Preparation and Study of Poly(Vinylidene Fluoride-Co-Hexafluoropropylene)-Based Composite Solid Electrolytes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PEL Composite Solid Electrolytes
2.3. Materials Characterization
2.4. Electrochemical Properties
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alamdar, S.; Zarif, M. Exploring lithium salt solution in sulfone and ethyl acetate-based electrolytes for Li-ion battery applications: A molecular dynamics simulation study†. J. Mater. Chem. A 2024, 12, 17471–17482. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, Y.J.; Wang, H.C.; Li, H.G.; Bao, H.H.; Zhao, Z.W.; Liu, B.H. Mechanical issues of lithium-ion batteries in road traffic conditions: A review. Thin-Walled Struct. 2024, 201, 111985. [Google Scholar] [CrossRef]
- Wu, X.X.; Ma, J.; Wang, J.X.; Zhang, X.; Zhou, G.M.; Liang, Z. Progress, Key Issues, and Future Prospects for Li-Ion Battery Recycling. Glob. Chall. 2022, 6, 2200067. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, L.; Wu, Y.Q.; Song, Y.Z.; Chen, Z.H.; He, X.M. Cathode regeneration and upcycling of spent LIBs: Toward sustainability. Energy Environ. Sci. 2023, 16, 2856–2868. [Google Scholar] [CrossRef]
- Mohan, I.; Raj, A.; Shubham, K.; Lata, D.B.; Mandal, S.; Kumar, S. Potential of potassium and sodium-ion batteries as the future of energy storage: Recent progress in anodic materials. J. Energy Storage 2022, 55, 105625. [Google Scholar] [CrossRef]
- Liu, L.H.; Cheng, B.S.; Yang, Z.W.; Wang, H.F.; Yue, C.; Hu, F. Oxocarbon Organic Conjugated Compounds for Lithium-ion Batteries and Solar Cells: Progress and Perspectives. Curr. Org. Chem. 2020, 24, 200–215. [Google Scholar] [CrossRef]
- Cao, W.J.; Qiu, Y.S.; Peng, P.; Jiang, F.M. A full-scale electrical-thermal-fluidic coupling model for li-ion battery energy storage systems. Appl. Therm. Eng. 2021, 185, 116360. [Google Scholar] [CrossRef]
- Mu, T.; Wang, Z.Q.; Yao, N.; Zhang, M.; Bai, M.; Wang, Z.H.; Wang, X.; Cai, X.; Ma, Y. Technological penetration and carbon-neutral evaluation of rechargeable battery systems for large-scale energy storage. J. Energy Storage 2023, 69, 107917. [Google Scholar] [CrossRef]
- Khan, F.; Rasul, M.; Sayem, A.; Mandal, N. Design and optimization of lithium-ion battery as an efficient energy storage device for electric vehicles: A comprehensive review. J. Energy Storage 2023, 71, 108033. [Google Scholar] [CrossRef]
- Han, D.; Son, H.; Han, S.; Song, C.; Jung, J.; Lee, S.; Choi, S.; Song, W.; Park, S. Hierarchical 3D Electrode Design with High Mass Loading Enabling High-Energy-Density Flexible Lithium-Ion Batteries. Small 2023, 19, 2305416. [Google Scholar] [CrossRef]
- Wang, H.C.; Duan, X.D.; Liu, B.H. The Anisotropic Homogenized Model for Pouch Type Lithium-Ion Battery Under Various Abuse Loadings. ASME J. Electrochem. Energy Convers. Storage 2021, 18, 021015. [Google Scholar] [CrossRef]
- Cortada-Torbellino, M.; Elvira, D.G.; El Aroudi, A.; Valderrama-Blavi, H. Review of Lithium-Ion Battery Internal Changes Due to Mechanical Loading. Batteries 2024, 10, 258. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Sun, Q.W.; Zhen, C.; Niu, Y.H.; Han, Y.P.; Zeng, G.F.; Chen, D.J.; Feng, C.; Chen, N.; Lv, W.Q.; et al. Recent progress in flame-retardant separators for safe lithium-ion batteries. Energy Storage Mater. 2021, 37, 628–647. [Google Scholar] [CrossRef]
- Zhang, J.J.; Yang, J.F.; Dong, T.T.; Zhang, M.; Chai, J.C.; Dong, S.M.; Wu, T.Y.; Zhou, X.H.; Cui, G.L. Aliphatic Polycarbonate-Based Solid-State Polymer Electrolytes for Advanced Lithium Batteries: Advances and Perspective. Small 2018, 14, 1800821. [Google Scholar] [CrossRef]
- Song, C.; Li, Z.G.; Peng, J.; Wu, X.H.; Peng, H.; Zhou, S.Y.; Qiao, Y.; Sun, H.; Huang, L.; Sun, S.G. Enhancing Li ion transfer efficacy in PEO-based solid polymer electrolytes to promote cycling stability of Li-metal batteries†. J. Mater. Chem. A 2022, 10, 16087–16094. [Google Scholar] [CrossRef]
