Lattice Rotation Dependence on Microstructural Characteristics in a Low Carbon Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Processing
2.2. Microstructure Characterization
2.3. Crystal Plasticity (CP) Tensile Simulations
3. Results and Discussion
4. Conclusions
- -
- The rotation of grains towards stable end orientation depends largely on the initial orientation of the grains. Rotations are larger if the initial orientations deviate significantly from the stable end orientation.
- -
- Large grains (in size) tend to develop large in-grain misorientations and lattice rotations along with NBGZ. They have a higher tendency to fragment than reorient.
- -
- The mode of deformation and number of neighbors can be significant for the reorientation of grains. However, in the present investigation, the initial orientation of the grain was found to be more significant.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skrotzki, W.; Pukenas, A.; Odor, E.; Joni, B.; Ungar, T.; Völker, B.; Hohenwarter, A.; Pippan, R.; George, E.P. Microstructure, Texture, and Strength Development during High-Pressure Torsion of CrMnFeCoNi High-Entropy Alloy. Crystals 2020, 10, 336. [Google Scholar] [CrossRef]
- Zaefferer, S.; Ohlert, J.; Bleck, W. A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel. Acta Mater. 2004, 52, 2765–2778. [Google Scholar] [CrossRef]
- Dutta, R.K.; Petrov, R.H.; Delhez, R.; Hermans, M.J.M.; Richardson, I.M.; Böttger, A.J. The effect of tensile deformation by in situ ultrasonic treatment on the microstructure of low-carbon steel. Acta Mater. 2013, 61, 1592–1602. [Google Scholar] [CrossRef]
- Nesterova, E.V.; Bacroix, B.; Teodosiu, C. Microstructure and texture evolution under strain-path changes in low-carbon interstitial-free steel. Met. Mater. Trans. A 2001, 32, 2527–2538. [Google Scholar] [CrossRef]
- Dhinwal, S.S.; Toth, L.S.; Hodgson, P.D.; Haldar, A. Effects of Processing Conditions on Texture and Microstructure Evolution in Extra-Low Carbon Steel during Multi-Pass Asymmetric Rolling. Materials 2018, 11, 1327. [Google Scholar] [CrossRef]
- Gupta, A.; Khatirkar, R.K.; Kumar, A.; Thool, K.; Bibhanshu, N.; Suwas, S. Microstructure and texture development in Ti-15V-3Cr-3Sn-3Al alloy—Possible role of strain path. Mater. Charact. 2019, 156, 109884. [Google Scholar] [CrossRef]
- Mahadule, D.; Demiral, M.; Mulki, H.; Khatirkar, R.K. Experiments and Crystal Plasticity Finite Element Simulations of Texture Development during Cold Rolling in a Ti-15V-3Cr-3Sn-3Al Alloy. Crystals 2023, 13, 137. [Google Scholar] [CrossRef]
- de Moura, A.N.; Neto, C.A.R.; Castro, N.A.; Vieira, E.A.; Orlando, M.T.D.A. Microstructure, crystallographic texture and strain hardening behavior in hot tensile tests of UNS S32304 Lean Duplex stainless steel. J. Mater. Res. Technol. 2021, 12, 1065–1079. [Google Scholar] [CrossRef]
- Nagarajan, S.; Jain, R.; Gurao, N.P. Microstructural characteristics governing the lattice rotation in Al-Mg alloy using in-situ EBSD. Mater. Charact. 2021, 180, 111405. [Google Scholar] [CrossRef]
- Liu, M.; Liu, Y.; Li, H. Deformation mechanism of ferrite in a low carbon Al-killed steel: Slip behavior, grain boundary evolution and GND development. Mater. Sci. Eng. A 2022, 842, 143093. [Google Scholar] [CrossRef]
- Zhang, C.; Ya, R.; Sun, M.; Ma, R.; Cui, J.; Li, Z.; Tian, W. In-situ EBSD study of deformation behavior of nickel-based superalloys during uniaxial tensile tests. Mater. Today Commun. 2023, 35, 105522. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J. In-situ EBSD study of 409 L ferritic stainless steel during tensile testing. Mater. Res. Express 2022, 9, 116508. [Google Scholar] [CrossRef]
- Atas, M.S.; Yildirim, M. Temporal evolution, coarsening behavior and oxidation resistance of Ni-15Al superalloy. J. Alloys Compd. 2019, 9, 151784. [Google Scholar] [CrossRef]
- Atas, M.S.; Yildirim, M. Structural properties and cyclic oxidation behavior of Ni-Al-Y superalloys. Kokove Mater. 2022, 60, 281–292. [Google Scholar]
- Atas, M.S.; Yildirim, M. Morphological developments, coarsening and oxidation behavior of Ni-Al-Nb superalloys. J. Mater. Eng. Perform. 2020, 29, 4421–4434. [Google Scholar] [CrossRef]
- E8-04; Standard Test Method for Tensile Testing of Metallic Materials. ASTM: West Conshohocken, PA, USA, 2004.
