Electronic and Structural Properties of Antibacterial Ag–Ti-Based Surfaces: An Ab Initio Theoretical Study
Abstract
:1. Introduction
2. Computational Details
- Section 3.1. Ag in β-TiNb:
- Section 3.2. Adsorption of Ag on β-TiNb surface:
- Section 3.3. Ag adsorption on anatase and rutile TiO2 surfaces:
- Supporting Information. Anatase and Rutile TiO2 and TiO2 (001) surfaces
- (S.I.a)
- TiO2 Anatase and Rutile bulk oxides: For the calculation of the total energy curves the unit cells of TiO2 routile (4.614 Å × 4.614 Å × 2.97 Å) with 5 × 5 × 8 k-points and anatase (3.78 Å × 3.78 Å × 9.64 Å) with 6 × 6 × 2 k-points for the total energy curves with periodic boundary conditions in the three dimensions.
- (S.I.b)
- TiO2 Anatase and Rutile (001) surfaces: Aiming to calculate the anatase (001) and rutile (001) surfaces two supercells were considered. Due to the structure of the TiO2 unit cell for the rutile 1 × 1 × 10 units (4.614 Å × 4.614 Å × 29.7 Å) were considered while for anatase 1 × 1 × 4 corresponding unit cells (3.78 Å × 3.78 Å × 38.56 Å). For both cases a 10 × 10 × 1 k-point mesh was considered along with in-plane periodic boundary conditions. The size of the imaginary box was large enough along the z direction without vertical to the surface periodic boundary conditions.
3. Results and Discussion
3.1. Ag in β-TiNb
3.2. Adsorption of Ag on β-TiNb Surface
3.3. Ag Adsorption on TiO2 Surfaces
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greer, A.L. Metallic glasses…on the threshold. Mater. Today 2009, 12, 14. [Google Scholar] [CrossRef]
- Padmanabhan, J.; Kinser, E.R.; Stalter, M.A.; Duncan-Lewis, C.; Balestrini, J.L.; Sawyer, A.J.; Schroers, J.; Kyriakides, T.R. Engineering Cellular Response Using Nanopatterned Bulk Metallic Glass. ACS Nano 2014, 8, 4366. [Google Scholar] [CrossRef] [PubMed]
- Shah, F.A.; Thomsen, P.; Palmquist, A. Osseointegration and current interpretations of the bone-implant interface. Acta Biomater. 2019, 84, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Alonzo, M.; Primo, F.A.; Kumar, S.A.; Mudloff, J.A.; Dominguez, F.; Fregoso, G.; Ortiz, A.; Weiss, W.M.; Joddar, B. Bone tissue engineering techniques, advances, and scaffolds for treatment of bone defects. Curr. Opin. Biomed. Eng. 2021, 17, 100248. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Fu, R.; Liu, X.W.; Xu, L.M.; Wang, G.; Chen, S.Y.; Zhai, Q.J.; Pauly, S. Osteogenesis and angiogenesis of a bulk metallic glass for biomedical implants. Bioact. Mater. 2022, 8, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Calin, M.; Helth, A.; Gutierrez Moreno, J.J.; Bönisch, M.; Brackmann, V.; Giebeler, L.; Gemming, T.; Lekka, C.E.; Gebert, A.; Schnettler, R.; et al. Elasticsofteningofbeta-typeTi-Nballoysby(In)additions. J. Mech. Behav. Biomed. Mater. 2014, 39, 162. [Google Scholar]
- Kauschke, V.; Gebert, A.; Calin, M.; Eckert, J.; Scheich, S.; Heiss, C.; Lips, K.S. Effects of new beta-type Ti-40Nb implant materials, brain-derived neurotrophic factor, acetylcholine and nicotine on human mesenchymal stem cells of osteoporotic and non osteoporotic donors. PLoS ONE 2018, 13, e0193468. [Google Scholar] [CrossRef] [PubMed]
- Piszczek, P.; Kubiak, B.; Golińska, P.; Radtke, A. Oxo-Titanium(IV) Complex/Polymer Composites—Synthesis, Spectroscopic Characterization and Antimicrobial Activity Test. Int. J. Mol. Sci. 2020, 21, 9663. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Marks, T.J.; Facchetti, A. Metal Oxides for Optoelectronic Applications. Nat. Mater. 2016, 15, 383–396. [Google Scholar] [CrossRef]
