Anionic Dye Alizarin Red S Removal Using Heat-Treated Dolomite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Batch Studies
2.3. Methods of Analyses
3. Results
3.1. ARS Sorption Isotherm
3.2. ARS Sorption Kinetics
3.3. Effects of Equilibrium Solution pH, Ionic Strength, and Temperature on ARS Sorption
3.4. XRD Analyses
3.5. FTIR Analyses
3.6. SEM Observation and Particle Size Analyses
3.7. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Modi, S.; Yadav, V.K.; Gacem, A.; Ali, I.H.; Dave, D.; Khan, S.H.; Yadav, K.K.; Rather, S.U.; Ahn, Y.; Son, C.T.; et al. Recent and emerging trends in remediation of methylene blue dye from wastewater by using zinc oxide nanoparticles. Water 2022, 14, 1749. [Google Scholar] [CrossRef]
- Gupta, V.K. Application of low-cost adsorbents for dye removal—A review. J. Environ. Manag. 2009, 90, 2313–2342. [Google Scholar] [CrossRef]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Khan, M.D.; Singh, A.; Khan, M.Z.; Tabraiz, S.; Sheikh, J. Current perspectives, recent advancements, and efficiencies of various dye-containing wastewater treatment technologies. J. Water Process Eng. 2023, 53, 103579. [Google Scholar] [CrossRef]
- Ganaie, R.J.; Rafiq, S.; Sharma, A. Recent advances in physico-chemical methods for removal of dye from wastewater. In Proceedings of the International Conference on Advance Earth Sciences & Foundation Engineering, Mohali, India, 23–24 June 2022; IOP Publishing: Bristol, UK, 2023; Volume 1110, p. 012040. [Google Scholar]
- Ngulube, T.; Gumbo, J.R.; Masindi, V.; Maity, A. An update on synthetic dyes adsorption onto clay based minerals: A state-of-art review. J. Environ. Manag. 2017, 191, 35–57. [Google Scholar] [CrossRef] [PubMed]
- Amari, A.; Gannouni, H.; Khan, M.I.; Almesfer, M.K.; Elkhaleefa, A.M.; Gannouni, A. Effect of structure and chemical activation on the adsorption properties of green clay minerals for the removal of cationic dye. Appl. Sci. 2018, 8, 2302. [Google Scholar] [CrossRef]
- Li, Z.; Potter, N.; Rasmussen, J.; Weng, J.; Lv, G. Removal of rhodamine 6G with different types of clay minerals. Chemosphere 2018, 202, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Rao, W.; Piliouras, P.; Wang, W.; Guido, A.; Kugler, K.; Sieren, B.; Wang, L.; Lv, G.; Li, Z. Zwitterionic dye rhodamine B (RhB) uptake on different types of clay minerals. Appl. Clay Sci. 2020, 197, 105790. [Google Scholar] [CrossRef]
- Boucif, F.; Marouf-Khelifa, K.; Batonneau-Gener, I.; Schott, J.; Khelifa, A. Preparation, characterisation of thermally treated Algerian dolomite powders and application to azo-dye adsorption. Powder Technol. 2010, 201, 277–282. [Google Scholar] [CrossRef]
- Boucif, F.; Merouani, D.R.; Marouf-Khelifa, K.; Khelifa, A. Adsorption of Orange I by modified dolomite: Performance and mechanism. Int. J. Environ. Sci. Technol. 2021, 18, 3179–3188. [Google Scholar] [CrossRef]
- Medjdoubi, A.; Hachemaoui, M.; Boukoussa, B.; Hakiki, A.; Bengueddach, A.; Hamacha, R. Adsorption behavior of Janus Green B dye on Algerian diatomite. Mater. Res. Express 2019, 6, 085544. [Google Scholar] [CrossRef]
- Abdullah, S.F.A.; Saleh, S.S.M.; Mohammad, N.F.; Idris, M.S.; Saliu, H.R. Effect of thermal treatment on natural dolomite. In Proceedings of the 1st International Conference on Green Materials ICoGMPAC 2021, Perlis, Malaysia, 12 October 2021; IOP Publishing: Bristol, UK; Volume 2080, p. 012009. [Google Scholar]
- Zahuri, A.A.; Abdul Patah, M.F.; Kamarulzaman, Y.; Hashim, N.H.; Thirumoorthi, T.; Wan Mohtar, W.H.M.; Mohd Hanafiah, Z.; Amir, Z.; Wan-Mohtar, W.A.A.Q.I. Decolourisation of real industrial and synthetic textile dye wastewater using activated dolomite. Water 2023, 15, 1172. [Google Scholar] [CrossRef]
- Shirazi, E.K.; Metzger, J.W.; Fischer, K.; Hassani, A.H. Simultaneous removal of a cationic and an anionic textile dye from water by a mixed sorbent of vermicompost and Persian charred dolomite. Chemosphere 2019, 234, 618–629. [Google Scholar] [CrossRef]
