Effect of Polyoxyethylene-Based Nonionic Surfactants on Chemical–Mechanical Polishing Performance of Monocrystalline Silicon Wafers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Materials
2.2. Preparation of CMP Slurry
2.3. CMP Experiments
2.4. Characterization
3. Results
3.1. The Effect of Surfactants with Different Functional Groups on the Polishing Performance of Monocrystalline Silicon Wafers
3.2. The Effect of AEO Surfactants with Varying EO Addition Numbers on the Polishing Performance of Monocrystalline Silicon Wafers
4. Conclusions
- (1)
- The surface quality of wafers can be effectively improved by adding polyoxyethylene-type surfactants to the monocrystalline silicon wafer polishing liquid system. A combination of a hydrophobic structure and a polyoxyethylene structure was found to be more effective than a surfactant with only a polyoxyethylene structure. Furthermore, a surfactant with a straight carbon chain was found to be more effective than a surfactant with a benzene ring or double bond.
- (2)
- It was discovered that altering the EO number of the AEO surfactant affects the wafer polishing performance. The surface quality of the polished wafers improves initially but then deteriorates with an increase in the EO addition number.
- (3)
- The mechanism of the polyoxyethylene-type surfactant in the silicon wafer polishing process was speculated through a series of characterization methods. Surfactant molecules can adsorb on both the SiO2 abrasive grains and the silicon wafer surface. Adsorption on the SiO2 abrasive grains can weaken the mechanical interaction between the abrasive grains and the wafer surface. Simultaneously, the active agent molecules formed a layer of passivation film on the surface of the silicon wafer, to inhibit corrosion. Additionally, the surfactants enhance the wetting and dispersing properties, resulting in the increased energy exchange between the polishing solution and the silicon wafer surface. This led to an improvement in the surface quality of the wafer after polishing.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, C.; Deng, C.; Zhang, P.; Qian, L.; Kim, S.H. Interplay between solution chemistry and mechanical activation in friction-induced material removal of silicon surface in aqueous solution. Tribol. Int. 2020, 148, 106319. [Google Scholar] [CrossRef]
- Xiao, C.; Chen, C.; Wang, H.; Chen, L.; Jiang, L.; Yu, B.; Qian, L. Effect of counter-surface chemistry on defect-free material removal of monocrystalline silicon. Wear 2019, 426, 1233–1239. [Google Scholar] [CrossRef]
- Hochberg, M.; Harris, N.C.; Ding, R.; Zhang, Y.; Novack, A.; Xuan, Z.; Baehr-Jones, T. Silicon photonics: The next fabless semiconductor industry. IEEE Solid-State Circuits Mag. 2013, 5, 48–58. [Google Scholar] [CrossRef]
- Wang, Y.G.; Zhang, L.C.; Biddut, A. Chemical effect on the material removal rate in the CMP of silicon wafers. Wear 2011, 270, 312–316. [Google Scholar] [CrossRef]
- Chen, P.H.; Huang, B.W.; Shih, H.-C. A chemical kinetics model to explain the abrasive size effect on chemical mechanical polishing. Thin Solid Film. 2005, 476, 130–136. [Google Scholar] [CrossRef]
- Lei, H.; Zhang, P. Preparation of alumina/silica core-shell abrasives and their CMP behavior. Appl. Surf. Sci. 2007, 253, 8754–8761. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, G.; Ni, Z.; Wang, Y.; Teng, K.; Qian, S.; Bian, D.; Zhao, Y. The effect of Cu2+ ions and glycine complex on chemical mechanical polishing (CMP) performance of SiC substrates. Tribol. Lett. 2021, 69, 94. [Google Scholar] [CrossRef]
- Hong, J.; Niu, X.; Wang, J.; Wang, C.; Zhang, B.; Wang, R.; Sun, M.; Liu, Y. Research on Si (100) crystal substrate CMP based on FA/O alkaline slurry. Appl. Surf. Sci. 2017, 420, 483–488. [Google Scholar] [CrossRef]
- Lee, J.-D.; Park, Y.-R.; Yoon, B.U.; Han, Y.-P.; Hah, S.; Moon, J.-T. Effects of nonionic surfactants on oxide-to-polysilicon selectivity during chemical mechanical polishing. J. Electrochem. Soc. 2002, 149, G477. [Google Scholar] [CrossRef]