- Nomura, K.; Ohta, H.; Ueda, K.; Kamiya, T.; Hirano, M.; Hosono, H. Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor. Science 2003, 300, 1269–1272. [Google Scholar] [CrossRef]
- Petti, L.; Münzenrieder, N.; Vogt, C.; Faber, H.; Büthe, L.; Cantarella, G.; Bottacchi, F.; Anthopoulos, T.D.; Tröster, G. Metal Oxide Semiconductor Thin-Film Transistors for Flexible Electronics. Appl. Phys. Rev. 2016, 3, 021303. [Google Scholar] [CrossRef]
- Yarali, E.; Koutsiaki, C.; Faber, H.; Tetzner, K.; Yengel, E.; Patsalas, P.; Kalfagiannis, N.; Koutsogeorgis, D.C.; Anthopoulos, T.D. Recent Progress in Photonic Processing of Metal-Oxide Transistors. Adv. Funct. Mater. 2020, 30, 1906022. [Google Scholar] [CrossRef]
- Bouri, M.; Lekka, C.E. L-Glutamine Coating on Antibacterial Cu Surface by Density Functional Theory. Crystals 2023, 13, 1698. [Google Scholar] [CrossRef]
- Xu, L.C.; Siedlecki, C.A. Antibacterial Polyurethanes. Adv. Polyurethane Biomater. 2016, 247–284. [Google Scholar] [CrossRef]
- Rossos, A.K.; Banti, C.N.; Raptis, P.K.; Papachristodoulou, C.; Sainis, I.; Zoumpoulakis, P.; Mavromoustakos, T.; Hadjikakou, S.K. Silver Nanoparticles Using Eucalyptus or Willow Extracts (AgNPs) as Contact Lens Hydrogel Components to Reduce the Risk of Microbial Infection. Molecules 2021, 26, 5022. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.A.; Das, S.S.; Khatoon, A.; Ansari, M.T.; Afzal, M.; Saquib Hasnain, M.; Nayak, A.K. Bactericidal activity of silver nanoparticles: A mechanistic review. Mater. Sci. Energy Technol. 2020, 3, 756–769. [Google Scholar] [CrossRef]
- Naik, A.; Best, S.; Cameron, R. Influence of silanisation on the mechanical and degradation behaviour of PLGA/HA composites. Mater. Sci. Eng. C 2015, 48, 642. [Google Scholar] [CrossRef]
- Vijayan, V.; Kiran, M.S. Hybrid nanostructured gadolinium oxide collagen-dextran polymeric hydrogel for corneal repair and regeneration. Int. J. Biol. Macromol. 2023, 224, 1423–1438. [Google Scholar] [CrossRef]
- Alberta, L.A.; Vishnu, J.; Hariharan, A.; Pilz, S.; Gebert, A.; Calin, M. Novel low modulus beta-type TiNb alloys by gallium and copper minor additions for antibacterial implant applications. J. Mater. Res. Technol. 2022, 20, 3306. [Google Scholar] [CrossRef]
- Akman, A.; Alberta, L.A.; Giraldo-Osorno, P.L.; Turner, A.B.; Hantusch, M.; Palmquist, A.; Trobos, M.; Calin, M.; Gebert, A. Effect of minor gallium addition on corrosion, passivity, and antibacterial behaviour of novel b-type Ti-Nb alloys. J. Mater. Res. Technol. 2023, 25, 4110. [Google Scholar] [CrossRef]
- Alberta, L.A.; Fortouna, Y.; Vishnu, J.; Pilz, S.; Gebert, A.; Lekka, C.E.; Nielsch, K.; Calin, M. Effects of Gaon the structural, mechanical and electronic properties of β-Ti45Nb alloy by experiments and ab initio calculations. J. Mech. Behav. Biomed. Mater. 2023, 140, 105728. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, Z.; Zhang, J.; Qin, G.; Zhang, E. Construction of a TiO2/Cu2O multifunctional coating on Ti-Cu alloy and its influence on the cell compatibility and antibacterial properties. Surf. Coat. Technol. 2021, 421, 127438. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, J.; Huang, X.; Zhang, Y.; Han, Y. The dual function of Cu-doped TiO2 coatings on titanium for application in percutaneous implants. J. Mater. Chem. B 2016, 4, 3788. [Google Scholar] [CrossRef]
