Review on Crystallization Strategies for Polymer Single Crystals
Abstract
:1. Introduction
2. Traditional Crystallization Strategies
2.1. Solution Crystallization
2.2. Melt Crystallization
3. Novel Crystallization Strategies
3.1. Self-Seeding
3.2. Epitaxial Crystallization
3.3. Controlled Evaporation
3.4. Vapor Diffusion
3.5. Meniscus-Guided Coating
3.6. Topological Polymerization
4. Polymer Single-Crystal Functionalization Applications
4.1. Single-Crystal Template Modification
4.2. Photoresponsive Polymer Single Crystals
5. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Staudinger, H. On Polymerization. In A Source Book in Chemistry, 1900–1950; Harvard University Press: Cambridge, MA, USA, 2013; pp. 259–264. [Google Scholar]
- Frey, H.; Johann, T. Celebrating 100 years of “polymer science”: Hermann Staudinger’s 1920 manifesto. Polym. Chem. 2020, 11, 8–14. [Google Scholar] [CrossRef]
- Till, P., Jr. The growth of single crystals of linear polyethylene. J. Polym. Sci. 1957, 24, 301–306. [Google Scholar] [CrossRef]
- Keller, A. A note on single crystals in polymers: Evidence for a folded chain configuration. Philos. Mag. 1957, 2, 1171–1175. [Google Scholar] [CrossRef]
- Fischer, E. Stufen-und spiralförmiges Kristallwachstum bei Hochpolymeren. Z. Für. Naturforschung A 1957, 12, 753–754. [Google Scholar] [CrossRef]
- Flory, P.J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, USA, 1953. [Google Scholar]
- Stack, G.M.; Mandelkern, L.; Voigt-Martin, I.G. Changes in crystallite size distribution during the isothermal crystallization of linear polyethylene. Polym. Bull. 1982, 8, 421–428. [Google Scholar] [CrossRef]
- Tanabe, Y.; Strobl, G.R.; Fischer, E.W. Surface melting in melt-crystallized linear polyethylene. Polymer 1986, 27, 1147–1153. [Google Scholar] [CrossRef]
- Roe, R.J.; Gieniewski, C.; Vadimsky, R.G. Lamellar thickening in polyethylene single crystals annealed under low and high pressure. J. Polym. Sci. Polym. Phys. Ed. 1973, 11, 1653–1670. [Google Scholar] [CrossRef]
- Xu, J.; Ma, Y.; Hu, W.; Rehahn, M.; Reiter, G. Cloning polymer single crystals through self-seeding. Nat. Mater. 2009, 8, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Ma, A.; Li, J.; Jiang, X.; Ma, Y.; Toda, A.; Hu, W. Melting of polymer single crystals studied by dynamic Monte Carlo simulations. Eur. Phys. J. E 2010, 33, 189–202. [Google Scholar] [CrossRef]
- Flory, P.J. Thermodynamics of Crystallization in High Polymers. IV. A Theory of Crystalline States and Fusion in Polymers, Copolymers, and Their Mixtures with Diluents. J. Chem. Phys. 2004, 17, 223–240. [Google Scholar] [CrossRef]
- Zhang, S.; Han, J.; Gao, Y.; Guo, B.; Reiter, G.; Xu, J. Determination of the Critical Size of Secondary Nuclei on the Lateral Growth Front of Lamellar Polymer Crystals. Macromolecules 2019, 52, 7439–7447. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, B.; Reiter, G.; Xu, J. Estimation of the Size of Critical Secondary Nuclei of Melt-Grown Poly(l-lactide) Lamellar Crystals. Macromolecules 2020, 53, 3482–3492. [Google Scholar] [CrossRef]
- Wang, Z.; Duan, R.; Pang, X.; Wu, R.; Guo, B.; Xu, J. Critical Size and Formation Mechanism of Secondary Nuclei in Melt-Crystallized Polylactide Stereocomplex Crystals. Macromolecules 2023, 56, 999–1012. [Google Scholar] [CrossRef]
- Bennett, R. Crystallization from solution. In Perry’s Chemical Engineer’s Handbook, 6th ed.; McGraw-Hill: New York, NY, USA, 1984; pp. 25–40. [Google Scholar]
- Myerson, A. Handbook of Industrial Crystallization; Butterworth-Heinemann: Oxford, UK, 2002. [Google Scholar]
- Rånby, B.; Noe, R. Crystallization of cellulose and cellulose derivatives from dilute solution. I. Growth Single Crystals. J. Polym. Sci. 1961, 51, 337–347. [Google Scholar] [CrossRef]
- Storks, K. An electron diffraction examination of some linear high polymers. J. Am. Chem. Soc. 1938, 60, 1753–1761. [Google Scholar] [CrossRef]
- Jaccodine, R. Observations of spiral growth steps in ethylene polymer. Nature 1955, 176, 305–306. [Google Scholar] [CrossRef]
- Lauritzen, J.I., Jr.; Hoffman, J.D. Theory of Formation of Polymer Crystals with Folded Chains in Dilute Solution. J. Res. Natl. Bur. Stand. Phys. Chemistry. Sect. A. 1959, 64, 73–102. [Google Scholar] [CrossRef]
- Hu, W.; Frenkel, D. Effect of metastable liquid−liquid Demixing on the morphology of nucleated polymer crystals. Macromolecules 2004, 37, 4336–4338. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, W. Kinetic analysis of quasi-one-dimensional growth of polymer lamellar crystals in dilute solutions. J. Phys. Chem. B 2013, 117, 3047–3053. [Google Scholar] [CrossRef]
- Keller, A. Polymer crystals. Rep. Prog. Phys. 1968, 31, 623. [Google Scholar] [CrossRef]
- Holland, V.F.; Miller, R.L. Isotactic Polybutene-1 Single Crystals: Morphology. J. Appl. Phys. 1964, 35, 3241–3248. [Google Scholar] [CrossRef]
- Patel, G.; Patel, R. Single crystals of high polymers by film formation. J. Polym. Sci. Part A-2 Polym. Phys. 1970, 8, 47–59. [Google Scholar] [CrossRef]
- Booy, F.P. Single crystals of amylose with a low degree of polymerization. Carbohydr. Polym. 1984, 4, 161–173. [Google Scholar]
- Bu, H.; Chen, E.; Xu, S.; Guo, K.; Wunderlich, B. Single-Molecule single crystals of isotactic polystyrene. J. Polym. Sci. Part B Polym. Phys. 1994, 32, 1351–1357. [Google Scholar] [CrossRef]
- Liu, L.; Su, F.; Zhu, H.; Li, H.; Zhou, E.; Yan, R.; Qian, R. Single-chain single crystals of gutta-percha. J. Macromol. Sci. Part B 2006, 36, 195–203. [Google Scholar] [CrossRef]
