv. 2014, 4, 32977–32986. [Google Scholar] [CrossRef]
- Haase, M.; Weller, H.; Henglein, A. Photochemistry and radiation chemistry of colloidal semiconductors. 23. Electron storage on zinc oxide particles and size quantization. J. Phys. Chem. 1988, 92, 482–487. [Google Scholar] [CrossRef]
- Mitra, P.; Mondal, S. Structural and morphological characterization of ZnO thin films synthesized by successive ion layer adsorption and reaction. Prog. Theor. Appl. Phys. 2013, 1, 17–31. [Google Scholar]
- Mazen, S.A.; Zaki, H.M.; Mansour, S.F. Infrared Absorption and Dielectric Properties of Mg-Zn Ferrite. Int. J. Pure Appl. Phys. 2007, 3, 40–48. [Google Scholar]
- Bakeer, D.E.-S. Elastic study and optical dispersion characterization of Fe-substituted cobalt aluminate nanoparticles. Appl. Phys. A 2020, 126, 443. [Google Scholar] [CrossRef]
- Anupama, A.V.; Rathod, V.; Jali, V.M.; Sahoo, B. Composition dependent elastic and thermal properties of LiZn ferrites. J. Alloys Compd. 2017, 728, 1091–1100. [Google Scholar] [CrossRef]
- Babu, B.R.; Tatarchuk, T. Elastic properties and antistructural modeling for nickel-zinc ferrite-aluminates. Mater. Chem. Phys. 2018, 207, 534–541. [Google Scholar] [CrossRef]
- Varalaxmi, N.; Sivakumar, K.V. Elastic behavior of NiMgCuZn Ferrites in order to study the Phase Transitions. Ind. J. Appl. Res. 2014, 4, 537. [Google Scholar] [CrossRef]
- Senol, S.D.; Yalcin, B.; Ozugurlu, E.; Arda, L. Structure, microstructure, optical and photocatalytic properties of Mn-doped ZnO nanoparticles. Mater. Res. Express 2020, 7, 015079. [Google Scholar] [CrossRef]
- Siddique, M.N.; Ahmed, A.; Tripathi, P. Enhanced optical properties of pure and Sr doped NiO nanostructures: A comprehensive study. Optik 2019, 185, 599–608. [Google Scholar] [CrossRef]
- Trabelsi, A.B.G.; Chandekar, K.V.; Alkallas, F.; Ashraf, I.; Hakami, J.; Shkir, M.; Kaushik, A.; AlFaify, S. A comprehensive study on Co-doped CdS nanostructured films fit for optoelectronic applications. J. Mater. Res. Technol. 2022, 21, 3982–4001. [Google Scholar] [CrossRef]
- Muthreja, I.L.; Agarwal, A.K.; Kadu, M.S.; Pandhurnekar, C.P. Adsorption and kinetic behavior of fly ash used for the removal of lead from an aqueous solution. J. Chem. Technol. Metall. 2017, 52, 505–512. [Google Scholar]
- George, M.; Ajeesha, T.; Manikandan, A.; Anantharaman, A.; Jansi, R.; Kumar, E.R.; Slimani, Y.; Almessiere, M.; Baykal, A. Evaluation of Cu–MgFe2O4 spinel nanoparticles for photocatalytic and antimicrobial activates. J. Phys. Chem. Solids 2021, 153, 110010. [Google Scholar] [CrossRef]
- Chandekar, K.V.; Shkir, M.; Khan, A.; AlFaify, S. An in-depth study on physical properties of facilely synthesized Dy@CdS NPs through microwave route for optoelectronic technology. Mater. Sci. Semicond. Process. 2020, 118, 105184. [Google Scholar] [CrossRef]