- Fornell, J.; Soriano, J.; Guerrero, M.; Sirvent, J.D.D.; Ferran-Marqués, M.; Ibáñez, E.; Barrios, L.; Baró, M.D.; Suriñach, S.; Nogués, C.; et al. Biodegradable FeMnSi Sputter-Coated Macroporous Polypropylene Membranes for the Sustained Release of Drugs. Nanomaterials 2017, 7, 155. [Google Scholar] [CrossRef] [PubMed]
- Bartkowska, A.; Lekka, C.E.; Alberta, L.A.; Spasojevic, I.; Pellicer, E.; Sort, J. Silver-induced γ→ε martensitic transformation in FeMn alloys: An experimental and computational study. J. Alloys Compd. 2023, 966, 171640. [Google Scholar] [CrossRef]
- Pawar, T.J.; Lopez, D.C.; Olivares Romero, J.L.; Montesinos, J.V. Surface modification of titanium dioxide. J. Mater. Sci. 2023, 58, 6887–6930. [Google Scholar] [CrossRef]
- Durango-Giraldo, G.; Cardona, A.; Zapata, J.F.; Santa, J.F.; Buitrago-Sierra, R. Titanium dioxide modified with silver by two methods for bactericidal applications. Heliyon 2019, 5, 01608. [Google Scholar] [CrossRef] [PubMed]
- Vallejo-Montesinos, J.; Gámez-Cordero, J.; Zarraga, R.; Pérez Pérez, M.C.; Gonzalez-Calderon, J.A. Infuence of the surface modifcation of titanium dioxide nanoparticles TiO2 under efciency of silver nanodots deposition and its effect under the properties of starch–chitosan (SC) films. Polym. Bull. 2020, 77, 107–133. [Google Scholar] [CrossRef]
- Gao, A.; Hang, R.; Huang, X.; Zhao, L.; Zhang, X.; Wang, L.; Tang, B.; Ma, S.; Chu, P.K. The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts. Biomaterials 2014, 35, 4223–4235. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, Z.; Li, W. Antibacterial TiO2 Coating Incorporating Silver Nanoparticles by Microarc Oxidation and Ion Implantation. J. Nanomater. 2013, 2013, 542878. [Google Scholar]
- Quiñones-Jurado, Z.V.; Waldo-Mendoza, M.A.; Aguilera-Bandin, H.M.; Villabona-Leal, E.G.; Cervantes-González, E.; Pérez, E. Silver Nanoparticles Supported on TiO2 and Their Antibacterial Properties: Effect of Surface Confinement and Nonexistence of Plasmon Resonance. Mater. Sci. Appl. 2014, 5, 895–903. [Google Scholar]
- Skiba, M.; Vorobyova, V.; Pasenko, O. Surface modifcation of titanium dioxide with silver nanoparticles for application in photocatalysis. Appl. Nanosci. 2022, 12, 1175–1182. [Google Scholar] [CrossRef]
- O’Connor, N.J.; Jonayat, A.S.M.; Janik, M.J.; Senftle, T.P. Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning. Nat. Catal. 2018, 1, 531–539. [Google Scholar] [CrossRef]
- Branda, M.M.; Hernandez, N.C.; Sanz, J.F.; Illas, F. Density functional theory study of the interaction of Cu, Ag, and Au atoms with the regular CeO2(111) surface. J. Phys. Chem. C 2010, 114, 1934–1941. [Google Scholar] [CrossRef]
- Giordano, L.; Baistrocchi, M.; Pacchioni, G. Bonding of Pd, Ag, and Au atoms on MgO(100) surfaces and MgO/Mo(100) ultra-thin films: A comparative DFT study. Phys. Rev. B 2005, 72, 11. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Portal, D.; Ordejon, P.; Artacho, E.; Soler, J.M. Density-Functional Method for Very Large Systems with LCAO Basis Sets. Int. J. Quantum Chem. 1997, 65, 453–461. [Google Scholar] [CrossRef]
- Artacho, E.; Sanchez-Portal, D.; Ordejon, P.; Garcia, A.; Soler, J.M. Linear-Scaling ab-Initio Calculations for Large and Complex Systems. Phys. Status Solidi B 1999, 215, 809–817. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Kresse, I.G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef] [PubMed]