- Sun, L.; Zhu, L.; Ge, Q.; Quirk, R.P.; Xue, C.; Cheng, S.Z.D.; Hsiao, B.S.; Avila-Orta, C.A.; Sics, I.; Cantino, M.E. Comparison of crystallization kinetics in various nanoconfined geometries. Polymer 2004, 45, 2931–2939. [Google Scholar] [CrossRef]
- Su, M.; Huang, H.; Ma, X.; Wang, Q.; Su, Z. Poly(2-vinylpyridine)-block -Poly(ϵ-caprolactone) single crystals in micellar solution. Macromol. Rapid Commun. 2013, 34, 1067–1071. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.L.; Miyoshi, T. Elucidation of the Chain-Folding Structure of a Semicrystalline Polymer in Single Crystals by Solid-State NMR. ACS Macro Lett. 2014, 3, 556–559. [Google Scholar] [CrossRef]
- Hong, Y.L.; Yuan, S.; Li, Z.; Ke, Y.; Nozaki, K.; Miyoshi, T. Three-Dimensional Conformation of Folded Polymers in Single Crystals. Phys. Rev. Lett. 2015, 115, 168301. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, S.; Chen, W.; Zhou, Y.; Hong, Y.-l.; Miyoshi, T. Structural Unit of Polymer Crystallization in Dilute Solution As Studied by Solid-State NMR and 13C Isotope Labeling. Macromolecules 2018, 51, 8729–8737. [Google Scholar] [CrossRef]
- Lotz, B.; Lovinger, A.J.; Cais, R.E. Crystal structure and morphology of syndiotactic polypropylene single crystals. Macromolecules 1988, 21, 2375–2382. [Google Scholar] [CrossRef]
- Mehta, R.; Keawwattana, W.; Guenthner, A.L.; Kyu, T. Role of curvature elasticity in sectorization and ripple formation during melt crystallization of polymer single crystals. Phys. Rev. E 2004, 69, 061802. [Google Scholar] [CrossRef] [PubMed]
- Calvert, P. Random Re-entry Theory of Polymer Melt Crystallization. J. Macromol. Sci. Chem. 1980, 14, 201–212. [Google Scholar] [CrossRef]
- Bank, M.; Krimm, S. Mixed crystal infrared study of chain folding in crystalline polyethylene. J. Polym. Sci. Part A-2 Polym. Phys. 1969, 7, 1785–1809. [Google Scholar] [CrossRef]
- Geil, P.H. Polymer Single Crystals; Krieger Publishing Company: Malabar, FL, USA, 1963; Volume 5. [Google Scholar]
- Hoffman, J. Theoretical aspects of polymer crystallization with chain folds: Bulk polymers. Polym. Eng. Sci. 1964, 4, 315–362. [Google Scholar] [CrossRef]
- Wunderlich, B. Macromolecular Physics; Academic Press: New York, NY, USA, 1973; pp. 69–167. [Google Scholar]
- Wang, Z.-G.; Hsiao, B.S.; Sirota, E.B.; Agarwal, P.; Srinivas, S. Probing the early stages of melt crystallization in polypropylene by simultaneous small-and wide-angle X-ray scattering and laser light scattering. Macromolecules 2000, 33, 978–989. [Google Scholar] [CrossRef]
- Manabe, N.; Yokota, Y.; Minami, H.; Uegomori, Y.; Komoto, T. A TEM study on melt-crystallized poly (butylene terephthalate). J. Electron Microsc. 2002, 51, 11–19. [Google Scholar] [CrossRef]
- D’Ilario, L.; Martinelli, A.; Piozzi, A. Memory effect in isothermal melt-crystallization of poly (p-phenylene sulfide) single crystals grown from dilute solution. J. Macromol. Sci. Part B 2002, 41, 47–59. [Google Scholar] [CrossRef]
- Symons, N. Growth of single crystals of polytetrafluoroethylene from the melt. J. Polym. Sci. Part A Gen. Pap. 1963, 1, 2843–2856. [Google Scholar] [CrossRef]
- Kovacs, A.; Gonthier, A. Crystallization and fusion of self-seeded polymers: II. Growth rate, morphology and isothermal thickening of single crystals of low molecular weight poly (ethylene-oxide) fractions. Kolloid-Z. Und Z. Für Polym. 1972, 250, 530–552. [Google Scholar] [CrossRef]
- Toda, A.; Keller, A. Growth of polyethylene single crystals from the melt: Morphology. Colloid Polym. Sci. 1993, 271, 328–342. [Google Scholar] [CrossRef]
- Liu, J.; Geil, P.H. Crystal structure and morphology of poly(ethylene terephthalate) single crystals prepared by melt polymerization. J. Macromol. Sci. Part B 2006, 36, 61–85. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, D.; Yan, S. Direct formation of form I poly(1-butene) single crystals from melt crystallization in ultrathin films. J. Polym. Sci. Part B Polym. Phys. 2002, 40, 2641–2645. [Google Scholar] [CrossRef]
- Toda, A.; Okamura, M.; Hikosaka, M.; Nakagawa, Y. Three-dimensional shape of polyethylene single crystals grown from dilute solutions and from the melt. Polymer 2005, 46, 8708–8716. [Google Scholar] [CrossRef]
- Lippits, D.R.; Rastogi, S.; Höhne, G.W.; Mezari, B.; Magusin, P.C. Heterogeneous distribution of entanglements in the polymer melt and its influence on crystallization. Macromolecules 2007, 40, 1004–1010. [Google Scholar] [CrossRef]
- Núñez, E.; Vancso, G.J.; Gedde, U.W. Morphology, Crystallization, and Melting of Single Crystals and Thin Films of Star-branched Polyesters with Poly(ϵ-caprolactone) Arms as Revealed by Atomic Force Microscopy. J. Macromol. Sci. Part B 2008, 47, 589–607. [Google Scholar] [CrossRef]
- Welch, P.; Muthukumar, M. Molecular mechanisms of polymer crystallization from solution. Phys. Rev. Lett. 2001, 87, 218302. [Google Scholar] [CrossRef]
- Lorenzo, A.T.; Müller, A.J. Estimation of the nucleation and crystal growth contributions to the overall crystallization energy barrier. J. Polym. Sci. Part B Polym. Phys. 2008, 46, 1478–1487. [Google Scholar] [CrossRef]
- Wu, T.; Pfohl, T.; Chandran, S.; Sommer, M.; Reiter, G. Formation of Needle-like Poly(3-hexylthiophene) Crystals from Metastable Solutions. Macromolecules 2020, 53, 8303–8312. [Google Scholar] [CrossRef]
- Rubinstein, M.; Colby, R.H. Polymer Physics; Oxford University Press: New York, NY, USA, 2003; Volume 23. [Google Scholar]
- Thanh, N.T.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114, 7610–7630. [Google Scholar] [CrossRef]