- Turky, A.O.; Rashad, M.M.; Hassan, A.M.; Elnaggar, E.M.; Bechelany, M. Tailoring optical, magnetic and electric behavior of lanthanum strontium manganite La1−xSrxMnO3 (LSM) nanopowders prepared via a co-precipitation method with different Sr2+ ion contents. RSC Adv. 2016, 6, 17980–17986. [Google Scholar] [CrossRef]
- Suresh, S.; Vindhya, P.S.; Devika, S.; Kavitha, V.T. Structural, optical and dielectric properties of nanostructured La1−xSrxMnO3 perovskites. Mater. Today Commun. 2023, 36, 106657. [Google Scholar] [CrossRef]
- Ali, A.; Shah, W.H.; Ullah, Z.; Malik, S.; Rauf, M.; Askar, S.; Imran, N.; Ahmad, H. Narrowing of band gap and decrease in dielectric loss in La1−xSrxMnO3 for x = 0.0, 0.1, and 0.2 manganite nanoparticles. Front. Mater. 2024, 11, 1369122. [Google Scholar] [CrossRef]
- Ghozza, M.H.; Yahia, I.S.; Hussien, M.S.A. Structure, magnetic, and photocatalysis of La0.7Sr0.3MO3 (M = Mn, Co, and Fe) perovskite nanoparticles: Novel photocatalytic materials. Environ. Sci. Pollut. Res. 2023, 30, 61106–61122. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.; Basith, M.A.; Zubair, M.A.; Hossain, M.D.S.; Rubayyat, M.; Hakim, M.A.; Islam, M.D.F. Saturation magnetization and band gap tuning in BiFeO3 nanoparticles via co-substitution of Gd and Mn. J. Alloys Compd. 2016, 687, 701–706. [Google Scholar] [CrossRef]
- El Mesoudy, A.; Machon, D.; Ruediger, A.; Jaouad, A.; Alibart, F.; Ecoffey, S.; Drouin, D. Band gap narrowing induced by oxygen vacancies in reactively sputtered TiO2 thin films. Thin Solid Films 2023, 769, 139737. [Google Scholar] [CrossRef]
- Khan, R.; Tirth, V.; Ali, A.; Irshad, K.; Rahman, N.; Algahtani, A.; Sohail, M.; Isalm, S. Effect of Sn-doping on the structural, optical, dielectric and magnetic properties of ZnO nanoparticles for spintronics applications. J. Mater. Sci. Mater. Electron. 2021, 32, 21631–21642. [Google Scholar] [CrossRef]
- Sedky, A.; Ali, A.M.; Somaily, H.H.; Algarni, H. Electrical, photoluminescence and optical investigation of ZnO nanoparticles sintered at different temperatures. Opt. Quantum Electron. 2021, 55, 243. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, R. Investigation of refractive index dispersion parameters of Er doped ZnO thin films by WDD model. Optik 2021, 246, 167829. [Google Scholar] [CrossRef]
- Ebraheem, B.; Farag, A.; Ashour, A.; Roushdy, N.; El-Nahass, M. Enhancement of optical absorption and dispersion characteristics of nanocrystalline In2Se3 films: Impact of γ-ray irradiation. J. Mater. Sci. Mater. Electron. 2023, 34, 382. [Google Scholar] [CrossRef]
- Hassen, A.; El-Sayed, S.; Morsi, W.; El Sayed, A. Preparation, dielectric and optical properties of Cr2O3/PVC nanocomposite films. J. Adv. Phys. 2014, 4, 571–584. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, P.; Zhu, M.; Liu, M.; Ren, W.; Ye, Z. Structural and magnetic properties of La0.7Sr0.3MnO3 ferromagnetic thin film grown on PMN-PT by sol–gel method. J. Adv. Dielectr. 2017, 7, 1750029. [Google Scholar] [CrossRef]