- Jiang, L.; He, Y.; Niu, X.; Li, Y.; Luo, J. Synergetic effect of benzotriazole and non-ionic surfactant on copper chemical mechanical polishing in KIO4-based slurries. Thin Solid Film. 2014, 558, 272–278. [Google Scholar] [CrossRef]
- Neirynck, J.M.; Yang, G.-R.; Murarka, S.P.; Gutmann, R.J. The addition of surfactant to slurry for polymer CMP: Effects on polymer surface, removal rate and underlying Cu. Thin Solid Film. 1996, 290, 447–452. [Google Scholar] [CrossRef]
- Asghar, K.; Qasim, M.; Nelabhotla, D.M.; Das, D. Effect of surfactant and electrolyte on surface modification of c-plane GaN substrate using chemical mechanical planarization (CMP) process. Colloids Surf. A Physicochem. Eng. Asp. 2016, 497, 133–145. [Google Scholar] [CrossRef]
- Tsai, T.-H.; Wu, Y.-F. Effects of nonionic surfactants on performance of copper chemical mechanical polishing. Chem. Eng. Commun. 2006, 193, 702–714. [Google Scholar] [CrossRef]
- Xu, Q.; Chen, L.; Yang, F.; Cao, H. Influence of slurry components on copper CMP performance in alkaline slurry. Microelectron. Eng. 2017, 183, 1–11. [Google Scholar] [CrossRef]
- Yang, X.; Fang, Q.; Sun, M.; Qi, M. Experimental and Theoretical Study on the Influence of Fatty Alcohol Polyoxyethylene Ether on the Surface Roughness of Silicon in Alkaline Solutions. ECS J. Solid State Sci. Technol. 2024, 13, 014002. [Google Scholar] [CrossRef]
- Qu, L.; Gao, B.; Wang, X.; Wu, T.; Tan, B. Effect of intermolecular interaction of compound surfactant on particle removal in post-Cu CMP cleaning. ECS J. Solid State Sci. Technol. 2021, 10, 064007. [Google Scholar] [CrossRef]
- Enmin, S.; Da, B.; Hao, X. Effect of guanidine carbonate and polyethylene glycol on CMP of single crystal silicon wafer. Res. Prog. SSE 2022, 42, 63–67. [Google Scholar]
- Zhao, Q.; Xie, S.; Wang, H.; Yang, L.; Mei, X.; He, Y. Control of the Micro-defects on the surface of silicon wafer in chemical mechanical polishing. ECS J. Solid State Sci. Technol. 2022, 11, 023009. [Google Scholar] [CrossRef]
- Zhang, Y.; Niu, X.; Zhou, J.; Yang, C.; Hou, Z.; Zhu, Y. Effect of FA/O II surfactant as a complex non-ionic surfactant on copper CMP. In Proceedings of the 2021 China Semiconductor Technology International Conference (CSTIC), Shanghai, China, 14–15 March 2021; pp. 1–3. [Google Scholar]
- Song, G.; Tan, B.; Liu, Y.; Wang, C. Role of AEO-9 as nonionic surfactant in Barrier Slurry for Copper Interconnection CMP. In Proceedings of the 2020 China Semiconductor Technology International Conference (CSTIC), Shanghai, China, 26 June–17 July 2020; pp. 1–3. [Google Scholar]
- Li, J.; Liu, Y.; Dai, Y.; Yue, D.; Lu, X.; Luo, J. Achievement of a near-perfect smooth silicon surface. Sci. China Technol. Sci. 2013, 56, 2847–2853. [Google Scholar] [CrossRef]
- Bae, J.-Y.; Han, M.-H.; Lee, S.-J.; Kim, E.-S.; Lee, K.; Lee, G.-s.; Park, J.-H.; Park, J.-G. Silicon wafer CMP slurry using a hydrolysis reaction accelerator with an amine functional group remarkably enhances polishing rate. Nanomaterials 2022, 12, 3893. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Y.; Song, Y.; Li, J.; Wang, Z. Properties of branched alcohol polyoxyethylene ether carboxylates. J. Mol. Liq. 2018, 258, 34–39. [Google Scholar] [CrossRef]
- Wang, X.; Wang, C.; Zhu, M.; Zhou, J.; Luo, C.; Chen, Z.; Yang, X.; Wang, H.; Zhang, X. Insight on Surface Changes Post Chemical Mechanical Polishing (CMP) of the Silicon Substrate by Adding Polyoxyethylene Ether. ECS J. Solid State Sci. Technol. 2023, 12, 114005. [Google Scholar] [CrossRef]
- Matsaridou, I.; Barmpalexis, P.; Salis, A.; Nikolakakis, I. The influence of surfactant HLB and oil/surfactant ratio on the formation and properties of self-emulsifying pellets and microemulsion reconstitution. AAPS PharmSciTech 2012, 13, 1319–1330. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, S.; Wang, T.; Lu, X. Polishing mechanisms of various surfactants in chemical mechanical polishing relevant to cobalt interconnects. Int. J. Adv. Manuf. Technol. 2023, 128, 5425–5436. [Google Scholar] [CrossRef]
