Application of Serial Crystallography for Merging Incomplete Macromolecular Crystallography Datasets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protein Preparation and Crystallization
2.2. Data Collection
2.3. Data Processing
2.4. Structure Determination
3. Results
3.1. Merging of the Incomplete Dataset Using the SX Program
3.2. Comparison of the Complete Merged and Incomplete Datasets
3.3. Indexing Algorithm
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smyth, M.S.; Martin, J.H. X Ray crystallography. Mol. Pathol. 2000, 53, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y. A Glimpse of Structural Biology through X-Ray Crystallography. Cell 2014, 159, 995–1014. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Hou, J.; Zimmerman, M.D.; Wlodawer, A.; Minor, W. The future of crystallography in drug discovery. Expert Opin. Drug Discov. 2013, 9, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.R.; Porebski, P.J.; Chruszcz, M.; Minor, W. X-ray crystallography: Assessment and validation of protein-small molecule complexes for drug discovery. Expert Opin. Drug Discov. 2011, 6, 771–782. [Google Scholar] [CrossRef] [PubMed]
- Roda, S.; Robles-Martín, A.; Xiang, R.; Kazemi, M.; Guallar, V. Structural-Based Modeling in Protein Engineering. A Must Do. J. Phys. Chem. B 2021, 125, 6491–6500. [Google Scholar] [CrossRef]
- Ovchinnikov, S.; Huang, P.-S. Structure-based protein design with deep learning. Curr. Opin. Chem. Biol. 2021, 65, 136–144. [Google Scholar] [CrossRef]
- Ni, T.W.; Tofanelli, M.A.; Ackerson, C.J. Structure Determination by Single Crystal X-ray Crystallography. In Protected Metal Clusters—From Fundamentals to Applications; Frontiers of Nanoscience; Elsevier: Amsterdam, The Netherlands, 2015; pp. 103–125. [Google Scholar]
- Bernstein, H.J.; Förster, A.; Bhowmick, A.; Brewster, A.S.; Brockhauser, S.; Gelisio, L.; Hall, D.R.; Leonarski, F.; Mariani, V.; Santoni, G.; et al. Gold Standard for macromolecular crystallography diffraction data. IUCrJ 2020, 7, 784–792. [Google Scholar] [CrossRef]
- Heras, B.; Martin, J.L. Post-crystallization treatments for improving diffraction quality of protein crystals. Acta Crystallogr. D Biol. Crystallogr. 2005, 61, 1173–1180. [Google Scholar] [CrossRef]
- Abe, M.; Suzuki, R.; Kojima, K.; Tachibana, M. Evaluation of crystal quality of thin protein crystals based on the dynamical theory of X-ray diffraction. IUCrJ 2020, 7, 761–766. [Google Scholar] [CrossRef]
- Nam, K.H. Effects of Radiation Damage on Metal-Binding Sites in Thermolysin. Crystals 2024, 14, 876. [Google Scholar] [CrossRef]
- Aller, P.; Geng, T.; Evans, G.; Foadi, J. Applications of the BLEND Software to Crystallographic Data from Membrane Proteins. In The Next Generation in Membrane Protein Structure Determination; Advances in Experimental Medicine and Biology; Springer: Berlin/Heidelberg, Germany, 2016; pp. 119–135. [Google Scholar]