- Mottaghi, N.; Trappen, R.B.; Kumari, S.; Huang, C.Y.; Yousefi, S.; Cabrera, G.B.; Aziziha, M.; Haertter, A.; Johnson, M.B.; Seehra, M.S. Observation and interpretation of negative remanent magnetization and inverted hysteresis loops in a thin film of La0.7Sr0.3MnO3. J. Phys. Condens. Matter. 2018, 30, 405804. [Google Scholar] [CrossRef]
- Mottaghi, N.; Seehra, M.S.; Trappen, R.; Kumari, S.; Huang, C.Y.; Yousefi, S.; Cabrera, G.B.; Romero, A.H.; Holcomb, M.B. Insights into the magnetic dead layer in La0.7Sr0.3MnO3 thin films from temperature, magnetic field and thickness dependence of their magnetization. AIP Adv. 2018, 8, 056319. [Google Scholar] [CrossRef]
- Sedky, A.; Ali, A.M.; Algarni, H. Structural, FTIR, optical and magnetic investigation of Zn1−xMxO ceramics with M=Cu, Mn: Comparative study. J. Alloy. Compd. 2022, 912, 165139. [Google Scholar] [CrossRef]
- Sedky, A.; Amin, S.A.; Mohamed, M. Electrical, photoluminescence and ferromagnetic characterization of pure and doped ZnO nanostructures. Appl. Phys. A 2019, 125, 308. [Google Scholar] [CrossRef]
- Amin, S.; Sedky, A. On the correlation between electrical, optical and magnetic properties of Zn1−xPrxO nanoparticles. Mater. Res. Express 2019, 6, 065903. [Google Scholar] [CrossRef]
- Rai, B.; Wang, L.; Mishra, S.R.; Nguyen, V.; Liu, J. Synthesis and magnetic properties of hard-soft SrFe10Al2O19/NiZnFe2O4 ferrite nanocomposites. J. Nanosci. Nanotechnol. 2014, 14, 5272–5277. [Google Scholar] [CrossRef]
- Mohamed, M.; Sedky, A.; Alshammari, A.S.; Alshammari, M.S.; Khan, Z.R.; Bouzidi, M.; Aly, K.A.; Lemine, O.M. On the correlation between mechanical, optical, and magnetic properties of co-substituted Sn1-x-yZnxMyOz metal-oxide ceramics with M=Fe, Co, Ni, and Mn. Ceram. Int. 2024, 50, 17311–17322. [Google Scholar] [CrossRef]
- Sedky, A.; Afify, N.; Omer, M.; Sayed, M.A.; Ali, A.M.; Almohammedi, A. Annealing temperature effect on structural, mechanical, and magnetic properties of Cd0.40M0.60ZnO2 (M = Mn, Ni) nanocomposites. Mater. Chem. Phys. 2023, 309, 128326. [Google Scholar] [CrossRef]
- Abbady, G.; Afify, N.; Sedky, A.; Hamad, D. Effect of annealing temperature on structural, optical and magnetic properties of Cd1−xMnxZnO2 nanocomposites: An investigation for ferromagnetic. Ceram. Int. 2023, 49, 18042–18054. [Google Scholar] [CrossRef]
- Nguyen, T.T.; LeMinh, D. Size effect on the structural andmagnetic properties of nanosized perovskite LaFeO3 prepared by different methods. Adv. Mater. Sci. Eng. 2012, 2012, 380306. [Google Scholar] [CrossRef]
- Obaidat, I.M.; Issa, B.; A Albiss, B.; Haik, Y. Investigating Negative Magnetization and Blocking Temperature in Aggregates of Ferrite Nanoparticles. IOP Conf. Ser. Mater. Sci. Eng. 2015, 92, 012011. [Google Scholar] [CrossRef]
- Dönni, A.; Pomjakushin, V.Y.; Zhang, L.; Yamaura, K.; Belik, A.A. Origin of negative magnetization phenomena in (Tm1−xMnx)MnO3: A neutron diffraction study. Phys. Rev. B 2020, 101, 054442. [Google Scholar] [CrossRef]