- Menczel, J.; Varga, J. Influence of nucleating agents on crystallization of polypropylene: I. Talc as a nucleating agent. J. Therm. Anal. 1983, 28, 161–174. [Google Scholar] [CrossRef]
- Xu, J.; Reiter, G.; Alamo, R.G. Concepts of nucleation in polymer crystallization. Crystals 2021, 11, 304. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, J.; Baier, M.C.; Mecking, S.; Reiter, R.; Mulhaupt, R.; Reiter, G. Molecular-weight-dependent changes in morphology of solution-grown polyethylene single crystals. Macromol. Rapid Commun. 2015, 36, 181–189. [Google Scholar] [CrossRef]
- Agbolaghi, S.; Abbaspoor, S.; Abbasi, F. A comprehensive review on polymer single crystals—From fundamental concepts to applications. Prog. Polym. Sci. 2018, 81, 22–79. [Google Scholar] [CrossRef]
- Wang, G.; Harrison, I.R. Polymer melting: Heating rate effects on DSC melting peaks. Thermochim. Acta 1994, 231, 203–213. [Google Scholar] [CrossRef]
- Rastogi, S.; Lippits, D.R.; Peters, G.W.; Graf, R.; Yao, Y.; Spiess, H.W. Heterogeneity in polymer melts from melting of polymer crystals. Nat. Mater. 2005, 4, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Blundell, D.J.; Keller, A. Nature of self-seeding polyethylene crystal nuclei. J. Macromol. Sci. Part B 2006, 2, 301–336. [Google Scholar] [CrossRef]
- Waddon, A.; Hill, M.; Keller, A.; Blundell, D. On the crystal texture of linear polyaryls (PEEK, PEK and PPS). J. Mater. Sci. 1987, 22, 1773–1784. [Google Scholar] [CrossRef]
- Chung, J.S.; Cebe, P. Morphology of poly (phenylene sulphide) single crystals grown by a two-stage self-seeding technique. Polymer 1992, 33, 1594–1605. [Google Scholar] [CrossRef]
- Ivanov, Y.M. The growth of single crystals by the self-seeding technique. J. Cryst. Growth 1998, 194, 309–316. [Google Scholar] [CrossRef]
- Reiter, G. Some unique features of polymer crystallisation. Chem. Soc. Rev. 2014, 43, 2055–2065. [Google Scholar] [CrossRef]
- Wang, B.; Tang, S.; Wang, Y.; Shen, C.; Reiter, R.; Reiter, G.; Chen, J.; Zhang, B. Systematic Control of Self-Seeding Crystallization Patterns of Poly(ethylene oxide) in Thin Films. Macromolecules 2018, 51, 1626–1635. [Google Scholar] [CrossRef]
- Müller, A.; Hernández, Z.; Arnal, M.; Sánchez, J. Successive self-nucleation/annealing (SSA): A novel technique to study molecular segregation during crystallization. Polym. Bull. 1997, 39, 465–472. [Google Scholar] [CrossRef]
- Michell, R.M.; Mugica, A.; Zubitur, M.; Müller, A.J. Self-Nucleation of Crystalline Phases Within Homopolymers, Polymer Blends, Copolymers, and Nanocomposites. In Polymer Crystallization I. Advances in Polymer Science; Springer: Berlin/Heidelberg, Germany, 2015; pp. 215–256. [Google Scholar]
- Balzano, L.; Rastogi, S.; Peters, G. Self-Nucleation of Polymers with Flow: The Case of Bimodal Polyethylene. Macromolecules 2011, 44, 2926–2933. [Google Scholar] [CrossRef]
- Alfonso, G.; Russell, T. Kinetics of crystallization in semicrystalline/amorphous polymer mixtures. Macromolecules 1986, 19, 1143–1152. [Google Scholar] [CrossRef]
- Mayes, A.M. Glass transition of amorphous polymer surfaces. Macromolecules 1994, 27, 3114–3115. [Google Scholar] [CrossRef]
- Cadek, M.; Coleman, J.; Barron, V.; Hedicke, K.; Blau, W. Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl. Phys. Lett. 2002, 81, 5123–5125. [Google Scholar] [CrossRef]
- Butté, R.; Carlin, J.F.; Feltin, E.; Gonschorek, M.; Nicolay, S.; Christmann, G.; Simeonov, D.; Castiglia, A.; Dorsaz, J.; Buehlmann, H.J.; et al. Current status of AlInN layers lattice-matched to GaN for photonics and electronics. J. Phys. D Appl. Phys. 2007, 40, 6328–6344. [Google Scholar] [CrossRef]
- Zhou, H.; Jiang, S.; Yan, S. Epitaxial crystallization of poly(3-hexylthiophene) on a highly oriented polyethylene thin film from solution. J. Phys. Chem. B 2011, 115, 13449–13454. [Google Scholar] [CrossRef]
- Li, Y.; Guo, Z.; Xue, M.; Yan, S. Epitaxial Recrystallization of IPBu in Form II on an Oriented IPS Film Initially Induced by Oriented Form I IPBu. Macromolecules 2019, 52, 4232–4239. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, L.; Dastafkan, K.; Zhao, C.; Zhao, X.; Xue, Y.; Huo, J.; Li, S.; Zhai, Q. Lattice matching growth of conductive hierarchical porous MOF/LDH heteronanotube arrays for highly efficient water oxidation. Adv. Mater. 2021, 33, 2006351. [Google Scholar] [CrossRef]
- Koutsky, J.; Walton, A.; Baer, E. Epitaxial crystallization of homopolymers on single crystals of alkali halides. J. Polym. Sci. Part A-2 Polym. Phys. 1966, 4, 611–629. [Google Scholar] [CrossRef]
- Wellinghoff, S.; Rybnikar, F.; Baer, E. Epitaxial crystallization of polyethylene. J. Macromol. Sci. Part B 2006, 10, 1–39. [Google Scholar] [CrossRef]
- Wittmann, J.; Lotz, B. Epitaxial crystallization of polyethylene on organic substrates: A reappraisal of the mode of action of selected nucleating agents. J. Polym. Sci. Polym. Phys. Ed. 1981, 19, 1837–1851. [Google Scholar] [CrossRef]
- Wittmann, J.; Hodge, A.; Lotz, B. Epitaxial crystallization of polymers onto benzoic acid: Polyethylene and paraffins, aliphatic polyesters, and polyamides. J. Polym. Sci. Polym. Phys. Ed. 1983, 21, 2495–2509. [Google Scholar] [CrossRef]
- Wittmann, J.; Lotz, B. Polymer decoration: The orientation of polymer folds as revealed by the crystallization of polymer vapors. J. Polym. Sci. Polym. Phys. Ed. 1985, 23, 205–226. [Google Scholar] [CrossRef]