- Shekhawat, S.K.; Basavaraj, V.P.; Hiwarkar, V.; Chakrabarty, R.; Nemade, J.; Guruprasad, P.J.; Suresh, K.G.; Doherty, R.D.; Samajdar, I. Direct Experimental Observations on Concurrent Microstructure and Magnetic Property Developments in Non-Grain Oriented Electrical Steel. Metall. Mater. Trans. A 2014, 45, 3695–3698. [Google Scholar] [CrossRef]
- Khatirkar, R.; Basavaraj, V.; Shekhawat, S.K.; Haldar, A.; Samajdar, I. Orientation Dependent Recovery in Interstitial Free Steel. ISIJ Intl. 2012, 52, 84–893. [Google Scholar] [CrossRef]
- Khatirkar, R.; Krishna, K.V.M.; Kestens, L.A.I.; Petrov, R.; Pant, P.; Samajdar, I. Strain localization in ultra low carbon steel: Exploring the role of dislocations. ISIJ Int. 2011, 51, 849–856. [Google Scholar] [CrossRef]
- OIM. Analysis Version 7.2. User Manual; TexSEM Laboratories Inc.: Draper, UT, USA, 2013. [Google Scholar]
- Nowell, M.M.; Wright, S.I. Orientation effects on indexing of electron backscattered diffraction patterns. Ultramicroscopy 1984, 103, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.I.; Nowell, M.M.; Field, D.P. A review of strain analysis using electron backscatter diffraction. Microsc. Microanal. 2011, 17, 316–329. [Google Scholar] [CrossRef] [PubMed]
- Kundu, A.; Field, D.P. Geometrically Necessary Dislocation Density Evolution in Interstitial Free Steel at Small Plastic Strains. Met. Mater Trans A 2018, 49, 3274–3282. [Google Scholar] [CrossRef]
- Roters, F.; Eisenlohr, P.; Kords, C.; Tjahjanto, D.D.; Diehl, M.; Raabe, D. DAMASK: The Düsseldorf advanced material simulation kit for studying crystal plasticity using an FE based or a spectral numerical solver. Procedia IUTAM 2012, 3, 3–10. [Google Scholar] [CrossRef]
- Tasan, C.C.; Diehl, M.; Yan, D.; Zambaldi, C.; Shanthraj, P.; Roters, F. Integrated experimental-simulation analysis of stress and strain partitioning in multiphase alloys. Acta Mater. 2014, 81, 386–400. [Google Scholar] [CrossRef]
- Deeparekha, N.; Gupta, A.; Demiral, M.; Khatirkar, R.K. Cold rolling of an interstitial free (IF) steel—Experiments and simulations. Mech. Mater. 2020, 148, 103420. [Google Scholar] [CrossRef]
- Verlinden, B.; Driver, J.; Samajdar, I.; Doherty, R.D. Thermo-Mechanical Processing of Metallic Materials; Pergamon Materials, Series; Cahn, R.W., Ed.; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Field, D.P.; Trivedi, P.B.; Wright, S.I.; Kumar, M. Analysis of local orientation gradients in deformed single crystals. Ultramicroscopy 2005, 103, 33–39. [Google Scholar] [CrossRef]
- Humphreys, F.J.; Hatherly, M. Recrystallization and Related Annealing Phenomena; Elsevier: Oxford, UK, 2004. [Google Scholar]
- Mishra, S.; Pant, P.; Narasimhan, K.; Rollett, A.; Samajdar, I. On the widths of orientation gradient zones adjacent to grain boundaries. Scr. Mater. 2009, 61, 273–276. [Google Scholar] [CrossRef]
- Inagaki, H. Fundamental Aspect of Texture Formation in Low Carbon Steel. ISIJ Int. 1994, 34, 313–321. [Google Scholar] [CrossRef]
- Inagaki, H.; Suda, T. The developments of rolling textures in low-carbon steels. Texture 1972, 1, 129–140. [Google Scholar] [CrossRef]