- Zhao, M.K.; Zuo, X.X.; Ma, X.D.; Xiao, X.; Liu, J.S.; Nan, J.M. Self-supported PVdF/P(VC-VAc) blended polymer electrolytes for LiNi0.5Mn1.5O4/Li batteries. J. Membr. Sci. 2017, 532, 30–37. [Google Scholar] [CrossRef]
- Wang, J.; Yan, W.; Fu, J.J.; Wang, L.; Liu, B. Dynamic and Reversible Blending Interface on Polyoxovanadate Electrode for High-Performance Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2024, 16, 8098–8108. [Google Scholar] [CrossRef]
- Balakrishnan, N.T.; Melepurakkal, A.; Das, A.; KT, M.K.; Subramaniam, M.; Shelke, M.; Pullanchiyodan, A.; Raghavan, P. Safety enhanced novel polymer electrolytes for lithium-ion battery: Anomalous output performance with long term cycling stability by doping and polymer blending. Mater. Today Chem. 2024, 39, 102121. [Google Scholar] [CrossRef]
- Gong, X.; Xiao, Q.; Li, Q.Y.; Liang, W.C.; Chen, F.; Li, L.Y.; Ren, S.J. Cross-linked Electrospun Gel Polymer Electrolytes for Lithium-Ion Batteries. Chin. J. Polym. Sci 2024, 42, 1021–1028. [Google Scholar] [CrossRef]
- Chen, Y.L.; Song, Z.L.; Liu, H.C.; Xu, H.; Xi, Y.C.; Yin, C.Q.; Li, X.M.; Ma, L.; Yan, P.X.; Zhou, L. Cross-Linking Synergistic Effects to Enhance the Comprehensive Properties of Electrospun Polyimide Nanofiber Membranes for Advanced Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2024, 12, 5953–5964. [Google Scholar] [CrossRef]
- Li, M.Y.; Cheng, S.; Zhang, J.S.; Huang, C.; Gu, J.P.; Han, J.; Xu, X.; Chen, X.; Zhang, P.C.; You, Y. Poly(vinylidene fluoride)-based composite membranes with continuous metal–organic framework layer for high-performance separators of lithium-ion batteries. Chem. Eng. J. 2024, 487, 150709. [Google Scholar] [CrossRef]
- Yang, Z.; Jiang, M.X.; Cui, C.; Wang, Y.X.; Qin, J.W.; Wang, J.; Wang, Y.X.J.; Mao, B.G.; Cao, M.H. In-situ cross-linking strategy for stabilizing the LEDC of the solid-electrolyte interphase in lithium-ion batteries. Nano Energy 2023, 105, 107993. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, H.; Xia, E.J.; Wu, Y.M.; Li, Z.C. PEO/Li2ZrO3 composite electrolyte for solid-state rechargeable lithium battery. J. Energy Storage 2023, 65, 107283. [Google Scholar] [CrossRef]
- Ou, J.H.; Li, G.R.; Chen, Z.W. Improved Composite Solid Electrolyte through Ionic Liquid-Assisted Polymer Phase for Solid-State Lithium Ion Batteries. J. Electrochem. Soc. 2019, 166, A1785. [Google Scholar] [CrossRef]
- Han, W.; Kim, T.; Yoo, B.; Park, H. Tunable Dielectric Properties of Poly(vinylidenefluoride-co-hexafluoropropylene) Films with Embedded Fluorinated Barium Strontium Titanate Nanoparticles. Sci Rep. 2018, 8, 4086. [Google Scholar] [CrossRef]
- Basu, S.; Hwang, G.S. First-principles prediction of anomalously strong phase dependence of transport and mechanical properties of lithium fluoride. Acta Mater. 2022, 235, 118077. [Google Scholar] [CrossRef]
- Ding, P.P.; Lin, Z.Y.; Guo, X.W.; Wu, L.Q.; Wang, Y.T.; Guo, H.X.; Li, L.L.; Yu, H.J. Polymer electrolytes and interfaces in solid-state lithium metal batteries. Mater. Today 2021, 51, 449–474. [Google Scholar] [CrossRef]
- Xia, Q.; Yuan, S.G.; Zhang, Q.; Huang, C.; Liu, J.; Jin, H.Y. Designing the Interface Layer of Solid Electrolytes for All-Solid-State Lithium Batteries. Adv. Sci. 2024, 11, 2401453. [Google Scholar] [CrossRef]
- Raju, M.M.; Altayran, F.; Johnson, M.; Wang, D.L.; Zhang, Q.F. Crystal Structure and Preparation of Li7La3Zr2O12 (LLZO) Solid-State Electrolyte and Doping Impacts on the Conductivity: An Overview. Electrochem 2021, 2, 390–414. [Google Scholar] [CrossRef]
