Novel Alternative Ni-Based Binder Systems for Hardmetals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Composition
2.2. Powder Preparation and Sintering Process
2.3. Sample Preparation and Characterization Methods
3. Results and Discussion
3.1. Thermodynamic Calculations
3.2. Thermophysical Properties
3.3. FAST Densification Behaviour
3.4. Phase Analysis and Microstructure
3.5. Mechanical Properties
4. Conclusions
- WC-Ni + Mn/Fe/Cu/Si/Ge can be consolidated by SinterHIP as well as FAST with the formation of a two-phase microstructure with a single-phase alloyed binder and the hard phase WC.
- Mn and Si oxides were found in the FAST prepared samples, which could not be reduced due to the short sintering time and low sintering temperature.
- Theoretical calculations predicted a significant decrease in solidus temperatures in the C range of the two-phase area in comparison to the pure Ni binder, especially with the addition of Mn, Si, and Ge. This could be confirmed by dilatometric and DSC measurements.
- Alloying WC-Ni leads to a shift of the two-phase area relative to the C content of the compositions. This was most pronounced in WC-NiMn and leads to the formation of the mixed carbide eta carbide in the SinterHIP sample.
- While the WC grain size for the FAST consolidated compositions was quite uniform, those treated by SinterHIP with the formation of a liquid phase revealed a certain grain growth inhibiting effect with the addition of the alloying elements to WC-Ni. This was most obvious in the Mn and Si containing samples.
- The overall bigger WC grain size of the SinterHIP treated samples leads to a higher toughness and lower hardness in comparison to samples prepared by FAST, with the exception of WC-NiMn due to the formation of eta carbide.
- With the addition of Mn and Si, hardness increased significantly for the SinterHIP treated samples.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Heinrichs, J.; Norgren, S.; Jacobson, S.; Yvell, K.; Olsson, M. Influence of binder metal on wear initiation of cemented carbides in sliding contact with granite. Wear 2021, 470–471, 203645. [Google Scholar] [CrossRef]
- Ekemar, S.; Lindholm, L.; Hartzell, T. Nickel as a binder in WC-based cemented carbides. R&HM 1982, 1, 37–40. [Google Scholar]
- Suzuki, H.; Hayashi, K.; Takashima, Y.; Nakayama, F. Mechanical Properties of Ni-Bonded WC Base Cemented Carbides at Elevated Temperatures. J. Jpn. Soc. Powder Powder Metall. 1981, 28, 61–66. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J.; Lin, N.; Li, K.; Fu, K.; Huang, B.; He, Y. Effects of Ni addition and cyclic sintering on microstructure and mechanical properties of coarse grained WC–10Co cemented carbides. Int. J. Refract. Met. Hard Mater. 2016, 57, 64–69. [Google Scholar] [CrossRef]
- Schubert, W.D.; Fugger, M.; Wittmann, B.; Useldinger, R. Aspects of sintering of cemented carbides with Fe-based binders. Int. J. Refract. Met. Hard Mater. 2015, 49, 110–123. [Google Scholar] [CrossRef]
- Soria-Biurrun, T.; Sánchez-Moreno, J.M.; Frisk, K. Experimental and theoretical study of WC-40Fe-20Co-40Ni. Int. J. Refract. Met. Hard Mater. 2022, 102, 105719. [Google Scholar] [CrossRef]
- Chychko, A.; García, J.; Collado Ciprés, V.; Holmström, E.; Blomqvist, A. HV-KIC property charts of cemented carbides: A comprehensive data collection. Int. J. Refract. Met. Hard Mater. 2022, 103, 105763. [Google Scholar] [CrossRef]
- Sarin, V.K.; Mari, D.; Llanes, L.; Nebel, C.E. Comprehensive Hard Materials: VOLUME 1-3: Hardmetals, Ceramics, Super Hard Materials; Elsevier: Amsterdam, The Netherlands; Waltham, MA, USA; Heidelberg, Germany, 2014; ISBN 9780080965284. [Google Scholar]
- Konyashin, I.; Ries, B. Cemented Carbides; Elsevier: Amsterdam, The Netherlands, 2022; ISBN 9780128228210. [Google Scholar]
