Influence of Chloride Ion Concentration on Corrosion Behavior of WC–MgO Composite
Abstract
:1. Introduction
2. Experiment Procedures
2.1. Material and Pretreatment
2.2. Electrochemical Measurements
2.3. Microstructure and Composition Characterization
3. Results and Discussion
3.1. Electrochemical Corrosion Test
3.2. Characterization of the Corrosion Passivation Layer
3.3. Corrosion Mechanism
4. Conclusions
- (1)
- The corrosion resistance of WC–MgO composite decreased first, then increased with the increase in Cl−concentration, which was attributed to the solution conductivity and dissolved oxygen content. The solution conductivity determined the charge transfer process, and the dissolved oxygen determined the cathodic oxygen absorption reaction.
- (2)
- The corrosion destruction was due to the oxidation of WC and dissolution of MgO. The main corrosion product was WO3. The formation of the WO3 corrosion layer on the surface hindered the general corrosion to protect the inner material.
- (3)
- The corrosion characteristic had typical pitting corrosion. The dissolution of MgO induced the initiation of pitting. The local alkaline caused by the MgO dissolution promoted the dissolution of the WC matrix, which led to the expansion of pitting.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, X.; Wang, Z.; Huang, L.; Wang, X.; Chang, T.; Huang, P.; Zhu, Z. Preparation, properties and microstructure of high hardness WC–Co cemented carbide tool materials for ultra-precision machining. Int. J. Refract. Met. Hard Mater. 2023, 116, 106356. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Liu, Y.; Ye, J. Enhanced high temperature mechanical properties of WC–Co cemented carbides by VC addition. Int. J. Refract. Met. Hard Mater. 2023, 116, 106355. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, H.; Lu, H.; Liu, X.; Liu, C.; Wen, X.; Fan, C.; Song, X. WC–Co–TiNbZr composite with simultaneously high hardness and fracture toughness. Int. J. Refract. Met. Hard Mater. 2023, 116, 106332. [Google Scholar] [CrossRef]
- Nino, A.; Takahashi, H.; Sekine, T.; Sugiyama, S. Effects of Si3N4 addition on the microstructure and mechanical properties of binderless tungsten carbides. Int. J. Refract. Met. Hard Mater. 2023, 114, 106267. [Google Scholar] [CrossRef]
- Yang, M.; Han, B.; Guo, Z.; Luo, X.; Wang, T. Pressureless sintering of WC-TaC binderless carbide. Ceram. Int. 2020, 46 Pt A, 28814–28820. [Google Scholar] [CrossRef]
- Ozawa, A.; Morimoto, S.; Hatayama, H.; Anzai, Y. Energy–materials nexus of electrified vehicle penetration in Japan: A study on energy transition and cobalt flow. Energy 2023, 277, 127698. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Z.; Wang, H.; Wang, C.; Hou, Z.; Wu, D.; Ouyang, X. High–pressure synthesis of tungsten carbide–cubic boron nitride (WC–cBN) composites: Effect of cBN particle size and volume fraction on their microstructure and properties. Int. J. Refract. Met. Hard Mater. 2023, 110, 106037. [Google Scholar] [CrossRef]
- Liang, Z.; Liu, X.; Zhao, Z.; Lu, H.; Wang, H.; Liu, C.; Wang, M.; Song, X. Enhancing hardness and toughness of WC simultaneously by dispersed ZrO2. Mater. Sci. Eng. A 2023, 870, 144905. [Google Scholar] [CrossRef]
- Hui, J.; Han, B.; Weiwei, D.; Zhu, S. High-temperature oxidation behaviour of vacuum hot-pressed WC–15 wt% Al2O3 composites. Ceram. Int. 2022, 48, 12184–12192. [Google Scholar] [CrossRef]