- Liu, L.; Su, H.; Xing, J.; Peng, D.; Zhang, Q.; Qian, J. Corrosion inhibition and friction-reduction property of tetrazole derivatives on copper. Anti-Corros. Methods Mater. 2018, 65, 361–367. [Google Scholar] [CrossRef]
- Hwang, H.-S.; Lim, J.-H.; Park, J.-H.; Choi, E.-S.; Ahn, J.-W.; Park, J.-G. Effect of hydroxyethyl cellulose concentration on surface qualities of silicon wafer after touch polishing process. Electrochem. Solid-State Lett. 2010, 13, H147. [Google Scholar] [CrossRef]
- Zhou, J.; Niu, X.; Wang, Z.; Cui, Y.; Wang, J.; Yang, C.; Huo, Z.; Wang, R. Roles and mechanism analysis of chitosan as a green additive in low-tech node copper film chemical mechanical polishing. Colloids Surf. A Physicochem. Eng. Asp. 2020, 586, 124293. [Google Scholar] [CrossRef]
- Suratwala, T.I.; Feit, M.D.; Steele, W.A. Toward deterministic material removal and surface figure during fused silica pad polishing. J. Am. Ceram. Soc. 2010, 93, 1326–1340. [Google Scholar] [CrossRef]
- Li, Z.; Ina, K.; Lefevre, P.; Koshiyama, I.; Philipossian, A. Determining the effects of slurry surfactant, abrasive size, and abrasive content on the tribology and kinetics of copper CMP. J. Electrochem. Soc. 2005, 152, G299. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, L.; Wu, H.; Zhong, X.; Qian, L. Performance of carboxyl groups in chemical mechanical polishing of GCr15 bearing steel: Effects of carbon chain length and pH. Tribol. Lett. 2021, 69, 161. [Google Scholar] [CrossRef]
- Zhou, J.; Niu, X.; Cui, Y.; Wang, Z.; Wang, J.; Wang, R. Study on the film forming mechanism, corrosion inhibition effect and synergistic action of two different inhibitors on copper surface chemical mechanical polishing for GLSI. Appl. Surf. Sci. 2020, 505, 144507. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, C.; Zhou, J.; Liu, Z.; Liu, G.; Ma, H.; Li, Y. Effect and mechanism of dual-official group of ethanolamines on the chemical mechanical polishing of monocrystalline silicon. ECS J. Solid State Sci. Technol. 2022, 11, 093005. [Google Scholar] [CrossRef]
- Pratt, L.R.; Owenson, B.; Sun, Z. Molecular theory of surfactant micelles in aqueous solution. Adv. Colloid Interface Sci. 1986, 26, 69–97. [Google Scholar] [CrossRef]
Process Parameters | Value |
---|---|
Polishing time | 20 min |
Pad rotation speed | 45 rpm |
Wafer rotation speed | 40 rpm |
Slurry feed rate | 200 mL/min |
Pressure | 2 psi |
Various Surfactants | Mean Particle Sizes/nm | Polydispersity Index |
---|---|---|
Without | 45.35 | 0.095 |
AEO-9 | 46.08 | 0.102 |
OP-9 | 45.91 | 0.1 |
TPEG | 46.23 | 0.115 |
PEG | 46.26 | 0.083 |
Various Surfactants | Mean Ecorr (V) | Mean Log Icorr (A/cm2) |
---|---|---|
AEO-7 | −0.0384 | −6.7883 |
AEO-9 | −0.0290 | −6.8820 |
AEO-25 | 0.0112 | −6.6968 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, B.; Guan, J.; Zhao, P.; Chen, Y.; Zhang, Z. Effect of Polyoxyethylene-Based Nonionic Surfactants on Chemical–Mechanical Polishing Performance of Monocrystalline Silicon Wafers. Crystals 2024, 14, 460. https://doi.org/10.3390/cryst14050460
Jiang B, Guan J, Zhao P, Chen Y, Zhang Z. Effect of Polyoxyethylene-Based Nonionic Surfactants on Chemical–Mechanical Polishing Performance of Monocrystalline Silicon Wafers. Crystals. 2024; 14(5):460. https://doi.org/10.3390/cryst14050460
Chicago/Turabian StyleJiang, Bowen, Jie Guan, Peng Zhao, Yulin Chen, and Zefang Zhang. 2024. "Effect of Polyoxyethylene-Based Nonionic Surfactants on Chemical–Mechanical Polishing Performance of Monocrystalline Silicon Wafers" Crystals 14, no. 5: 460. https://doi.org/10.3390/cryst14050460
APA StyleJiang, B., Guan, J., Zhao, P., Chen, Y., & Zhang, Z. (2024). Effect of Polyoxyethylene-Based Nonionic Surfactants on Chemical–Mechanical Polishing Performance of Monocrystalline Silicon Wafers. Crystals, 14(5), 460. https://doi.org/10.3390/cryst14050460