- Evans, P.R.; Murshudov, G.N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 2013, 69, 1204–1214. [Google Scholar] [CrossRef] [PubMed]
- Foadi, J.; Aller, P.; Alguel, Y.; Cameron, A.; Axford, D.; Owen, R.L.; Armour, W.; Waterman, D.G.; Iwata, S.; Evans, G. Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 2013, 69, 1617–1632. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, K.; Hirata, K.; Yamamoto, M. KAMO: Towards automated data processing for microcrystals. Acta Crystallogr. D Struct. Biol. 2018, 74, 441–449. [Google Scholar] [CrossRef]
- Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 125–132. [Google Scholar] [CrossRef]
- Kabsch, W. Processing of X-ray snapshots from crystals in random orientations. Acta Crystallogr. D Biol. 2014, 70, 2204–2216. [Google Scholar] [CrossRef]
- Akey, D.L.; Terwilliger, T.C.; Smith, J.L. Efficient merging of data from multiple samples for determination of anomalous substructure. Acta Crystallogr. D Struct. Biol. 2016, 72, 296–302. [Google Scholar] [CrossRef]
- Martin-Garcia, J.M.; Conrad, C.E.; Coe, J.; Roy-Chowdhury, S.; Fromme, P. Serial femtosecond crystallography: A revolution in structural biology. Arch. Biochem. Biophys. 2016, 602, 32–47. [Google Scholar] [CrossRef] [PubMed]
- Nam, K.H. Guide to serial synchrotron crystallography. Curr. Res. Struct. Biol. 2024, 7, 100131. [Google Scholar] [CrossRef]
- Mehrabi, P.; Bücker, R.; Bourenkov, G.; Ginn, H.M.; von Stetten, D.; Müller-Werkmeister, H.M.; Kuo, A.; Morizumi, T.; Eger, B.T.; Ou, W.L.; et al. Serial femtosecond and serial synchrotron crystallography can yield data of equivalent quality: A systematic comparison. Sci. Adv. 2021, 7, eabf1380. [Google Scholar] [CrossRef]
- Hekstra, D.R. Emerging Time-Resolved X-Ray Diffraction Approaches for Protein Dynamics. Annu. Rev. Biophys. 2023, 52, 255–274. [Google Scholar] [CrossRef]
- Westenhoff, S.; Meszaros, P.; Schmidt, M. Protein motions visualized by femtosecond time-resolved crystallography: The case of photosensory vs photosynthetic proteins. Curr. Opin. Struct. Biol. 2022, 77, 102481. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Nam, K.H. Recent chemical mixing devices for time-resolved serial femtosecond crystallography. TrAC Trends Anal. Chem. 2024, 172, 117554. [Google Scholar] [CrossRef]
- Henkel, A.; Oberthür, D. A snapshot love story: What serial crystallography has done and will do for us. Acta Crystallogr. D Struct. Biol. 2024, 80, 563–579. [Google Scholar] [CrossRef] [PubMed]
- Hough, M.A.; Owen, R.L. Serial synchrotron and XFEL crystallography for studies of metalloprotein catalysis. Curr. Opin. Struct. Biol. 2021, 71, 232–238. [Google Scholar] [CrossRef]
- Park, J.; Nam, K.H. Sample Delivery Systems for Serial Femtosecond Crystallography at the PAL-XFEL. Photonics 2023, 10, 557. [Google Scholar] [CrossRef]
- Zhao, F.Z.; Zhang, B.; Yan, E.K.; Sun, B.; Wang, Z.J.; He, J.H.; Yin, D.C. A guide to sample delivery systems for serial crystallography. FEBS J. 2019, 286, 4402–4417. [Google Scholar] [CrossRef]