- Radajewski, M.; Schimpf, C.; Krüger, L. Study of processing routes for WC–MgO composites with varying MgO contents consolidated by FAST/SPS. J. Eur. Ceram. Soc. 2017, 37, 2031–2037. [Google Scholar] [CrossRef]
- Katiyar, P.K.; Randhawa, N.S. Corrosion behavior of WC–Co tool bits in simulated (concrete, soil, and mine) solutions with and without chloride additions. Int. J. Refract. Met. Hard Mater. 2019, 85, 105062. [Google Scholar] [CrossRef]
- Herrmann, M.; Klemm, H. 2.15—Corrosion of Ceramic Materials. In Comprehensive Hard Materials; Sarin, V.K., Ed.; Elsevier: Oxford, UK, 2014; pp. 413–446. [Google Scholar]
- Cardoso, J.P.; Puga, J.; Rocha, A.F.; Fernandes, C.M.; Senos, A.M. WC—(Cu:AISI304) composites processed from high energy ball milled powders. Int. J. Refract. Met. Hard Mater. 2019, 84, 104990. [Google Scholar] [CrossRef]
- Liang, F.; Du, J.; Su, G.; Zhang, P.; Zhang, C. Investigating the effect of Al, Mo or Mn addition to CoCrFeNi entropy alloys on the interface binding properties of WC/HEA cemented carbides. Mater. Today Commun. 2023, 35, 105891. [Google Scholar] [CrossRef]
- Fazili, A.; Derakhshandeh, M.R.; Nejadshamsi, S.; Nikzad, L.; Razavi, M.; Ghasali, E. Improved electrochemical and mechanical performance of WC–Co cemented carbide by replacing a part of Co with Al2O3. J. Alloys Compd. 2020, 823, 153857. [Google Scholar] [CrossRef]
- Yang, X.-H.; Wang, K.-F.; Zhang, G.-H.; Chou, K.-C. WC–VC/Cr3C2 composite powders prepared by a carbothermic reduction-carburization process. Int. J. Refract. Met. Hard Mater. 2022, 109, 105982. [Google Scholar] [CrossRef]
- Tang, W.; Zhang, L.; Chen, Y.; Zhang, H.; Zhou, L. Corrosion and strength degradation behaviors of binderless WC material and WC–Co hardmetal in alkaline solution: A comparative investigation. Int. J. Refract. Met. Hard Mater. 2017, 68, 1–8. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J.; Zhang, M.; Lan, H.; Zhao, S.; Liang, C.; Xu, F.; Shao, L.; Zhu, D.; Dai, S.; et al. SiCw strengthened WC-Y2O3 composite and its electrochemical corrosion in aggressive medium. Int. J. Refract. Met. Hard Mater. 2024, 119, 106517. [Google Scholar] [CrossRef]
- Han, B.; Zhu, S.; Dong, W.; Bai, Y.; Ding, H.; Luo, Y.; Di, P. Improved electrochemical corrosion resistance of hot-press sintered WC-Al2O3 composites with added TiC in alkaline solutions. Ceram. Int. 2021, 47, 32168–32178. [Google Scholar] [CrossRef]
- Ma, J.; Zhu, S.; Ouyang, C. Two-step hot-pressing sintering of nanocomposite WC–MgO compacts. J. Eur. Ceram. Soc. 2011, 31, 1927–1935. [Google Scholar] [CrossRef]
- Ouyang, C.; Zhu, S.; Qu, H. VC and Cr3C2 doped WC–MgO compacts prepared by hot-pressing sintering. Mater. Des. 2012, 40, 550–555. [Google Scholar] [CrossRef]
- Fan, B.; Zhu, S.; Ding, H.; Bai, Y.; Luo, Y.; Di, P. Influence of MgO whisker addition on microstructures and mechanical properties of WC–MgO composite. Mater. Chem. Phys. 2019, 238, 121907. [Google Scholar] [CrossRef]
- Ouyang, C.; Zhu, S.; Li, D.Y. Corrosion and corrosive wear behavior of WC–MgO composites with and without grain-growth inhibitors. J. Alloys Compd. 2014, 615, 146–155. [Google Scholar] [CrossRef]
- Fan, B.; Zhu, S.; Dong, W.; Ding, H.; Bai, Y.; Luo, Y.; Di, P. The study of corrosion behavior of WC–MgO composite in H2SO4 and NaOH solution. Ceram. Int. 2021, 47, 1364–1372. [Google Scholar] [CrossRef]