- Rangarajan, S.; Mavrikakis, M. A comparative analysis of different van der Waals treatments for molecular adsorption on the basal plane of 2H-MoS2. Surf. Sci. 2023, 729, 122226. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, A.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Araujo, R.B.; Rodrigues, G.L.S.; Campos dos Santos, E.; Pettersson, L.G.M. Adsorption energies on transition metal surfaces: Towards an accurate and balanced description. Nat. Commun. 2022, 13, 6853. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez Moreno, J.J.; Papageorgiou, D.G.; Evangelakis, G.A.; Lekka, C.E. An ab initio study of the structural and mechanical properties of Ti-Nb alloys. J. Appl. Phys. 2018, 124, 245102. [Google Scholar] [CrossRef]
- Gutiérrez Moreno, J.J.; Panagiotopoulos, N.T.; Evangelakis, G.A.; Lekka, C.E. Electronic Origin of α” to β Phase Transformation in Ti-Nb-Based Thin Films upon Hf Microalloying. Materials 2020, 13, 1288. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zhao, J.; Jiang, X. Correlation between hardness and elastic moduli of the covalent crystals. Comput. Mater. Sci. 2011, 50, 2287–2290. [Google Scholar] [CrossRef]
- Lekka, C.E.; Gutiérrez-Moreno, J.J.; Calin, M. Electronic origin and structural instabilities of Ti-based alloys suitable for orthopaedic implants. J. Phys. Chem. Solids 2017, 102, 49. [Google Scholar] [CrossRef]
- Lekka, C.E.; Mehl, M.J.; Bernstein, N.; Papaconstantopoulos, D.A. Τight binding molecular dynamics simulations of Nb surfaces and surface defects. Phys. Rev. B 2003, 68, 35422. [Google Scholar] [CrossRef]
- Lekka, C.E.; Papanicolaou, N.I.; Evangelakis, G.A. Molecular dynamics study of the ordered Cu3Au. I Vibrational and structural properties of the low-indexed Cu3Au surfaces by Molecular Dynamics Simulations. Surf. Sci. 2001, 479, 287. [Google Scholar] [CrossRef]
- Prasai, B.; Cai, B.; Underwood, M.K.; Lewis, J.P.; Drabold, D.A. Properties of amorphous and crystalline titanium dioxide from first principles. J. Mater. Sci. 2012, 47, 7515–7521. [Google Scholar] [CrossRef]
- Perdew, J.P. Density functional theory and the band gap problem. Int. J. Quantum Chem. Quantum Chem. Symp. 1986, 19, 497–523. [Google Scholar] [CrossRef]
- Fahrenkamp-Uppenbrink, J.; Szuromi, P.; Veston, J.; Coontz, R. Theoretical Possibilities. Science 2008, 321, 794. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papantoniou-Chatzigiosis, S.; Galani, A.C.; Fylaktopoylou, D.; Kourti, C.; Mosxou, A.; Nousia, M.E.; Anthopoulos, T.; Lidorikis, E.; Lekka, C.E. Electronic and Structural Properties of Antibacterial Ag–Ti-Based Surfaces: An Ab Initio Theoretical Study. Crystals 2024, 14, 428. https://doi.org/10.3390/cryst14050428
Papantoniou-Chatzigiosis S, Galani AC, Fylaktopoylou D, Kourti C, Mosxou A, Nousia ME, Anthopoulos T, Lidorikis E, Lekka CE. Electronic and Structural Properties of Antibacterial Ag–Ti-Based Surfaces: An Ab Initio Theoretical Study. Crystals. 2024; 14(5):428. https://doi.org/10.3390/cryst14050428
Chicago/Turabian StylePapantoniou-Chatzigiosis, Stefanos, Athina C. Galani, Dimitra Fylaktopoylou, Christina Kourti, Androniki Mosxou, Maria E. Nousia, Thomas Anthopoulos, Elefterios Lidorikis, and Christina E. Lekka. 2024. "Electronic and Structural Properties of Antibacterial Ag–Ti-Based Surfaces: An Ab Initio Theoretical Study" Crystals 14, no. 5: 428. https://doi.org/10.3390/cryst14050428
APA StylePapantoniou-Chatzigiosis, S., Galani, A. C., Fylaktopoylou, D., Kourti, C., Mosxou, A., Nousia, M. E., Anthopoulos, T., Lidorikis, E., & Lekka, C. E. (2024). Electronic and Structural Properties of Antibacterial Ag–Ti-Based Surfaces: An Ab Initio Theoretical Study. Crystals, 14(5), 428. https://doi.org/10.3390/cryst14050428