- Pötschke, J.; Säuberlich, T.; Vornberger, A.; Meese-Marktscheffel, J.A. Solid state sintered nanoscaled hardmetals and their properties. Int. J. Refract. Met. Hard Mater. 2018, 72, 45–50. [Google Scholar] [CrossRef]
- Aleksandrov Fabijanić, T.; Kurtela, M.; Škrinjarić, I.; Pötschke, J.; Mayer, M. Electrochemical Corrosion Resistance of Ni and Co Bonded Near-Nano and Nanostructured Cemented Carbides. Metals 2020, 10, 224. [Google Scholar] [CrossRef]
- Rocha, A.F.; Bastos, A.C.; Cardoso, J.P.; Rodrigues, F.; Fernandes, C.M.; Soares, E.; Sacramento, J.; Senos, A.; Ferreira, M. Corrosion behaviour of WC hardmetals with nickel-based binders. Corros. Sci. 2019, 147, 384–393. [Google Scholar] [CrossRef]
- de Gaudenzi, G.P.; Tavola, F.; Tedeschi, S.; Bozzini, B. Corrosion Behaviour of Cemented Carbides with Co- and Ni-Alloy Binders in the Presence of Abrasion. Metals 2022, 12, 1914. [Google Scholar] [CrossRef]
- Santos, R.F.; Rocha, A.F.; Bastos, A.C.; Cardoso, J.P.; Rodrigues, F.; Fernandes, C.M.; Sacramento, J.; Ferreira, M.; Senos, A.; Fonseca, C.; et al. Microstructural characterization and corrosion resistance of WC-Ni-Cr-Mo composite—The effect of Mo. Int. J. Refract. Met. Hard Mater. 2020, 86, 105090. [Google Scholar] [CrossRef]
- Santos, R.F.; Rocha, A.F.; Bastos, A.C.; Cardoso, J.P.; Rodrigues, F.; Fernandes, C.M.; Sacramento, J.; Ferreira, M.; Senos, A.; Fonseca, C.; et al. The effect of Cr content on the corrosion resistance of WC-Ni-Cr-Mo composites. Int. J. Refract. Met. Hard Mater. 2021, 95, 105434. [Google Scholar] [CrossRef]
- Steinlechner, R.; de Oro Calderon, R.; Koch, T.; Linhardt, P.; Schubert, W.D. A study on WC-Ni cemented carbides: Constitution, alloy compositions and properties, including corrosion behaviour. Int. J. Refract. Met. Hard Mater. 2022, 103, 105750. [Google Scholar] [CrossRef]
- Pötschke, J.; Richter, V.; Gestrich, T.; Säuberlich, T.; Meese-Marktscheffel, J.A. Grain growth inhibition in ultrafine hardmetals. Int. J. Refract. Met. Hard Mater. 2017, 66, 95–104. [Google Scholar] [CrossRef]
- Pötschke, J.; Gestrich, T.; Richter, V. Grain growth inhibition of hardmetals during initial heat-up. Int. J. Refract. Met. Hard Mater. 2018, 72, 117–125. [Google Scholar] [CrossRef]
- Wittmann, B.; Schubert, W.D.; Lux, B. WC grain growth and grain growth inhibition in nickel and iron binder hardmetals. Int. J. Refract. Met. Hard Mater. 2002, 20, 51–60. [Google Scholar] [CrossRef]
- Li, G.; Peng, Y.; Yan, L.; Xu, T.; Long, J.; Luo, F. Effects of Cr concentration on the microstructure and properties of WC-Ni cemented carbides. J. Mater. Res. Technol. 2020, 9, 902–907. [Google Scholar] [CrossRef]
- Cooper, R.; Manktelow, S.A.; Wong, F.; Collins, L.E. The sintering characteristics and properties of hard metal with Ni-Cr binders. Mater. Sci. Eng. A 1988, 105–106, 269–273. [Google Scholar] [CrossRef]
- Eriksson, M.; Radwan, M.; Shen, Z. Spark plasma sintering of WC, cemented carbide and functional graded materials. Int. J. Refract. Met. Hard Mater. 2013, 36, 31–37. [Google Scholar] [CrossRef]
- Buravleva, A.A.; Fedorets, A.N.; Vornovskikh, A.A.; Ognev, A.V.; Nepomnyushchaya, V.A.; Sakhnevich, V.N.; Lembikov, A.O.; Kornakova, Z.E.; Kapustina, O.V.; Tarabanova, A.E.; et al. Spark Plasma Sintering of WC-Based 10wt%Co Hard Alloy: A Study of Sintering Kinetics and Solid-Phase Processes. Materials 2022, 15, 1091. [Google Scholar] [CrossRef] [PubMed]
- Cha, S.I.; Hong, S.H.; Byung, K.K. Spark plasma sintering behavior of nanocrystalline WC-10Co cemented carbide powder. Mater. Sci. Eng. 2003, A351, 31–38. [Google Scholar] [CrossRef]
- von Spalden, M.; Pötschke, J.; Rosinski, M. Low Temperature Sintering Of WC Based Diamond Enhanced Cemented Carbides With Novel Co-Free Binder Systems. World PM 2022. [Google Scholar]