- Fan, B.; Zhu, S.; Dong, W.; Ding, H.; Bai, Y.; Luo, Y.; Di, P. Comparative study on corrosion behavior of WC–MgO composite and WC-6Co cemented carbide in NaCl solution. Ceram. Int. 2021, 47, 7106–7116. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, Z.; Fan, X.-H.; Zhang, L. Pseudo-passivation mechanism of CoCrFeNiMo0.01 high-entropy alloy in H2S–containing acid solutions. Corros. Sci. 2021, 179, 109146. [Google Scholar] [CrossRef]
- Raja, K.; Jones, D. Effects of dissolved oxygen on passive behavior of stainless alloys. Corros. Sci. 2006, 48, 1623–1638. [Google Scholar] [CrossRef]
- Exner, K.S. Elementary Reaction Steps in Electrocatalysis: Theory Meets Experiment; Elsevier: Oxford, UK, 2024; pp. 65–92. [Google Scholar]
- Arrigan, D. Electrochemistry. Chromatographia 2010, 71, 351. [Google Scholar] [CrossRef]
- Ghosh, G.; Sidpara, A.; Bandyopadhyay, P. Understanding the role of surface roughness on the tribological performance and corrosion resistance of WC–Co coating. Surf. Coat. Technol. 2019, 378, 125080. [Google Scholar] [CrossRef]
- da Silva, F.; Cinca, N.; Dosta, S.; Cano, I.; Couto, M.; Guilemany, J.; Benedetti, A. Corrosion behavior of WC–Co coatings deposited by cold gas spray onto AA 7075-T6. Corros. Sci. 2018, 136, 231–243. [Google Scholar] [CrossRef]
- Shand, M.A. The Chemistry and Technology of Magnesia; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Luo, Y.; Sun, Y.; Lv, J.; Wang, X.; Li, J.; Wang, F. Transition of interface oxide layer from porous Mg(OH)2 to dense MgO induced by polyaniline and corrosion resistance of Mg alloy therefrom. Appl. Surf. Sci. 2015, 328, 247–254. [Google Scholar] [CrossRef]
- Song, G.; Atrens, A.; Wu, X.; Zhang, B. Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride. Corros. Sci. 1998, 40, 1769–1791. [Google Scholar] [CrossRef]
- Banerjee, S.; Poria, S.; Sutradhar, G.; Sahoo, P. Corrosion behavior of AZ31-WC nano-composites. J. Magnes. Alloys 2019, 7, 681–695. [Google Scholar] [CrossRef]
- Rashad, M.; Pan, F.; Asif, M.; Chen, X. Corrosion behavior of magnesium–graphene composites in sodium chloride solutions. J. Magnes. Alloys 2017, 5, 271–276. [Google Scholar] [CrossRef]
- Rashad, M.; Pan, F.; Yu, Z.; Asif, M.; Lin, H.; Pan, R. Investigation on microstructural, mechanical and electrochemical properties of aluminum composites reinforced with graphene nanoplatelets. Prog. Nat. Sci. 2015, 25, 460–470. [Google Scholar] [CrossRef]
- Zhang, L.; Yan, H.; Zou, Y.; Yu, B.; Hu, Z. Effect of adding rare-earth cerium on the microstructure and acid rain corrosion resistance of the ADC12 alloy. Int. J. Mater. Res. 2021, 112, 241–249. [Google Scholar] [CrossRef]
- Jia, H.; Feng, X.; Yang, Y. Microstructure and corrosion resistance of directionally solidified Mg-2 wt.% Zn alloy. Corros. Sci. 2017, 120, 75–81. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, B.; Qin, T.; Zhang, Y.; Wang, J. Influence of Chloride Ion Concentration on Corrosion Behavior of WC–MgO Composite. Crystals 2024, 14, 427. https://doi.org/10.3390/cryst14050427
Fan B, Qin T, Zhang Y, Wang J. Influence of Chloride Ion Concentration on Corrosion Behavior of WC–MgO Composite. Crystals. 2024; 14(5):427. https://doi.org/10.3390/cryst14050427
Chicago/Turabian StyleFan, Bowen, Tao Qin, Ying Zhang, and Jinyi Wang. 2024. "Influence of Chloride Ion Concentration on Corrosion Behavior of WC–MgO Composite" Crystals 14, no. 5: 427. https://doi.org/10.3390/cryst14050427
APA StyleFan, B., Qin, T., Zhang, Y., & Wang, J. (2024). Influence of Chloride Ion Concentration on Corrosion Behavior of WC–MgO Composite. Crystals, 14(5), 427. https://doi.org/10.3390/cryst14050427