- Grünbein, M.L.; Nass Kovacs, G. Sample delivery for serial crystallography at free-electron lasers and synchrotrons. Acta Crystallogr. D Biol. Crystallogr. 2019, 75, 178–191. [Google Scholar] [CrossRef]
- Martiel, I.; Muller-Werkmeister, H.M.; Cohen, A.E. Strategies for sample delivery for femtosecond crystallography. Acta Crystallogr. D Struct. Biol. 2019, 75, 160–177. [Google Scholar] [CrossRef]
- White, T.A.; Barty, A.; Stellato, F.; Holton, J.M.; Kirian, R.A.; Zatsepin, N.A.; Chapman, H.N. Crystallographic data processing for free-electron laser sources. Acta Crystallogr. D Biol. Crystallogr. 2013, 69, 1231–1240. [Google Scholar] [CrossRef]
- White, T.A.; Mariani, V.; Brehm, W.; Yefanov, O.; Barty, A.; Beyerlein, K.R.; Chervinskii, F.; Galli, L.; Gati, C.; Nakane, T.; et al. Recent developments in CrystFEL. J. Appl. Crystallogr. 2016, 49, 680–689. [Google Scholar] [CrossRef]
- Lyubimov, A.Y.; Uervirojnangkoorn, M.; Zeldin, O.B.; Brewster, A.S.; Murray, T.D.; Sauter, N.K.; Berger, J.M.; Weis, W.I.; Brunger, A.T. IOTA: Integration optimization, triage and analysis tool for the processing of XFEL diffraction images. J. Appl. Crystallogr. 2016, 49, 1057–1064. [Google Scholar] [CrossRef]
- Li, X.; Li, C.; Liu, H. ClickX: A visualization-based program for preprocessing of serial crystallography data. J. Appl. Crystallogr. 2019, 52, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Boutet, S.; Lomb, L.; Williams, G.J.; Barends, T.R.M.; Aquila, A.; Doak, R.B.; Weierstall, U.; DePonte, D.P.; Steinbrener, J.; Shoeman, R.L.; et al. High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography. Science 2012, 337, 362–364. [Google Scholar] [CrossRef]
- Nam, K.H. The Conformational Change of the L3 Loop Affects the Structural Changes in the Substrate Binding Pocket Entrance of β-Glucosidase. Molecules 2023, 28, 7807. [Google Scholar] [CrossRef] [PubMed]
- Nam, K.H. Structural analysis of Tris binding in β-glucosidases. Biochem. Biophys. Res. Commun. 2024, 700, 149608. [Google Scholar] [CrossRef]
- Kim, I.J.; Bornscheuer, U.T.; Nam, K.H. Biochemical and Structural Analysis of a Glucose-Tolerant β-Glucosidase from the Hemicellulose-Degrading Thermoanaerobacterium saccharolyticum. Molecules 2022, 27, 290. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Ha, S.C.; Kim, Y.G. The Protein Crystallography Beamlines at the Pohang Light Source II. Biodesign 2017, 5, 30–34. [Google Scholar]
- Otwinowski, Z.; Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997, 276, 307–326. [Google Scholar] [CrossRef]
- Battye, T.G.; Kontogiannis, L.; Johnson, O.; Powell, H.R.; Leslie, A.G. iMOSFLM: A new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D Biol. Crystallogr. 2011, 67, 271–281. [Google Scholar] [CrossRef]
- Yefanov, O.; Mariani, V.; Gati, C.; White, T.A.; Chapman, H.N.; Barty, A. Accurate determination of segmented X-ray detector geometry. Opt. Express 2015, 23, 28459–28470. [Google Scholar] [CrossRef]