- Wittmann, J.C.; Lotz, B. Epitaxial crystallization of polymers on organic and polymeric substrates. Prog. Polym. Sci. 1990, 15, 909–948. [Google Scholar] [CrossRef]
- Stocker, W.; Schumacher, M.; Graff, S.; Thierry, A.; Wittmann, J.-C.; Lotz, B. Epitaxial crystallization and AFM investigation of a frustrated polymer structure: Isotactic poly (propylene), β phase. Macromolecules 1998, 31, 807–814. [Google Scholar] [CrossRef]
- Cartier, L.; Okihara, T.; Ikada, Y.; Tsuji, H.; Puiggali, J.; Lotz, B. Epitaxial crystallization and crystalline polymorphism of polylactides. Polymer 2000, 41, 8909–8919. [Google Scholar] [CrossRef]
- Sun, Y.; Li, H.; Huang, Y.; Chen, E.; Zhao, L.; Gan, Z.; Yan, S. Epitaxial crystallization of poly (butylene adipate) on highly oriented polyethylene thin film. Macromolecules 2005, 38, 2739–2743. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Li, H.; Shen, D.; Zhang, J.; Ozaki, Y.; Yan, S. Epitaxial crystallization of isotactic poly (methyl methacrylate) on highly oriented polyethylene. J. Phys. Chem. B 2006, 110, 738–742. [Google Scholar] [CrossRef]
- Bower, D.I.; Solis, F.J. An Introduction to Polymer Physics. Am. J. Phys. 2003, 71, 285–286. [Google Scholar] [CrossRef]
- Stamm, M. Introduction to Physical Polymer Science. Macromol. Chem. Phys. 2006, 207, 787. [Google Scholar] [CrossRef]
- Mandelkern, L. Crystallization of Polymers: Volume 2, Kinetics and Mechanisms; Cambridge University Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Tadokoro, H. Structure of Crystalline Polymers; Krieger Publishing Company: Malabar, FL, USA, 1990. [Google Scholar]
- Fried, J.R. Polymer Science and Technology; Pearson Education: London, UK, 2014. [Google Scholar]
- Wu, T.; Valencia, L.; Pfohl, T.; Heck, B.; Reiter, G.; Lutz, P.J.; Mülhaupt, R. Fully Isotactic Poly(p-methylstyrene): Precise Synthesis via Catalytic Polymerization and Crystallization Studies. Macromolecules 2019, 52, 4839–4846. [Google Scholar] [CrossRef]
- Somorjai, G.A.; Jepsen, D.W. Evaporation Mechanism of CdS Single Crystals. II. Diffusion Controlled Evaporation of Cadmium- and Sulfur-Doped CdS. J. Chem. Phys. 1964, 41, 1394–1399. [Google Scholar] [CrossRef]
- Byun, M.; Laskowski, R.L.; He, M.; Qiu, F.; Jeffries-El, M.; Lin, Z. Controlled evaporative self-assembly of hierarchically structured regioregular conjugated polymers. Soft Matter 2009, 5, 1583–1586. [Google Scholar] [CrossRef]
- Qi, H.; Zhou, H.; Tang, Q.; Lee, J.Y.; Fan, Z.; Kim, S.; Staub, M.C.; Zhou, T.; Mei, S.; Han, L. Block copolymer crystalsomes with an ultrathin shell to extend blood circulation time. Nat. Commun. 2018, 9, 3005. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.T.; Lee, C.W.; Chi, M.H.; Yao, I.C. Solvent-annealing-induced nanowetting in templates: Towards tailored polymer nanostructures. Macromol. Rapid Commun. 2013, 34, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Sinturel, C.; Vayer, M.; Morris, M.; Hillmyer, M.A. Solvent Vapor Annealing of Block Polymer Thin Films. Macromolecules 2013, 46, 5399–5415. [Google Scholar] [CrossRef]
- McPherson, A.; Gavira, J.A. Introduction to protein crystallization. Acta Crystallogr. F Struct. Biol. Commun. 2014, 70 Pt 1, 2–20. [Google Scholar] [CrossRef]
- Mansky, P.; Haikin, P.; Thomas, E. Monolayer films of diblock copolymer microdomains for nanolithographic applications. J. Mater. Sci. 1995, 30, 1987–1992. [Google Scholar] [CrossRef]
- Li, G.; Yao, Y.; Yang, H.; Shrotriya, V.; Yang, G.; Yang, Y. “Solvent Annealing” Effect in Polymer Solar Cells Based on Poly(3-hexylthiophene) and Methanofullerenes. Adv. Funct. Mater. 2007, 17, 1636–1644. [Google Scholar] [CrossRef]
- McAfee, S.M.; Payne, A.J.; Hendsbee, A.D.; Xu, S.; Zou, Y.; Welch, G.C. Toward a Universally Compatible Non-Fullerene Acceptor: Multi-Gram Synthesis, Solvent Vapor Annealing Optimization, and BDT-Based Polymer Screening. Solar RRL 2018, 2, 1800143. [Google Scholar] [CrossRef]
- Xu, T.; Chandran, S.; Zhang, Y.; Zheng, T.; Pfohl, T.; Xu, J.; Reiter, G. Primary Nucleation in Metastable Solutions of Poly(3-hexylthiophene). Macromolecules 2022, 55, 3325–3334. [Google Scholar]
- Diao, Y.; Shaw, L.; Bao, Z.; Mannsfeld, S.C.B. Morphology control strategies for solution-processed organic semiconductor thin films. Energy Environ. Sci. 2014, 7, 2145–2159. [Google Scholar] [CrossRef]
- Gu, X.; Shaw, L.; Gu, K.; Toney, M.F.; Bao, Z. The meniscus-guided deposition of semiconducting polymers. Nat. Commun. 2018, 9, 534. [Google Scholar] [CrossRef] [PubMed]
- Patel, B.B.; Diao, Y. Multiscale assembly of solution-processed organic electronics: The critical roles of confinement, fluid flow, and interfaces. Nanotechnology 2017, 29, 044004. [Google Scholar] [CrossRef]
- Sele, C.W.; Kjellander, B.K.C.; Niesen, B.; Thornton, M.J.; van der Putten, J.; Myny, K.; Wondergem, H.J.; Moser, A.; Resel, R.; van Breemen, A.; et al. Controlled deposition of highly ordered soluble acene thin films: Effect of morphology and crystal orientation on transistor performance. Adv. Mater. 2009, 21, 4926–4931. [Google Scholar] [CrossRef] [PubMed]
- Rogowski, R.Z.; Darhuber, A.A. Crystal growth near moving contact lines on homogeneous and chemically patterned surfaces. Langmuir 2010, 26, 11485–11493. [Google Scholar] [CrossRef]
- Zhang, K.; Marszalek, T.; Wucher, P.; Wang, Z.; Veith, L.; Lu, H.; Räder, H.J.; Beaujuge, P.M.; Blom, P.W.M.; Pisula, W. Crystallization Control of Organic Semiconductors during Meniscus-Guided Coating by Blending with Polymer Binder. Adv. Funct. Mater. 2018, 28, 1805594. [Google Scholar] [CrossRef]