- Ghara, S.; Barts, E.; Vasin, K.; Kamenskyi, D.; Prodan, L.; Tsurkan, V.; Kézsmárki, I.; Mostovoy, M.; Deisenhofer, J. Magnetization reversal through an antiferromagnetic state. Nat. Commun. 2023, 14, 5174. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Yusuf, S.M. The phenomenon of negative magnetization and its implications. Phys. Rep. 2015, 556, 1–34. [Google Scholar] [CrossRef]
- Yousefi, M.; Ranjbar, M. Ultrasound and Microwave-Assisted Co-precipitation Synthesis of La0.75Sr0.25MnO3 Perovskite Nanoparticles from a New Lanthanum(III) Coordination Polymer Precursor. J. Inorg. Organomet. Polym. Mater. 2017, 27, 633–640. [Google Scholar] [CrossRef]
- Yang, W.; Hsu, C.; Liu, Y.; Hsu, R.; Lu, T.; Hu, C. The structure and photocatalytic activity of TiO2 thin films deposited by dc magnetron sputtering. Superlattices Microstruct. 2012, 52, 1131–1142. [Google Scholar] [CrossRef]
- Fu, Y.; Xu, Y.; Mao, Y.; Tan, M.; He, Q.; Mao, H.; Du, H.; Hao, D.; Wang, Q. Multi-functional Ag/Ag3PO4/AgPMo with S-scheme heterojunction for boosted photocatalytic performance. Sep. Purif. Technol. 2023, 317, 123922. [Google Scholar] [CrossRef]
- Zamiri, R.; Singh, B.; Bdikin, I.; Rebelo, A.; Belsley, M.S.; Ferreira, J. Influence of Mg doping on dielectric and optical properties of ZnO nano-plates prepared by wet chemical method. Solid State Commun. 2014, 195, 74–79. [Google Scholar] [CrossRef]
- Ojha, S.K.; Purkait, P.; Chatterjee, B.; Chakravorti, S. Application of Cole–Cole model to transformer oil-paper insulation considering distributed dielectric relaxation. High Volt. 2019, 4, 72–79. [Google Scholar] [CrossRef]
- Reddy, G.K.; Reddy, A.J.; Krishna, R.H.; Nagabhushana, B.; Gopal, G.R. Luminescence and spectroscopic investigations on Gd3+ doped ZnO nanophosphor. J. Asian Ceram. Soc. 2017, 5, 350–356. [Google Scholar] [CrossRef]
- van Dijken, A.; Meulenkamp, E.A.; Vanmaekelbergh, D.; Meijerink, A. The Kinetics of the Radiative and Nonradiative Processes in Nanocrystalline ZnO Particles upon Photoexcitation. J. Phys. Chem. B 2000, 104, 1715–1723. [Google Scholar] [CrossRef]
- Hassan, M.M.; Khan, W.; Azam, A.; Naqvi, A. Influence of Cr incorporation on structural, dielectric and optical properties of ZnO nanoparticles. J. Ind. Eng. Chem. 2015, 21, 283–291. [Google Scholar] [CrossRef]
- Hizi, W.; Gassoumi, M.; Rahmouni, H.; Guesmi, A.; Ben Hamadi, N.; Dhahri, E. Effect of Sintering Temperature and Polarization on the Dielectric and Electrical Properties of La0.9Sr0.1MnO3 Manganite in Alternating Current. Materials 2022, 15, 3683. [Google Scholar] [CrossRef] [PubMed]
- Manohar, A.; Krishnamoorthi, C.; Naidu, K.C.B.; Pavithra, C. Dielectric, magnetic hyperthermia, and photocatalytic properties of ZnFe2O4 nanoparticles synthesized by solvothermal reflux method. Appl. Phys. A 2019, 125, 477. [Google Scholar] [CrossRef]