- Gu, Y.C.; Liu, H.Q. PVDF-HFP/LLZTO composite electrolytes with UV cure for solid-state lithium rechargeable batteries. J. Solid State Electrochem. 2023, 27, 2671–2679. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Sun, T.; Cui, J.; Shen, X.; Shi, C.; Cao, S.; Zhao, J.B. A homogenous solid polymer electrolyte prepared by facile spray drying method is used for room-temperature solid lithium metal batteries. Nano Res. 2023, 16, 5080–5086. [Google Scholar] [CrossRef]
- Park, T.; Lee, S.; Kim, D.M. Low-Temperature Manufacture of Cubic-Phase Li7La3Zr2O12 Electrolyte for All-Solid-State Batteries by Bed Powder. Crystals 2024, 14, 271. [Google Scholar] [CrossRef]
- Pei, F.; Huang, Y.M.; Wu, L.; Zhou, S.Y.; Kang, Q.; Lin, W.J.; Liao, Y.Q.; Zhang, Y.; Huang, K.; Shen, Y.; et al. Multisite Crosslinked Poly(ether-urethane)-Based Polymer Electrolytes for High-Voltage Solid-State Lithium Metal Batteries. Adv. Mater. 2024, 2024, 09269. [Google Scholar] [CrossRef] [PubMed]
- You, D.L.; Lai, Z.W.; Wei, W.; Xiong, H.M. High-Voltage All-Solid-State Lithium Metal Batteries Enabled by Localized High-Salt-Concentration In-Chain Clustering Copolymer Electrolytes. Adv. Funct. Mater. 2024, 2415464. [Google Scholar] [CrossRef]
- Gao, L.X.; Tang, B.; Jiang, H.Y.; Xie, Z.J.; Wei, J.P.; Zhou, Z. Fiber-Reinforced Composite Polymer Electrolytes for Solid-State Lithium Batteries. Adv. Sustain. Syst. 2022, 6, 2100389. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Z.; Wu, Y.X.; Li, Y.; Yue, Z.Y.; Chen, M.H. PVDF-HFP/PAN/PDA@LLZTO Composite Solid Electrolyte Enabling Reinforced Safety and Outstanding Low-Temperature Performance for Quasi-Solid-State Lithium Metal Batteries. ACS Appl. Mater. Interfaces 2023, 15, 21526–21536. [Google Scholar] [CrossRef]
- Zou, K.; Cai, Z.; Ke, X.; Wang, K.L.; Tan, X.Q.; Luo, D.D.; Huang, F.; Wang, C.Y.; Cheng, J.K.; Xiao, R.G. Electrochemical properties of LATP ceramic electrolyte doped with LiBiO3 sintering additive and its derived sandwich structure composite solid electrolyte. Ionics 2023, 29, 2665–2678. [Google Scholar] [CrossRef]
- Guan, D.C.; Huang, Y.; He, M.M.; Hu, G.R.; Peng, Z.D.; Cao, Y.B.; Du, K. Multilayer PEO/LLZTO composite electrolyte enables high-performance solid-state Li-ion batteries. Ionics 2021, 27, 4127–4134. [Google Scholar] [CrossRef]
- Xu, K.; Xu, C.; Jiang, Y.J.; Cai, J.H.; Ni, J.X.; Lai, C.Y. Sandwich structured PVDF-HFP-based composite solid electrolytes for solid-state lithium metal batteries. Ionics 2022, 28, 3243–3253. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, X.K.; Xiang, Y.; Liu, K. Strategies to enhance Li+ transference number in liquid electrolytes for better lithium batteries. Nano Res. 2023, 16, 8055–8071. [Google Scholar] [CrossRef]
LLZTO Content (wt. %) | Bulk Impedance (Ω) | Ionic Conductivity (S/cm) |
---|---|---|
5% | 93 | 1.3 × 10−4 |
10% | 36 | 5.1 × 10−4 |
15% | 177 | 6.3 × 10−5 |
20% | 359 | 2.6 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, M.; Lan, L.; Shen, P.; Liang, Z.; Wang, F.; Zhong, Y.; Wu, C.; Kong, F.; Hu, Q. Preparation and Study of Poly(Vinylidene Fluoride-Co-Hexafluoropropylene)-Based Composite Solid Electrolytes. Crystals 2024, 14, 982. https://doi.org/10.3390/cryst14110982
Huang M, Lan L, Shen P, Liang Z, Wang F, Zhong Y, Wu C, Kong F, Hu Q. Preparation and Study of Poly(Vinylidene Fluoride-Co-Hexafluoropropylene)-Based Composite Solid Electrolytes. Crystals. 2024; 14(11):982. https://doi.org/10.3390/cryst14110982
Chicago/Turabian StyleHuang, Meihong, Lingxiao Lan, Pengcheng Shen, Zhiyong Liang, Feng Wang, Yuling Zhong, Chaoqun Wu, Fanxiao Kong, and Qicheng Hu. 2024. "Preparation and Study of Poly(Vinylidene Fluoride-Co-Hexafluoropropylene)-Based Composite Solid Electrolytes" Crystals 14, no. 11: 982. https://doi.org/10.3390/cryst14110982
APA StyleHuang, M., Lan, L., Shen, P., Liang, Z., Wang, F., Zhong, Y., Wu, C., Kong, F., & Hu, Q. (2024). Preparation and Study of Poly(Vinylidene Fluoride-Co-Hexafluoropropylene)-Based Composite Solid Electrolytes. Crystals, 14(11), 982. https://doi.org/10.3390/cryst14110982