- Gans, A.; Dressaire, E.; Colnet, B.; Saingier, G.; Bazant, M.Z.; Sauret, A. Dip-coating of suspensions. Soft Matter 2019, 15, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Grosso, D. How to exploit the full potential of the dip-coating process to better control film formation. J. Mater. Chem. 2011, 21, 17033–17038. [Google Scholar] [CrossRef]
- Giri, G.; Verploegen, E.; Mannsfeld, S.C.; Atahan-Evrenk, S.; Kim, D.H.; Lee, S.Y.; Becerril, H.A.; Aspuru-Guzik, A.; Toney, M.F.; Bao, Z. Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 2011, 480, 504–508. [Google Scholar] [CrossRef]
- Haase, K.; Zessin, J.; Zoumboulis, K.; Müller, M.; Hambsch, M.; Mannsfeld, S.C.B. Solution Shearing of a High-Capacitance Polymer Dielectric for Low-Voltage Organic Transistors. Adv. Electron. Mater. 2019, 5, 1900067. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, C.; Deng, W.; Achille, M.T.; Jie, J.; Zhang, X. Meniscus-guided coating of organic crystalline thin films for high-performance organic field-effect transistors. J. Mater. Chem. C 2020, 8, 9133–9146. [Google Scholar] [CrossRef]
- Galindo, S.; Tamayo, A.; Leonardi, F.; Mas-Torrent, M. Control of Polymorphism and Morphology in Solution Sheared Organic Field-Effect Transistors. Adv. Funct. Mater. 2017, 27, 1700526. [Google Scholar] [CrossRef]
- Tamayo, A.; Riera-Galindo, S.; Jones, A.O.; Resel, R.; Mas-Torrent, M. Impact of the ink formulation and coating speed on the polymorphism and morphology of a solution-sheared thin film of a blended organic semiconductor. Adv. Mater. Interfaces 2019, 6, 1900950. [Google Scholar] [CrossRef]
- Gao, X.; Han, Y.-C. P3HT stripe structure with oriented nanofibrils enabled by controlled inclining evaporation. Chin. J. Polym. Sci. 2013, 31, 610–619. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Z.; Marszalek, T.; Borkowski, M.; Fytas, G.; Blom, P.W.M.; Pisula, W. Key role of the meniscus shape in crystallization of organic semiconductors during meniscus-guided coating. Mater. Horiz. 2020, 7, 1631–1640. [Google Scholar] [CrossRef]
- Michels, J.J.; Zhang, K.; Wucher, P.; Beaujuge, P.M.; Pisula, W.; Marszalek, T. Predictive modelling of structure formation in semiconductor films produced by meniscus-guided coating. Nat. Mater. 2021, 20, 68–75. [Google Scholar] [CrossRef]
- Hema, K.; Ravi, A.; Raju, C.; Pathan, J.R.; Rai, R.; Sureshan, K.M. Topochemical polymerizations for the solid-state synthesis of organic polymers. Chem. Soc. Rev. 2021, 50, 4062–4099. [Google Scholar] [CrossRef]
- Hu, F.; Hao, W.; Mucke, D.; Pan, Q.; Li, Z.; Qi, H.; Zhao, Y. Highly Efficient Preparation of Single-Layer Two-Dimensional Polymer Obtained from Single-Crystal to Single-Crystal Synthesis. J. Am. Chem. Soc. 2021, 143, 5636–5642. [Google Scholar] [CrossRef]
- Sun, C.; Oppenheim, J.J.; Skorupskii, G.; Yang, L.; Dincă, M. Reversible topochemical polymerization and depolymerization of a crystalline 3D porous organic polymer with C–C bond linkages. Chem 2022, 8, 3215–3224. [Google Scholar] [CrossRef]
- Hema, K.; Raju, C.; Bhandary, S.; Sureshan, K.M. Tuning the Regioselectivity of Topochemical Polymerization through Cocrystallization of the Monomer with an Inert Isostere. Angew. Chem. Int. Ed. Engl. 2022, 61, e202210733. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Guan, X.-R.; Wang, D.-C.; Stoddart, J.F.; Guo, Q.-H. Soluble and Processable Single-Crystalline Cationic Polymers. J. Am. Chem. Soc. 2023, 145, 13223–13231. [Google Scholar] [CrossRef] [PubMed]
- Price, F.P. The structure of high polymer spherulites. J. Polym. Sci. 1959, 37, 71–89. [Google Scholar] [CrossRef]
- Olley, R.; Bassett, D. On the development of polypropylene spherulites. Polymer 1989, 30, 399–409. [Google Scholar] [CrossRef]
- Li, L.; Chan, C.-M.; Yeung, K.L.; Li, J.-X.; Ng, K.-M.; Lei, Y. Direct observation of growth of lamellae and spherulites of a semicrystalline polymer by AFM. Macromolecules 2001, 34, 316–325. [Google Scholar] [CrossRef]
- Tanaka, H.; Nishi, T. Local phase separation at the growth front of a polymer spherulite during crystallization and nonlinear spherulitic growth in a polymer mixture with a phase diagram. Phys. Rev. A 1989, 39, 783. [Google Scholar] [CrossRef] [PubMed]
- Kurz, W.; Fisher, D. Dendrite growth at the limit of stability: Tip radius and spacing. Acta Metall. 1981, 29, 11–20. [Google Scholar] [CrossRef]
- Seiler, M. Dendritic polymers–interdisciplinary research and emerging applications from unique structural properties. Chem. Eng. Technol. 2002, 25, 237–253. [Google Scholar] [CrossRef]
- Rosso, M.; Brissot, C.; Teyssot, A.; Dollé, M.; Sannier, L.; Tarascon, J.-M.; Bouchet, R.; Lascaud, S. Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochim. Acta 2006, 51, 5334–5340. [Google Scholar] [CrossRef]
- Wunderlich, B.; Mielillo, L. Morphology and growth of extended chain crystals of polyethylene. Die Makromol. Chem. Macromol. Chem. Phys. 1968, 118, 250–264. [Google Scholar] [CrossRef]
- Hikosaka, M. Unified theory of nucleation of folded-chain crystals and extended-chain crystals of linear-chain polymers. Polymer 1987, 28, 1257–1264. [Google Scholar] [CrossRef]
- Hikosaka, M. Unified theory of nucleation of folded-chain crystals (FCCs) and extended-chain crystals (ECCs) of linear-chain polymers: 2. Origin of FCC and ECC. Polymer 1990, 31, 458–468. [Google Scholar] [CrossRef]
- Yan, L.; Häußler, M.; Bauer, J.; Mecking, S.; Winey, K.I. Monodisperse and telechelic polyethylenes form extended chain crystals with ionic layers. Macromolecules 2019, 52, 4949–4956. [Google Scholar] [CrossRef]