- Duisenberg, A.J.M. Indexing in Single-Crystal Diffractometry with an Obstinate List of Reflections. J. Appl. Crystallogr. 1992, 25, 92–96. [Google Scholar] [CrossRef]
- Ginn, H.M.; Roedig, P.; Kuo, A.; Evans, G.; Sauter, N.K.; Ernst, O.P.; Meents, A.; Mueller-Werkmeister, H.; Miller, R.J.; Stuart, D.I. TakeTwo: An indexing algorithm suited to still images with known crystal parameters. Acta Crystallogr. D Struct. Biol. 2016, 72, 956–965. [Google Scholar] [CrossRef] [PubMed]
- Gevorkov, Y.; Yefanov, O.; Barty, A.; White, T.A.; Mariani, V.; Brehm, W.; Tolstikova, A.; Grigat, R.R.; Chapman, H.N. XGANDALF—Extended gradient descent algorithm for lattice finding. Acta Crystallogr. A Found. Adv. 2019, 75, 694–704. [Google Scholar] [CrossRef]
- Liebschner, D.; Afonine, P.V.; Baker, M.L.; Bunkoczi, G.; Chen, V.B.; Croll, T.I.; Hintze, B.; Hung, L.W.; Jain, S.; McCoy, A.J.; et al. Macromolecular structure determination using X-rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 2019, 75, 861–877. [Google Scholar] [CrossRef] [PubMed]
- Emsley, P.; Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 2126–2132. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.J.; Headd, J.J.; Moriarty, N.W.; Prisant, M.G.; Videau, L.L.; Deis, L.N.; Verma, V.; Keedy, D.A.; Hintze, B.J.; Chen, V.B.; et al. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 2018, 27, 293–315. [Google Scholar] [CrossRef]
- Nam, K.H. Processing of Multicrystal Diffraction Patterns in Macromolecular Crystallography Using Serial Crystallography Programs. Crystals 2022, 12, 103. [Google Scholar] [CrossRef]
- Beyerlein, K.R.; White, T.A.; Yefanov, O.; Gati, C.; Kazantsev, I.G.; Nielsen, N.F.; Larsen, P.M.; Chapman, H.N.; Schmidt, S. FELIX: An algorithm for indexing multiple crystallites in X-ray free-electron laser snapshot diffraction images. J. Appl. Crystallogr. 2017, 50, 1075–1083. [Google Scholar] [CrossRef]
- Gevorkov, Y.; Barty, A.; Brehm, W.; White, T.A.; Tolstikova, A.; Wiedorn, M.O.; Meents, A.; Grigat, R.-R.; Chapman, H.N.; Yefanov, O. pinkIndexer—A universal indexer for pink-beam X-ray and electron diffraction snapshots. Acta Crystallogr. A Found. Adv. 2020, 76, 121–131. [Google Scholar] [CrossRef]
Data Collection | Merge | Data I | Data II | Data III | Data IV | Data V | Data VI |
---|---|---|---|---|---|---|---|
Image number | 300 | 50 | 50 | 50 | 50 | 50 | 50 |
Space group | P212121 | P212121 | P212121 | P212121 | P212121 | P212121 | P212121 |
Unit cell 1 | |||||||
a | 65.21 | 64.68 | 64.97 | 65.06 | 64.75 | 65.04 | 64.93 |
b | 71.12 | 71.54 | 70.94 | 71.21 | 71.02 | 70.95 | 70.81 |
c | 99.49 | 98.67 | 98.87 | 99.15 | 98.87 | 99.03 | 98.99 |
Resolution (Å) | 100–1.55 | 100–1.55 | 65.35–1.55 | 65.35–1.55 | 70.92–1.55 | 57–80–1.55 | 99–1.55 |
(1.60–1.55) | (1.60–1.55) | (1.60–1.55) | (1.60–1.55) | (1.60–1.55) | (1.60–1.55) | (1.60–1.55) | |
Reflections | 67,418 (7112) | 42,719 (2564) | 39,256 (3029) | 31,027 (1893) | 30,820 (1764) | 27,583 (1320) | 38,489 (2320) |