- Ojha, S.K.; Purkait, P.; Chakravorti, S. Modeling of relaxation phenomena in transformer oil-paper insulation for understanding dielectric response measurements. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 3190–3198. [Google Scholar] [CrossRef]
- Babu, N.R.; Valente, M.; Rao, N.N.; Graça, M.; Raju, G.N.; Piasecki, M.; Kityk, I.; Veeraiah, N. Low temperature dielectric dispersion and electrical conductivity studies on Fe2O3 mixed lithium yttrium silicate glasses. J. Non-Crystalline Solids 2012, 358, 3175–3186. [Google Scholar] [CrossRef]
- Sedky, A.; Afify, N.; Almohammedi, A.; Ibrahim, E.M.M.; Ali, A.M. Structural, optical, photoluminescence and magnetic investigation of doped and Co-doped ZnO nanoparticles. Opt. Quantum Electron. 2023, 55, 456. [Google Scholar] [CrossRef]
- Mahapatra, T.; Halder, S.; Bhuyan, S.; Choudhary, R.N.P. Dielectric and electrical characterization of lead-free complex electronic ceramic: (Bi1/2Li1/2)(Zn1/2W1/2)O3. J. Mater. Sci. Mater. Electron. 2018, 29, 18742–18750. [Google Scholar] [CrossRef]
- Nasrallah, D.A.; El-Metwally, E.G.; Ismail, A.M. Structural, thermal, and dielectric properties of porous PVDF/Li4Ti5O12 nanocomposite membranes for high-power lithium-polymer batteries. Polym. Adv. Technol. 2020, 32, 1214–1229. [Google Scholar] [CrossRef]
Compound | La0.67Sr0.33Mn(1-x-y)ZnxCoyO3 | La2O3 | SrCo3 | Mn2O3 | ZnO | CoO | Mw (g) (Total) | M (g) (Total) | |
---|---|---|---|---|---|---|---|---|---|
Mw (g) | 328.81 | 147.63 | 157.88 | 81.38 | 74.93 | ||||
Sample | x | y | m (g) | m (g) | m (g) | m (g) | m (g) | ||
S1 | 0.00 | 0.00 | 2.055 | 0.459 | 1.486 | ------- | -------- | 424.89 | 4 |
S2 | 0.0125 | 0.0125 | 2.066 | 0.461 | 1.457 | 0.044 | 0.009 | 422.59 | 4 |
S3 | 0.025 | 0.025 | 2.074 | 0.464 | 1.425 | 0.019 | 0.018 | 420.92 | 4 |
S4 | 0.05 | 0.05 | 2.095 | 0.467 | 1.363 | 0.039 | 0.036 | 416.92 | 4 |
S5 | 0.10 | 0.10 | 2.135 | 0.477 | 1.235 | 0.080 | 0.073 | 408.95 | 4 |
S | a (Ẳ) | b (Ẳ) | c (Ẳ) | V (Ẳ)3 | β (°) | γ (°) | PS | D (nm) |
---|---|---|---|---|---|---|---|---|
S1 | 5.480 | 7.773 | 5.493 | 238.98 | 90.92 | 90.62 | 0.117 | 23.50 |
S2 | 5.481 | 7.776 | 5.496 | 234.23 | 90.54 | 90.50 | 0.114 | 21.67 |
S3 | 5.469 | 7.774 | 5.501 | 233.89 | 90.68 | 90.43 | 0.138 | 20.97 |
S4 | 5.472 | 7.758 | 5.487 | 232.91 | 90.84 | 90.61 | 0.173 | 17.36 |
S5 | 5.468 | 7.776 | 5.494 | 233.61 | 90.71 | 90.53 | 0.159 | 20.19 |
S | DSEM (nm) | w% (La) | w% (Sr) | w% (Mn) | w% (O) | w% (Zn) | w% (Co) | |
S1 | 956 | 63.03 | 4.32 | 32.20 | 5.11 | 0.00 | 0.00 | |
S2 | 788 | 57.91 | 1.76 | 27.54 | 5.21 | 0.90 | 2.01 | |
S3 | 720 | 53.98 | 2.56 | 25.11 | 14.10 | 1.94 | 2.32 | |
S4 | 841 | 59.50 | 1.90 | 22.85 | 9.40 | 2.49 | 4.05 | |
S5 | 737 | 61.92 | 1.46 | 22.71 | 4.09 | 4.25 | 5.56 |
S | θD (K) | γ | Y × 1012 (D/cm2) | β × 1012 (D/cm2) | G × 1011 (D/cm2) | L (M-O) nm | m* × 10−23 (g) |
---|---|---|---|---|---|---|---|
S1 | 720.54 | 0.285 | 5.27 | 4.07 | 2.05 | 0.549 | 5.07 |
S2 | 720.54 | 0.285 | 6.35 | 4.93 | 2.47 | 0.550 | 5.07 |