- Hill, M.; Keller, A. Direct evidence for distinctive, stress-induced nucleus crystals in the crystallization of oriented polymer melts. J. Macromol. Sci. Part B 1969, 3, 153–169. [Google Scholar] [CrossRef]
- Peterlin, A. Structural model of mechanical properties and failure of crystalline polymer solids with fibrous structure. Int. J. Fract. 1975, 11, 761–780. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Han, Y. Superhydrophobic PTFE surfaces by extension. Macromol. Rapid Commun. 2004, 25, 1105–1108. [Google Scholar] [CrossRef]
- Hobbs, J.; Miles, M. Direct observation of polyethylene shish-kebab crystallization using in-situ atomic force microscopy. Macromolecules 2001, 34, 353–355. [Google Scholar] [CrossRef]
- Kimata, S.; Sakurai, T.; Nozue, Y.; Kasahara, T.; Yamaguchi, N.; Karino, T.; Shibayama, M.; Kornfield, J.A. Molecular basis of the shish-kebab morphology in polymer crystallization. Science 2007, 316, 1014–1017. [Google Scholar] [CrossRef]
- Somani, R.H.; Yang, L.; Zhu, L.; Hsiao, B.S. Flow-induced shish-kebab precursor structures in entangled polymer melts. Polymer 2005, 46, 8587–8623. [Google Scholar] [CrossRef]
- Hsiao, B.S.; Yang, L.; Somani, R.H.; Avila-Orta, C.A.; Zhu, L. Unexpected shish-kebab structure in a sheared polyethylene melt. Phys. Rev. Lett. 2005, 94, 117802. [Google Scholar] [CrossRef]
- Goodwyn, M. Ghost Worlds: A Guide to Poltergeists, Portals, Ecto-Mist, & Spirit Behavior; Llewellyn Worldwide: Woodbury, MN, USA, 2011. [Google Scholar]
- Deng, J.; Xu, Y.; Liu, L.; Feng, C.; Tang, J.; Gao, Y.; Wang, Y.; Yang, B.; Lu, P.; Yang, W.; et al. An ambipolar organic field-effect transistor based on an AIE-active single crystal with a high mobility level of 2.0 cm(2) V(-1) s(-1). Chem. Commun. 2016, 52, 2370–2373. [Google Scholar] [CrossRef]
- Wang, B.; Li, B.; Zhao, B.; Li, C.Y. Amphiphilic Janus gold nanoparticles via combining “solid-state grafting-to” and “grafting-from” methods. J. Am. Chem. 2008, 130, 11594–11595. [Google Scholar] [CrossRef]
- Li, B.; Li, C.Y. Immobilizing Au Nanoparticles with Polymer Single Crystals, Patterning andand asymmetric functionalization. J. ACS 2006, 129, 12–13. [Google Scholar]
- Li, B.; Ni, C.; Li, C.Y. Poly(ethylene oxide) Single Crystals as Templates for Au Nanoparticle Patterning and Asymmetrical Functionalization. Macromolecules 2008, 41, 149–155. [Google Scholar] [CrossRef]
- Li, B.; Wang, B.; Ferrier, R.C.M.; Li, C.Y. Programmable Nanoparticle Assembly via Polymer Single Crystals. Macromolecules 2009, 42, 9394–9399. [Google Scholar] [CrossRef]
- Wang, B.; Dong, B.; Li, B.; Zhao, B.; Li, C.Y. Janus gold nanoparticle with bicompartment polymer brushes templated by polymer single crystals. Polymer 2010, 51, 4814–4822. [Google Scholar] [CrossRef]
- Wang, B.; Li, B.; Ferrier, R.C., Jr.; Li, C.Y. Polymer single crystal templated janus nanoparticles. Macromol. Rapid Commun. 2010, 31, 169–175. [Google Scholar] [CrossRef]
- Zhang, H.; Dong, B.; Zhou, T.; Li, C.Y. Directed self-assembly of hetero-nanoparticles using a polymer single crystal template. Nanoscale 2012, 4, 7641–7645. [Google Scholar] [CrossRef]
- Zhou, T.; Wang, B.; Dong, B.; Li, C.Y. Thermoresponsive Amphiphilic Janus Silica Nanoparticles via Combining “Polymer Single-Crystal Templating” and “Grafting-from” Methods. Macromolecules 2012, 45, 8780–8789. [Google Scholar] [CrossRef]
- Dong, B.; Zhou, T.; Zhang, H.; Li, C. Directed self-assembly of nanoparticles for nanomotors. ACS Nano 2013, 7, 5192–5198. [Google Scholar] [CrossRef]
- Liu, M.; Liu, L.; Gao, W.; Su, M.; Ge, Y.; Shi, L.; Zhang, H.; Dong, B.; Li, C.Y. A micromotor based on polymer single crystals and nanoparticles: Toward functional versatility. Nanoscale 2014, 6, 8601–8605. [Google Scholar] [CrossRef]
- Zhou, T.; Dong, B.; Qi, H.; Lau, H.K.; Li, C.Y. One-step formation of responsive “dumbbell” nanoparticle dimers via quasi-two-dimensional polymer single crystals. Nanoscale 2014, 6, 4551–4554. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, M.; Zhou, T.; Dong, B.; Li, C.Y. Stepwise assembly of a cross-linked free-standing nanoparticle sheet with controllable shape. Nanoscale 2015, 7, 11033–11039. [Google Scholar] [CrossRef]
- Mei, S.; Qi, H.; Zhou, T.; Li, C.Y. Precisely Assembled Cyclic Gold Nanoparticle Frames by 2D Polymer Single-Crystal Templating. Angew. Chem. Int. Ed. Engl. 2017, 56, 13645–13649. [Google Scholar] [CrossRef]
- Mei, S.; Li, C.Y. Terraced and Smooth Gradient Polymer Brushes via a Polymer Single-Crystal Assisted Grafting-To Method. Angew. Chem. Int. Ed. Engl. 2018, 57, 15758–15761. [Google Scholar] [CrossRef]
- Dong, B.; Li, B.; Li, C.Y. Janus nanoparticle dimers and chains via polymer single crystals. J. Mater. Chem. 2011, 21, 13155–13158. [Google Scholar] [CrossRef]
- Zhou, T.; Qi, H.; Han, L.; Barbash, D.; Li, C.Y. Towards controlled polymer brushes via a self-assembly-assisted-grafting-to approach. Nat. Commun. 2016, 7, 11119. [Google Scholar] [CrossRef]
- Mei, S.; Wilk, J.T.; Chancellor, A.J.; Zhao, B.; Li, C.Y. Fabrication of 2D Block Copolymer Brushes via a Polymer-Single-Crystal-Assisted-Grafting-to Method. Macromol. Rapid Commun. 2020, 41, 2000228. [Google Scholar] [CrossRef]
- Allara, D.L. Critical issues in applications of selfassembled monolayers. Biosens. Bioelectron. 1995, 10, 771–783. [Google Scholar] [CrossRef]
- Ji, H.-F.; Dabestani, R.; Brown, G.M.; Britt, P.F. A novel self-assembled monolayer (SAM) coated microcantilever for low level caesium detection. Chem. Commun. 2000, 6, 457–458. [Google Scholar] [CrossRef]