Completeness (%) | 99.32 (97.28) | 62.93 (38.37) | 57.83 (45.32) | 45.71 (28.33) | 45.40 (26.40) | 40.64 (19.75) | 56.70 (34.71) |
Redundancy | 14.3 (7.2) | 3.7 (2.4) | 5.0 (2.9) | 3.7 (2.5) | 4.0 (2.4) | 3.1 (2.3) | 3.8 (2.5) |
SNR | 3.42 (1.26) | 12.43 (5.40) | 4.83 (3.52) | 9.46 (5.40) | 12.02 (3.26) | 10.36 (−0.67) | 6.59 (1.93) |
CC | 0.8547 | 0.867 | 0.4844 | 0.6183 | 0.6135 | 0.5143 | 0.7992 |
(0.2974) | −0.0895 | −0.2932 | −0.3266 | −0.2852 | (−0.0415) | (0.0130) | |
CC* | 0.9600 | 0.9023 | 0.8079 | 0.8741 | 0.8720 | 0.838 | 0.9425 |
(0.6771) | (0.4054) | (0.6734) | (0.7017) | (0.6662) | (-nan) | (0.1603) | |
Rsplit | 28.99 | 43.15 | 58.08 | 45.42 | 48.12 | 53.69 | 35.78 |
−112.75 | −114.38 | −102.45 | −120.92 | −129.36 | −211.49 | (1396.39) | |
MR solution | |||||||
Top LLG | 21,081.48 | 10,387.76 | 9237.271 | 7654.735 | 6965.579 | 4734.598 | 7238.53 |
Top TFZ | 77.7 | 66.7 | 63.4 | 60.1 | 83.9 | 51.3 | 65.5 |
Refinement | |||||||
Resolution (Å) | 49.74–1.55 (1.60–1.55) | 48.06–1.55 (1.60–1.55) | 48.06–1.55 (1.60–1.55) | 48.06–1.55 (1.60–1.55) | 48.06–1.55 (1.60–1.55) | 43.28–1.55 (1.59–1.55) | 49.74–1.55 (1.60–1.55) |
Completeness (%) | 99.1 | 61.99 | 57.38 | 45.1 | 44.7 | 38.14 | 54.48 |
Rwork | 0.2035 (0.3673) | 0.2568 (0.4359) | 0.2472 (0.3811) | 0.2651 (0.3694) | 0.2840 (0.3788) | 0.3347 (0.4298) | 0.2877 (0.4770) |
Rfree | 0.2337 (0.3532) | 0.2958 (0.6115) | 0.2956 (0.4466) | 0.3231 (0.4811) | 0.3433 (0.4644) | 0.4345 (0.5660) | 0.3368 (0.4112) |
R.M.S.D | |||||||
Bonds (Å) | 0.007 | 0.007 | 0.007 | 0.007 | 0.007 | 0.009 | 0.008 |
Angles (°) | 0.956 | 0.0854 | 0.879 | 0.985 | 0.934 | 1.097 | 0.96 |
B-factor (Å2) | |||||||
Protein | 20.07 | 20.84 | 12.43 | 17.93 | 18.1 | 22.12 | 26.36 |
Water | 30.47 | 26.04 | 18.55 | 22.92 | 20.96 | 19.16 | 28.82 |
Ligands | 22.62 | 21.1 | 15.09 | 18.12 | 18.56 | 18.58 | 25.38 |
Ramachandran | |||||||
Favored | 97.29 | 97.29 | 97.06 | 95.02 | 94.57 | 94.34 | 96.15 |
Allowed | 2.49 | 2.71 | 2.94 | 4.98 | 5.43 | 5.66 | 3.62 |
Outliers | 0.23 | 0 | 0 | 0 | 0 | 0 | |
PDB code 2 | 9K72 | 9K73 | 8WFV | 8WFW | 8XPC | 8XPD | 8XPE |
Data Collection | MOSFLM | DirAx | Taketwo | XGANDALF |
---|---|---|---|---|
Number of images | 300 | 300 | 300 | 300 |
Indexed images | 300 | 271 | 258 | 300 |
Resolution (Å) | 100–1.55 | 100–1.55 | 100–1.55 | 100–1.55 |
(1.60–1.55) | (1.60–1.55) | (1.60–1.55) | (1.60–1.55) | |
Reflections | 67,418 (7112) | 67,135 (6365) | 67,044 (6331) | 67,449 (6511) |
Completeness (%) | 99.32 (97.28) | 98.90 (95.24) | 98.77 (94.73) | 99.36 (97.43) |
Redundancy | 14.3 (7.2) | 12.7 (6.5) | 13.4 (6.9) | 14.4 (7.3) |
SNR | 3.42 (1.26) | 3.39 (1.12) | 3.03 (0.97) | 3.64 (1.21) |
CC | 0.8547 (0.2974) | 0.8658 (0.2649) | 0.8351 (0.2038) | 0.8702 (0.2835) |
CC* | 0.9600 (0.6771) | 0.9633 (0.6472) | 0.9540 (0.5819) | 0.9646 (0.6646) |
Rsplit | 28.99 (112.75) | 29.09 (118.44) | 31.97 (136.51) | 28.56 (111.30) |
MR solution | ||||
Top LLG | 21,081.482 | 20,510.825 | 18,878.869 | 21,667.57 |