- Inagaki, H. Formation of {111} recrystallization texture in polycrystalline iron. Trans. Iron Steel Inst. Jpn. 1984, 24, 266–274. [Google Scholar] [CrossRef]
- Inagaki, H. Stable End Orientations in the Rolling Textures of the Polycrystalline Iron. Int. J. Mater. Res. 1987, 78, 431–439. [Google Scholar] [CrossRef]
- Demiral, M.; Roy, A.; El Sayed, T.; Silberschmidt, V.V. Influence of strain gradients on lattice rotation in nano-indentation experiments: A numerical study. Mater. Sci. Eng. A 2014, 608, 73–81. [Google Scholar] [CrossRef]
- Khatirkar, R.K. Strain Localizations in Low Carbon Steels. Ph.D. Thesis, IIT Bombay, Mumbai, India, 2012. [Google Scholar]
C | Mn | Al | Si | P | Cr | Fe | |
---|---|---|---|---|---|---|---|
LC steel | 0.008 | 0.33 | 0.22 | 0.50 | 0.05 | 0.011 | Balance |
Parameter | Value |
---|---|
233.3 GPa | |
135.5 GPa | |
118.0 GPa | |
0.001 1/s | |
1000 MPa | |
n | 20 |
2 | |
95 MPa {110} 97 MPa {112} | |
222.0 MPa {110} 412.7 MPa {112} |
Grain_ID | Phi1 (°) | Phi (°) | Phi2 (°) | Grain Size (µm) | # Neighbors | Grain Orientation Spread (GOS, °) | |||
---|---|---|---|---|---|---|---|---|---|
Undeformed | 3% Strain | 5% Strain | 7% Strain | ||||||
1 | 79.1 | 13.8 | 280.3 | 164.6 | 8 | 0.4 | 1.9 | 3.1 | 3.5 |
2 | 208.9 | 39.6 | 137.3 | 151.8 | 7 | 0.4 | 2.5 | 4.2 | 4.7 |
3 | 127.3 | 31 | 258.3 | 112.8 | 6 | 0.3 | 1.4 | 2.3 | 2.9 |
4 | 103.7 | 9.4 | 242 | 134.7 | 8 | 0.3 | 1.1 | 1.6 | 1.9 |
5 | 343.9 | 21.9 | 4.7 | 115.6 | 7 | 0.4 | 1.6 | 2.1 | 2.7 |
6 | 220 | 46.1 | 125 | 99.4 | 6 | 0.5 | 1.5 | 2 | 2.5 |
7 | 167.9 | 12.2 | 208.7 | 108.7 | 7 | 0.3 | 1.5 | 2.5 | 2.9 |
8 | 326.6 | 8.4 | 55.5 | 149.3 | 7 | 0.3 | 0.9 | 1.6 | 1.9 |
9 | 117.8 | 3.5 | 236.4 | 145.6 | 8 | 0.5 | 2.2 | 3.7 | 4.2 |
10 | 112.8 | 32 | 207.2 | 129.8 | 6 | 0.2 | 1.9 | 2.9 | 3.3 |
11 | 179.6 | 14.1 | 187 | 124.9 | 7 | 0.3 | 2.3 | 3.9 | 4.6 |
12 | 16.9 | 41.5 | 339.3 | 174.2 | 8 | 0.2 | 1.7 | 2.7 | 3.4 |
13 | 149.9 | 30.4 | 198.4 | 180.8 | 9 | 0.4 | 2 | 2.9 | 3.6 |
14 | 14.4 | 48.7 | 315.8 | 181 | 9 | 0.3 | 1.8 | 2.9 | 3.5 |
15 | 219.8 | 51.7 | 148.1 | 139.8 | 7 | 0.3 | 1.2 | 1.9 | 2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shekhawat, S.K.; Khatirkar, R.K.; Demiral, M. Lattice Rotation Dependence on Microstructural Characteristics in a Low Carbon Steel. Crystals 2024, 14, 186. https://doi.org/10.3390/cryst14020186
Shekhawat SK, Khatirkar RK, Demiral M. Lattice Rotation Dependence on Microstructural Characteristics in a Low Carbon Steel. Crystals. 2024; 14(2):186. https://doi.org/10.3390/cryst14020186
Chicago/Turabian StyleShekhawat, Satish K., Rajesh K. Khatirkar, and Murat Demiral. 2024. "Lattice Rotation Dependence on Microstructural Characteristics in a Low Carbon Steel" Crystals 14, no. 2: 186. https://doi.org/10.3390/cryst14020186
APA StyleShekhawat, S. K., Khatirkar, R. K., & Demiral, M. (2024). Lattice Rotation Dependence on Microstructural Characteristics in a Low Carbon Steel. Crystals, 14(2), 186. https://doi.org/10.3390/cryst14020186