- Schreiber, F. Structure and growth of self-assembling monolayers. Prog. Surf. Sci. 2000, 65, 151–257. [Google Scholar] [CrossRef]
- Schoenbaum, C.A.; Schwartz, D.K.; Medlin, J.W. Controlling the surface environment of heterogeneous catalysts using self-assembled monolayers. Acc. Chem. Res. 2014, 47, 1438–1445. [Google Scholar] [CrossRef]
- McGehee, M.D.; Heeger, A.J.J.A.M. Semiconducting (conjugated) polymers as materials for solid-state lasers. Adv. Mater. 2000, 12, 1655–1668. [Google Scholar] [CrossRef]
- Heeger, A.J. Semiconducting polymers: The third generation. Chem. Soc. Rev. 2010, 39, 2354–2371. [Google Scholar] [CrossRef]
- Heeger, A.J.; Kivelson, S.; Schrieffer, J.; Su, W.-P. Solitons in conducting polymers. Rev. Mod. Phys. 1988, 60, 781. [Google Scholar] [CrossRef]
- MacDiarmid, A.; Chiang, J.; Richter, A.; Epstein, A.J. Polyaniline: A new concept in conducting polymers. Synth. Met. 1987, 18, 285–290. [Google Scholar] [CrossRef]
- Macdiarmid, A.G.; Chiang, J.-C.; Halpern, M.; Huang, W.-S.; Mu, S.-L.; Nanaxakkara, L.; Wu, S.W.; Yaniger, S.I.J.M.C.; Crystals, L. “Polyaniline”: Interconversion of metallic and insulating forms. Mol. Cryst. Liq. Cryst. 1985, 121, 173–180. [Google Scholar] [CrossRef]
- MacDiarmid, A.G.J.A.C.I.E. “Synthetic metals”: A novel role for organic polymers (Nobel lecture). Angew. Chem. Int. Ed. 2001, 40, 2581–2590. [Google Scholar] [CrossRef]
- Shirakawa, H.; Louis, E.J.; MacDiarmid, A.G.; Chiang, C.K.; Heeger, A.J. Chemical Communications, Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene,(CH) x. J. Chem. Soc. Chem. Commun. 1977, 16, 578–580. [Google Scholar] [CrossRef]
- Shirakawa, H.; McDiarmid, A.; Heeger, A.J.C.C. Twenty-five years of conducting polymers. Chem. Commun. 2003, 1, 1–4. [Google Scholar] [CrossRef]
- Shirakawa, H.; Ito, T.; Ikeda, S. Physics, Electrical properties of polyacetylene with various cis-trans compositions. Makromol. Chem. 1978, 179, 1565–1573. [Google Scholar] [CrossRef]
- Dai, C.; Liu, B. Conjugated polymers for visible-light-driven photocatalysis. Energy Environ. Sci. 2020, 13, 24–52. [Google Scholar] [CrossRef]
- Feng, L.; Zhu, C.; Yuan, H.; Liu, L.; Lv, F.; Wang, S. Conjugated polymer nanoparticles: Preparation, properties, functionalization and biological applications. Chem. Soc. Rev. 2013, 42, 6620–6633. [Google Scholar] [CrossRef]
- Guo, X.; Baumgarten, M.; Müllen, K. Designing π-conjugated polymers for organic electronics. Prog. Polym. Sci. 2013, 38, 1832–1908. [Google Scholar] [CrossRef]
- Inal, S.; Rivnay, J.; Suiu, A.O.; Malliaras, G.G.; McCulloch, I. Conjugated Polymers in Bioelectronics. Acc. Chem. Res. 2018, 51, 1368–1376. [Google Scholar] [CrossRef]
- Melling, D.; Martinez, J.G.; Jager, E.W. Conjugated polymer actuators and devices: Progress and opportunities. Adv. Mater. 2019, 31, 1808210. [Google Scholar] [CrossRef]
- Qiu, Z.; Hammer, B.A.G.; Müllen, K. Conjugated polymers—Problems and promises. Prog. Polym. Sci. 2020, 100, 101179. [Google Scholar] [CrossRef]
- Tuncel, D.; Demir, H.V. Conjugated polymer nanoparticles. Nanoscale 2010, 2, 484–494. [Google Scholar] [CrossRef]
- Vahdatiyekta, P.; Zniber, M.; Bobacka, J.; Huynh, T.P. A review on conjugated polymer-based electronic tongues. Anal. Chim. Acta 2022, 1221, 340114. [Google Scholar] [CrossRef]
- Wang, S.; Zuo, G.; Kim, J.; Sirringhaus, H. Progress of Conjugated Polymers as Emerging Thermoelectric Materials. Prog. Polym. Sci. 2022, 129. [Google Scholar] [CrossRef]
- Xu, Y.; Cui, Y.; Yao, H.; Zhang, T.; Zhang, J.; Ma, L.; Wang, J.; Wei, Z.; Hou, J. A New Conjugated Polymer that Enables the Integration of Photovoltaic and Light-Emitting Functions in One Device. Adv. Mater. 2021, 33, e2101090. [Google Scholar] [CrossRef]
- Bruner, C.; Novoa, F.; Dupont, S.; Dauskardt, R. Decohesion kinetics in polymer organic solar cells. ACS Appl. Mater. Interfaces 2014, 6, 21474–21483. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, J.H.; Park, J.H.; Shim, C.; Sim, M.; Cho, K. High-Efficiency Organic Solar Cells Based on Preformed Poly(3-hexylthiophene) Nanowires. Adv. Funct. Mater. 2011, 21, 480–486. [Google Scholar] [CrossRef]
- Kim, M.; Jo, S.B.; Park, J.H.; Cho, K. Flexible lateral organic solar cells with core–shell structured organic nanofibers. Nano Energy 2015, 18, 97–108. [Google Scholar] [CrossRef]
- Liu, F.; Chen, D.; Wang, C.; Luo, K.; Gu, W.; Briseno, A.L.; Hsu, J.W.; Russell, T.P. Molecular weight dependence of the morphology in P3HT:PCBM solar cells. ACS Appl. Mater. Interfaces 2014, 6, 19876–19887. [Google Scholar] [CrossRef]
- Lu, L.; Zheng, T.; Wu, Q.; Schneider, A.M.; Zhao, D.; Yu, L. Recent Advances in Bulk Heterojunction Polymer Solar Cells. Chem. Rev. 2015, 115, 12666–12731. [Google Scholar] [CrossRef]
- Aernouts, T.; Vanlaeke, P.; Geens, W.; Poortmans, J.; Heremans, P.; Borghs, S.; Mertens, R.; Andriessen, R.; Leenders, L. Printable anodes for flexible organic solar cell modules. Thin Solid. Film. 2004, 451–452, 22–25. [Google Scholar] [CrossRef]
- Kim, J.-H.; Park, J.H.; Lee, J.H.; Kim, J.S.; Sim, M.; Shim, C.; Cho, K. Bulk heterojunction solar cells based on preformed polythiophene nanowires via solubility-induced crystallization. J. Mater. Chem. 2010, 20, 7398–7405. [Google Scholar] [CrossRef]
- Han, T.-H.; Lee, Y.; Choi, M.-R.; Woo, S.-H.; Bae, S.-H.; Hong, B.H.; Ahn, J.-H.; Lee, T.-W. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photonics 2012, 6, 105–110. [Google Scholar] [CrossRef]