- Chang, S.-H.; Chen, S.-L. Characterization and properties of sintered WC–Co and WC–Ni–Fe hard metal alloys. J. Alloys Compd. 2014, 585, 407–413. [Google Scholar] [CrossRef]
- Toller, L.; Jacobson, S.; Norgren, S. Life time of cemented carbide inserts with Ni-Fe binder in steel turning. Wear 2017, 376–377, 1822–1829. [Google Scholar] [CrossRef]
- Panteleev, I.B.; Lukashova, T.V.; Ordan’yan, S.S. High-temperature strength and refractoriness of doped WC-Co-Ni-Re(Mn) hard alloys. Russ. J. Non-Ferr. Met. 2011, 52, 295–297. [Google Scholar] [CrossRef]
- Correa, E.O.; Santos, J.N.; Klein, A.N. Microstructure and mechanical properties of WC Ni–Si based cemented carbides developed by powder metallurgy. Int. J. Refract. Met. Hard Mater. 2010, 28, 572–575. [Google Scholar] [CrossRef]
- Jang, K.-H.; Seo, S.P.; Kim, C.Y.; Kim, K.-Y.; Lee, G.-G. Effect of Si on the Mechanical Properties of WC-Ni Hard Metal. Multi-Funct. Mater. Struct. III 2010, 123–125, 1211–1214. [Google Scholar] [CrossRef]
- Huang, Z.; Ren, X.; Liu, M.; Xu, C.; Zhang, X.; Guo, S.; Chen, H. Effect of Cu on the microstructures and properties of WC-6Co cemented carbides fabricated by SPS. Int. J. Refract. Met. Hard Mater. 2017, 62, 155–160. [Google Scholar] [CrossRef]
- Li, J.; Cheng, J.; Chen, P.; Chen, W.; Wei, B.; Liu, J. Effects of partial substitution of copper for cobalt on the microstructure and properties of ultrafine-grained WC-Co cemented carbides. J. Alloys Compd. 2018, 735, 43–50. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, W.; Zhong, C.; Wu, J.; Ye, Y.W. Effects of partial substitution of Cu for Co on the microstructure and properties of WC-Co-Mo cemented carbides. Ceram. Int. 2021, 47, 13519–13527. [Google Scholar] [CrossRef]
- Roulon, Z.; Missiaen, J.-M.; Lay, S. Shrinkage and microstructure evolution during sintering of cemented carbides with alternative binders. Int. J. Refract. Met. Hard Mater. 2021, 101, 105665. [Google Scholar] [CrossRef]
Designation | Content/wt.% | TD/g/cm³ | ||
---|---|---|---|---|
WC | Ni | Mn/Fe/Cu/Si/Ge | ||
WC-Ni | 87.55 | 12.45 | - | 14.318 |
WC-NiMn | 87.85 | 10.42 | 1.72 | 14.269 |
WC-NiFe | 87.76 | 10.48 | 1.76 | 14.285 |
WC-NiCu | 87.55 | 10.45 | 2.00 | 14.318 |
WC-NiSi | 88.66 | 11.07 | 0.40 | 14.159 |
WC-NiGe | 88.15 | 10.84 | 1.01 | 14.221 |
Powders | Average Particle Size/µm | Manufacturer |
---|---|---|
WC | 1.4 | H.C. Stark Tungsten GmbH, Goslar, Germany |
Ni | 2.5 | Eurotungstene, Grenoble, France |
Mn | 10.0 | GoodFellow, Cambridge, UK |
Fe | 1.6 | BASF SE, Ludwigshafen am Rhein, Germany |
Cu | 0.9 | CNPC Powder N.A. Inc., Vancouver, BC, Canada |
Si | <10 µm | Elkem ASA, Oslo, Norway |
Ge | <250 µm | HMW Hauner GmbH & Co. KG, Röttenbach, Germany |
Sample | dmean, µm | d10, µm | d50, µm | d90, µm |
---|---|---|---|---|
WC-Ni | 0.80 ± 0.54 | 0.25 | 0.68 | 1.52 |
WC-NiMn | 0.46 ± 0.29 | 0.17 | 0.40 | 0.81 |
WC-NiFe | 0.59 ± 0.38 | 0.19 | 0.50 | 1.08 |
WC-NiCu | 0.61 ± 0.44 | 0.19 | 0.52 | 1.13 |
WC-NiSi | 0.52 ± 0.33 | 0.19 | 0.44 | 0.98 |
WC-NiGe | 0.64 ± 0.41 | 0.21 | 0.56 | 1.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spalden, M.v.; Pötschke, J.; Michaelis, A. Novel Alternative Ni-Based Binder Systems for Hardmetals. Crystals 2024, 14, 1013. https://doi.org/10.3390/cryst14121013
Spalden Mv, Pötschke J, Michaelis A. Novel Alternative Ni-Based Binder Systems for Hardmetals. Crystals. 2024; 14(12):1013. https://doi.org/10.3390/cryst14121013
Chicago/Turabian StyleSpalden, Mathias von, Johannes Pötschke, and Alexander Michaelis. 2024. "Novel Alternative Ni-Based Binder Systems for Hardmetals" Crystals 14, no. 12: 1013. https://doi.org/10.3390/cryst14121013
APA StyleSpalden, M. v., Pötschke, J., & Michaelis, A. (2024). Novel Alternative Ni-Based Binder Systems for Hardmetals. Crystals, 14(12), 1013. https://doi.org/10.3390/cryst14121013