- Ziane, S.; Marouf-Khelifa, K.; Benmekki, H.; Schott, J.; Khelifa, A. Removal of a reactive textile azo dye by dolomitic solids: Kinetic, equilibrium, thermodynamic, and FTIR studies. Desal. Water Treat. 2015, 56, 695–708. [Google Scholar] [CrossRef]
- Amen, R.; Elsayed, I.; Hassan, A.-B. Sustainable and economical dolomite-modified biochar for efficient removal of anionic dyes. Arab. J. Chem. 2023, 16, 105125. [Google Scholar] [CrossRef]
- Elshimy, A.S.; Abdel-Gawwad, H.A.; Al-Dossari, M.; Abd EL-Gawaad, N.S.; Bonilla-Petriciolet, A.; Badawi, M.; Mobarak, M.; Lima, E.C.; Selim, A.Q.; Seliem, M.K. Utilization of alkali-activated dolomite waste toward the fabrication of an effective adsorbent: Experimental study and statistical physics formalism for the removal of methylene blue and crystal violet. J. Phys. Chem. Solids 2023, 180, 111442. [Google Scholar] [CrossRef]
- Lemlikchi, W.; Sharrock, P.; Fiallo, M.; Nzihou, A.; Mecherri, M.O. Hydroxyapatite and Alizarin sulfonate ARS modeling interactions for textile dyes removal from wastewaters. Procedia Eng. 2014, 83, 378–385. [Google Scholar] [CrossRef]
- Gregory, C.A.; Gunn, W.G.; Peister, A.; Prockop, D.J. An Alizarin red-based assay of mineralization by adherent cells in culture: Comparison with cetylpyridinium chloride extraction. Anal. Biochem. 2004, 329, 77–84. [Google Scholar] [CrossRef]
- Rheima, A.M.; Mahmood, R.S.; Hussain, D.H.; Abbas, Z.S. Study the adsorption ability of alizarin red dye from their aqueous solution on synthesized carbon nanotubes. Dig. J. Nanomater. Biostructures 2021, 16, 11–18. [Google Scholar] [CrossRef]
- Al-Salihi, K.J.; Alfatlawi, W.R. Synthesis and characterization of low-cost adsorbent and used for Alizarin yellow GG and alizarin Red S dyes removal from aqueous solutions. In Proceedings of the 1st International Conference on Sustainable Engineering and Technology (INTCSET 2020), Baghdad, Iraq, 15–16 December 2020; IOP Publishing: Bristol, UK, 2021; Volume 1094, p. 012175. [Google Scholar]
- Rehman, R.; Mahmud, T.; Anwar, J.; Salman, M.; Shafique, U.; Zaman, W.U.; Ali, F. Removal of alizarin red s (dye) from aqueous media by using alumina as an adsorbent. J. Chem. Soc. Pak. 2011, 33, 228–232. [Google Scholar]
- Friedman, G.M. Identification of carbonate minerals by staining methods. J. Sediment. Res. 1959, 29, 87–97. [Google Scholar]
- Dickson, J.A.D. Carbonate identification and genesis as revealed by staining. J. Sediment. Res. 1966, 36, 491–505. [Google Scholar]
- Fu, E.; Somasundaran, P. Alizarin Red S as a flotation modifying agent in calcite-apatite systems. Int. J. Miner. Process. 1986, 18, 287–296. [Google Scholar] [CrossRef]
- Adeogun, A.I.; Babu, R.B. One-step synthesized calcium phosphate-based material for the removal of alizarin S dye from aqueous solutions: Isothermal, kinetics, and thermodynamics studies. Appl. Nanosci. 2021, 11, 1–13. [Google Scholar] [CrossRef]
- Wu, L.; Forsling, W.; Holmgren, A. Surface complexation of calcium minerals in aqueous solution: 4. The Complexation of Alizarin Red S at Fluorite–Water Interfaces. J. Colloid Interface Sci. 2020, 224, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Shirazi, E.K.; Metzger, J.W.; Fischer, K.; Hassani, A.H. Removal of textile dyes from single and binary component systems by Persian bentonite and a mixed adsorbent of bentonite/charred dolomite. Colloids Surf. A 2020, 598, 124807. [Google Scholar] [CrossRef]
- Kurtulbaş, E.; Yıldırım, E.; Emik, S.; Şahin, S. A detailed study on the sorption characteristics of humic acid onto calcined dolomite. J. Mol. Struct. 2020, 1219, 128606. [Google Scholar] [CrossRef]
- Storti, F.; Balsamo, F. Particle size distributions by laser diffraction: Sensitivity of granular matter strength to analytical operating procedures. Solid Earth 2010, 1, 25–48. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef]
- Rehman, R.; Abbas, A.; Murtaza, S.; Anwar, J.; Mahmud, T.; Akbar, S. Adsorption parameters optimization for removal of alizarin red-S and brilliant blue FCF dyes from water using Abelmoschus esculentus stem powder. J. Chem. Soc. Pak. 2013, 35, 443–448. [Google Scholar]