- Admassie, S.; Zhang, F.; Manoj, A.G.; Svensson, M.; Andersson, M.R.; Inganäs, O. A polymer photodiode using vapour-phase polymerized PEDOT as an anode. Sol. Energy Mater. Sol. Cells 2006, 90, 133–141. [Google Scholar] [CrossRef]
- Yoon, H.; Chang, M.; Jang, J. Formation of 1D Poly(3,4-ethylenedioxythiophene) Nanomaterials in Reverse Microemulsions and Their Application to Chemical Sensors. Adv. Funct. Mater. 2007, 17, 431–436. [Google Scholar] [CrossRef]
- Park, Y.D.; Lee, H.S.; Choi, Y.J.; Kwak, D.; Cho, J.H.; Lee, S.; Cho, K. Solubility-Induced Ordered Polythiophene Precursors for High-Performance Organic Thin-Film Transistors. Adv. Funct. Mater. 2009, 19, 1200–1206. [Google Scholar] [CrossRef]
- Qiu, L.; Lee, W.H.; Wang, X.; Kim, J.S.; Lim, J.A.; Kwak, D.; Lee, S.; Cho, K. Organic Thin-film Transistors Based on Polythiophene Nanowires Embedded in Insulating Polymer. Adv. Mater. 2009, 21, 1349–1353. [Google Scholar] [CrossRef]
- Wang, C.; Rivnay, J.; Himmelberger, S.; Vakhshouri, K.; Toney, M.F.; Gomez, E.D.; Salleo, A. Ultrathin body poly(3-hexylthiophene) transistors with improved short-channel performance. ACS Appl. Mater. Interfaces 2013, 5, 2342–2346. [Google Scholar] [CrossRef]
- Yang, H.; Shin, T.J.; Yang, L.; Cho, K.; Ryu, C.Y.; Bao, Z. Effect of Mesoscale Crystalline Structure on the Field-Effect Mobility of Regioregular Poly(3-hexyl thiophene) in Thin-Film Transistors. Adv. Funct. Mater. 2005, 15, 671–676. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Lin, C.-J.; Lo, C.-T.; Tsai, J.-C.; Chen, W.-C. Synthesis, Morphology, and Field-Effect Transistor Characteristics of Crystalline Diblock Copolymers Consisted of Poly(3-hexylthiophene) and Syndiotactic Polypropylene. Macromolecules 2013, 46, 3005–3014. [Google Scholar] [CrossRef]
- Lim, J.A.; Kim, J.-H.; Qiu, L.; Lee, W.H.; Lee, H.S.; Kwak, D.; Cho, K. Inkjet-Printed Single-Droplet Organic Transistors Based on Semiconductor Nanowires Embedded in Insulating Polymers. Adv. Funct. Mater. 2010, 20, 3292–3297. [Google Scholar] [CrossRef]
- Liu, H.; Reccius, C.H.; Craighead, H.G. Single electrospun regioregular poly (3-hexylthiophene) nanofiber field-effect transistor. Appl. Phys. Lett. 2005, 87, 253106. [Google Scholar] [CrossRef]
- Zenoozi, S.; Agbolaghi, S.; Poormahdi, E.; Hashemzadeh-Gargari, M.; Mahmoudi, M. Verification of Scherrer formula for well-shaped poly(3-hexylthiophene)-based conductive single crystals and nanofibers and fabrication of photovoltaic devices from thin film coating. Macromol. Res. 2017, 25, 826–840. [Google Scholar] [CrossRef]
- Cho, B.; Park, K.S.; Baek, J.; Oh, H.S.; Koo Lee, Y.E.; Sung, M.M. Single-crystal poly(3,4-ethylenedioxythiophene) nanowires with ultrahigh conductivity. Nano Lett. 2014, 14, 3321–3327. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.S.; Park, J.K.; Yoon, C.S.; Im, S.S. Organic single-crystal surface-induced polymerization of conducting polypyrroles. Langmuir 2009, 25, 11420–11424. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Han, J.T.; Park, Y.D.; Jang, Y.; Cho, J.H.; Hwang, M.; Cho, K. Single-Crystal Polythiophene Microwires Grown by Self-Assembly. Adv. Mater. 2006, 18, 719–723. [Google Scholar] [CrossRef]
- Ma, Z.; Geng, Y.; Yan, D. Extended-chain lamellar packing of poly(3-butylthiophene) in single crystals. Polymer 2007, 48, 31–34. [Google Scholar] [CrossRef]
- Nuraje, N.; Su, K.; Yang, N.-L.; Matsui, H. Liquid/liquid interfacial polymerization to grow single crystalline nanoneedles of various conducting polymers. ACS Nano 2008, 2, 502–506. [Google Scholar] [CrossRef]
- Schoonveld, W.A.; Vrijmoeth, J.; Klapwijk, T.M. Intrinsic charge transport properties of an organic single crystal determined using a multiterminal thin-film transistor. Appl. Phys. Lett. 1998, 73, 3884–3886. [Google Scholar] [CrossRef]
- Su, K.; Nuraje, N.; Zhang, L.; Chu, I.W.; Peetz, R.M.; Matsui, H.; Yang, N.L. Fast Conductance Switching in Single-Crystal Organic Nanoneedles Prepared from an Interfacial Polymerization-Crystallization of 3,4-Ethylenedioxythiophene. Adv. Mater. 2007, 19, 669–672. [Google Scholar] [CrossRef]
- Xiao, X.; Hu, Z.; Wang, Z.; He, T. Study on the single crystals of poly (3-octylthiophene) induced by solvent-vapor annealing. J. Phys. Chem. B 2009, 113, 14604–14610. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Wang, Z.; Hu, Z.; He, T. Single Crystals of Polythiophene with Different Molecular Conformations Obtained by Tetrahydrofuran Vapor Annealing and Controlling Solvent Evaporation. J. Phys. Chem. B 2010, 114, 7452–7460. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, K.; Botiz, I.; Stingelin, N.; Kayunkid, N.; Sommer, M.; Koch, F.P.V.; Nguyen, H.; Coulembier, O.; Dubois, P.; Brinkmann, M. Controllable processes for generating large single crystals of poly (3-hexylthiophene). Angew. Chem. 2012, 124, 11293–11297. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.; Xu, J.; Ye, H. Review on Crystallization Strategies for Polymer Single Crystals. Crystals 2024, 14, 207. https://doi.org/10.3390/cryst14030207
Wu T, Xu J, Ye H. Review on Crystallization Strategies for Polymer Single Crystals. Crystals. 2024; 14(3):207. https://doi.org/10.3390/cryst14030207
Chicago/Turabian StyleWu, Tianyu, Jun Xu, and Haimu Ye. 2024. "Review on Crystallization Strategies for Polymer Single Crystals" Crystals 14, no. 3: 207. https://doi.org/10.3390/cryst14030207
APA StyleWu, T., Xu, J., & Ye, H. (2024). Review on Crystallization Strategies for Polymer Single Crystals. Crystals, 14(3), 207. https://doi.org/10.3390/cryst14030207