S3 | 747.60 | 0.277 | 6.96 | 5.21 | 2.72 | 0.550 | 5.07 |
S4 | 782.90 | 0.266 | 7.85 | 5.58 | 3.10 | 0.549 | 5.07 |
S5 | 665.49 | 0.270 | 5.61 | 4.07 | 2.21 | 0.549 | 5.07 |
S | Eg (eV) | ϵL | (N/m*) × 1046 (cm3·g)−1 | Eo (eV) | Ed (eV) |
---|---|---|---|---|---|
S1 | 3.85 | 5.07 | 3.69 | 9.55 | 41.88 |
S2 | 3.82 | 6.87 | 6.77 | 6.98 | 8.79 |
S3 | 3.65 | 1.88 | 2.46 | 5.93 | 4.26 |
S4 | 3.95 | 1.99 | 2.46 | 6.28 | 5.19 |
S5 | 3.75 | 2.78 | 4.92 | 7.71 | 10.63 |
S | Mt (300 K) (emu/g) | Mt (10 K) (emu/g) | Ms (300 K) (emu/g) | Ms (10 K) (emu/g) | Hc (300 K) (Oe) | Hc (10 K) (Oe) | Mr (300 K) (emu/g) | Mr (10 K) (emu/g) |
---|---|---|---|---|---|---|---|---|
S1 | 0.70 | 7.66 | 0.053 | 4.30 | 103 | 870 | 0.0045 | 1.23 |
S2 | 0.83 | 8.64 | 0.098 | 5.19 | 54 | 1170 | 0.0036 | 1.60 |
S3 | 1.27 | 13.78 | 0.191 | 7.76 | 12 | 1055 | 0.0072 | 2.45 |
S4 | 1.21 | 15.08 | 0.060 | 8.44 | 44 | 2216 | 0.0028 | 3.22 |
S5 | 0.93 | 10.11 | 0.128 | 5.18 | 60 | 2095 | 0.0059 | 2.08 |
S | γ (300 K) (emu·Oe/g) | γ (10 K) (emu·Oe/g) | Sq (300 K) | Sq (10 K) | μ (300 K) (μB) | μ (10 K) (μB) | ||
S1 | 5.570 | 3817.35 | 0.085 | 0.286 | 0.002 | 0.182 | ||
S2 | 5.400 | 6196.22 | 0.037 | 0.308 | 0.004 | 0.220 | ||
S3 | 2.339 | 8353.88 | 0.038 | 0.316 | 0.008 | 0.329 | ||
S4 | 2.694 | 19084.74 | 0.047 | 0.382 | 0.003 | 0.358 | ||
S5 | 7.837 | 11073.57 | 0.046 | 0.402 | 0.005 | 0.219 |
S | f (M\\) (Hz) | Z\(g) (MΩ) | Z\(gb) (MΩ) | RB (MΩ) | Ceff (nF) |
---|---|---|---|---|---|
S1 | 353 | 80.30 | 57.40 | 333 | 0.424 |
S2 | 168 | 211 | 638 | 952 | 0.145 |
S3 | 199 | 254 | 173 | 1000 | 0.134 |
S4 | 65 | 1050 | 657 | 5000 | 0.045 |
S5 | 137 | 411 | 192 | 909 | 0.105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, M.; Sedky, A.; Alshammari, A.S.; Khan, Z.R.; Bouzidi, M.; Alshammari, M.S. Structural, Optical, Magnetic, and Dielectric Investigations of Pure and Co-Doped La0.67Sr0.33Mn1-x-yZnxCoyO3 Manganites with (0.00 < x + y < 0.20). Crystals 2024, 14, 981. https://doi.org/10.3390/cryst14110981
Mohamed M, Sedky A, Alshammari AS, Khan ZR, Bouzidi M, Alshammari MS. Structural, Optical, Magnetic, and Dielectric Investigations of Pure and Co-Doped La0.67Sr0.33Mn1-x-yZnxCoyO3 Manganites with (0.00 < x + y < 0.20). Crystals. 2024; 14(11):981. https://doi.org/10.3390/cryst14110981
Chicago/Turabian StyleMohamed, Mansour, A. Sedky, Abdullah S. Alshammari, Z. R. Khan, M. Bouzidi, and Marzook S. Alshammari. 2024. "Structural, Optical, Magnetic, and Dielectric Investigations of Pure and Co-Doped La0.67Sr0.33Mn1-x-yZnxCoyO3 Manganites with (0.00 < x + y < 0.20)" Crystals 14, no. 11: 981. https://doi.org/10.3390/cryst14110981
APA StyleMohamed, M., Sedky, A., Alshammari, A. S., Khan, Z. R., Bouzidi, M., & Alshammari, M. S. (2024). Structural, Optical, Magnetic, and Dielectric Investigations of Pure and Co-Doped La0.67Sr0.33Mn1-x-yZnxCoyO3 Manganites with (0.00 < x + y < 0.20). Crystals, 14(11), 981. https://doi.org/10.3390/cryst14110981