- Shi, Y.; Baker, J.; Feng, C.; Wang, X.; Li, Z. Removal of toluidine blue from water using 1: 1 layered clay minerals. Adv. Powder Technol. 2022, 33, 103608. [Google Scholar] [CrossRef]
- Puchtler, H.; Meloan, S.N.; Terry, M.S. On the history and mechanism of alizarin and alizarin red S stains for calcium. J. Histochem. Cytochem. 1969, 17, 110–124. [Google Scholar] [CrossRef]
- Gautam, R.K.; Banerjee, S.; Gautam, P.K.; Rawat, V.; Kumar, A.; Singh, S.K.; Chattopadhyaya, M.C. Biosorption of an acidic dye, alizarin red S onto biosorbent of mustard husk: Kinetic, equilibrium modeling and spectroscopic analysis. Asian J. Res. Chem. 2014, 7, 417–425. [Google Scholar]
- El-Nahass, M.M.; Zeyada, H.M.; El-Ghamaz, N.A.; Awed, A.S. Structural investigation, thermal analysis and AC conduction mechanism of thermally evaporated alizarin red S thin films. Optik 2018, 170, 304–313. [Google Scholar] [CrossRef]
- Balakrishnan, G.; Velavan, R.; Batoo, K.M.; Raslan, E.H. Microstructure, optical and photocatalytic properties of MgO nanoparticles. Results Phys. 2020, 16, 103013. [Google Scholar] [CrossRef]
- Blanton, T.N.; Barnes, C.L. Quantitative analysis of calcium oxide desiccant conversion to calcium hydroxide using X-ray diffraction. Adv. X-ray Anal. 2005, 28, 45–51. [Google Scholar] [CrossRef]
- Maor, Y.; Toffolo, M.B.; Feldman, Y.; Vardi, J.; Khalaily, H.; Asscher, Y. Dolomite in archaeological plaster: An FTIR study of the plaster floors at Neolithic Motza. Isr. J. Archaeolog. Sci. Rep. 2023, 48, 103862. [Google Scholar] [CrossRef]
- Ji, J.; Ge, Y.; Balsam, W.; Damuth, J.E.; Chen, J. Rapid identification of dolomite using a Fourier Transform Infrared Spectrophotometer (FTIR): A fast method for identifying Heinrich events in IODP Site U1308. Mar. Geol. 2009, 258, 60–68. [Google Scholar] [CrossRef]
- Turcanu, A.; Bechtold, T. pH Dependent redox behaviour of Alizarin Red S (1, 2-dihydroxy-9, 10-anthraquinone-3-sulfonate)–Cyclic voltammetry in presence of dispersed vat dye. Dye. Pigment. 2011, 91, 324–331. [Google Scholar] [CrossRef]
- Chin, Y.P.; Raof, S.F.A.; Sinniah, S.; Lee, V.S.; Mohamad, S.; Manan, N.S.A. Inclusion complex of Alizarin Red S with β-cyclodextrin: Synthesis, spectral, electrochemical and computational studies. J. Molec. Struct. 2015, 1083, 236–244. [Google Scholar] [CrossRef]
- Resio, L.C. Dolomite thermal behaviour: A proposal to establish a definitive decomposition mechanism in a convective air atmosphere. Open Ceram. 2023, 15, 100405. [Google Scholar] [CrossRef]
- Shahraki, B.K.; Mehrabi, B.; Dabiri, R. Thermal behavior of Zefreh dolomite mine (Central Iran). J. Min. Metall. B Metall. 2009, 45, 35–44. [Google Scholar] [CrossRef]
Sorption Parameters | ARS Sorption on Dol | ARS Sorption on HDol |
---|---|---|
Sm (mmol/kg) | 80 | 140 |
KL (L/mmol) | 1.5 | 6.0 |
r2 for Langmuir isotherm fitting | 0.71 | 0.96 |
KF (L/kg) | 105 | 113 |
1/n | 1.3 | 0.2 |
r2 for Freundlich isotherm fitting | 0.95 | 0.99 |
qe (mmol/kg) | 18 | 60 |
kqe2 (mmol/kg-h) | 833 | 1250 |
k (kg/mmol-h) | 2.5 | 0.3 |
r2 for pseudo-second-order fitting | 0.9999 | 0.9999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Bowman, A.; Rayniak, A.; Xu, S. Anionic Dye Alizarin Red S Removal Using Heat-Treated Dolomite. Crystals 2024, 14, 187. https://doi.org/10.3390/cryst14020187
Li Z, Bowman A, Rayniak A, Xu S. Anionic Dye Alizarin Red S Removal Using Heat-Treated Dolomite. Crystals. 2024; 14(2):187. https://doi.org/10.3390/cryst14020187
Chicago/Turabian StyleLi, Zhaohui, Anna Bowman, Angie Rayniak, and Shangping Xu. 2024. "Anionic Dye Alizarin Red S Removal Using Heat-Treated Dolomite" Crystals 14, no. 2: 187. https://doi.org/10.3390/cryst14020187
APA StyleLi, Z., Bowman, A., Rayniak, A., & Xu, S. (2024). Anionic Dye Alizarin Red S Removal Using Heat-Treated Dolomite. Crystals, 14(2), 187. https://doi.org/10.3390/cryst14020187