Top TFZ | 77.7 | 77.0 | 74.7 | 77.8 |
Refinement | ||||
Resolution (Å) | 49.74–1.55 | 49.74–1.55 | 49.74–1.55 | 49.74–1.55 |
(1.60–1.55) | (1.60–1.55) | (1.60–1.55) | (1.60–1.55) | |
Completeness (%) | 99.1 | 98.68 | 98.31 | 99.18 |
Rwork | 0.2035 (0.3673) | 0.2087 (0.3692) | 0.2123 (0.3997) | 0.1994 (0.3737) |
Rfree | 0.2337 (0.3532) | 0.2258 (0.3529) | 0.2511 (0.4623) | 0.2227 (0.4017) |
R.M.S.D | ||||
Bonds (Å) | 0.007 | 0.008 | 0.007 | 0.008 |
Angles (°) | 0.956 | 0.982 | 0.2511 | 0.989 |
B-factor (Å2) | ||||
Protein | 20.07 | 20.92 | 20.95 | 20.37 |
Water | 30.47 | 31.21 | 31.51 | 31.56 |
Ligands | 22.62 | 22.27 | 22.71 | 21.85 |
Ramachandran | ||||
Favored | 97.29 | 97.51 | 97.51 | 97.51 |
Allowed | 2.49 | 2.49 | 2.49 | 2.49 |
Outliers | 0.23 | 0 | 0 | 0 |
Data Collection | Merge | Data I | Data II | Data III | Data IV | Data V | Data VI |
---|---|---|---|---|---|---|---|
Image number | 300 | 50 | 50 | 50 | 50 | 50 | 50 |
Space group | P212121 | P212121 | P212121 | P212121 | P212121 | P212121 | P212121 |
Unit cell * | |||||||
a | 65.21 | 64.68 | 64.97 | 65.06 | 64.75 | 65.04 | 64.93 |
b | 71.12 | 71.54 | 70.94 | 71.21 | 71.02 | 70.95 | 70.81 |
c | 99.49 | 98.67 | 98.87 | 99.15 | 98.87 | 99.03 | 98.99 |
Resolution (Å) | 50–1.55 | 50–1.55 | 50–1.55 | 50–1.55 | 50–1.55 | 50–1.55 | 50–1.55 |
(1.60–1.55) | (1.60–1.55) | (1.60–1.55) | (1.60–1.55) | (1.60–1.55) | (1.60–1.55) | (1.60–1.55) | |
Reflections | 67,344 | 58,833 | 43,668 | 43,561 | 49,882 | 57,921 | 58,353 |
Redundancy | 10.56 (8.02) | 2.00 (1.85) | 2.77 (2.52) | 2.77 (2.53) | 2.36 (2.14) | 2.04 (1.89) | 1.98 (1.81) |
Completeness (%) | 99.3 (94.0) | 87.4 (85.5) | 64.8 (63.8) | 64.3 (63.3) | 74.7 (75.0) | 85.6 (84.5) | 86.9 (86.4) |
I/sigma | 9.57 (3.10) | 12.63 (2.44) | 9.00 (3.91) | 8.03 (2.37) | 13.12 (3.25) | 6.13 (1.18) | 8.49 (1.37) |
R-factor | 0.152 (0.623) | 0.047 (0.313) | 0.082 (0.204) | 0.095 (0.443) | 0.057 (0.325) | 0.114 (0.762) | 0.068 (0.551) |
R-meas | 0.160 (0.668) | 0.060 (0.417) | 0.097 (0.247) | 0.111 (0.534) | 0.069 (0.401) | 0.147 (1.005) | 0.087 (0.729) |
CC1/2 (%) | 99.3 (79.7) | 99.8 (83.3) | 99.2 (93.5) | 99.4 (79.4) | 99.8 (85.4) | 99.1 (39.8) | 99.7 (61.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, K.H. Application of Serial Crystallography for Merging Incomplete Macromolecular Crystallography Datasets. Crystals 2024, 14, 1012. https://doi.org/10.3390/cryst14121012
Nam KH. Application of Serial Crystallography for Merging Incomplete Macromolecular Crystallography Datasets. Crystals. 2024; 14(12):1012. https://doi.org/10.3390/cryst14121012
Chicago/Turabian StyleNam, Ki Hyun. 2024. "Application of Serial Crystallography for Merging Incomplete Macromolecular Crystallography Datasets" Crystals 14, no. 12: 1012. https://doi.org/10.3390/cryst14121012
APA StyleNam, K. H. (2024). Application of Serial Crystallography for Merging Incomplete Macromolecular Crystallography Datasets. Crystals, 14(12), 1012. https://doi.org/10.3390/cryst14121012