Recent Novel Fabrication Techniques for Proton-Conducting Solid Oxide Fuel Cells
Abstract
:1. Introduction
2. Ceramic Based Fuel Cell
2.1. Solid Oxide Fuel Cells
2.1.1. Introduction to Solid Oxide Fuel Cells
2.1.2. Solid Oxide Fuel Cell Working Principle
2.2. Protonic Ceramic Fuel Cell
2.2.1. Introduction to Proton Ceramic Fuel Cell
2.2.2. Working Principles of Protonic Ceramic Fuel Cells
3. Manufacturing Method of PCFCs
3.1. Conventional Processing Technology for PCFC
3.1.1. Solid-State Reactive Sintering
3.1.2. Spark Plasma Sintering
3.1.3. Microwave Sintering
3.1.4. Hot-Press Sintering
3.2. Printing Technology for PCFC
3.2.1. Laser-Based Processes
3.2.2. Non-Laser-Based Printing Technology
3.3. Other Advanced Manufacturing Methods
4. Research Progress in Technical Characterization Methods
4.1. Microstructure of PCFCs
4.2. Crystal Structure and Performance
4.3. Electrochemical Properties
5. Future Directions
- (1)
- At present, the problems existing in the preparation of proton conductor ceramic energy-integrated devices mainly stem from the characteristics of proton ceramics themselves, resulting in a large amount of energy consumption, high waste rate, low energy density, poor performance, and other problems in the actual preparation process. Therefore, it is necessary to continuously develop new preparation processes for ceramic energy equipment to achieve high-performance proton ceramic electrochemical devices.
- (2)
- Nowadays, although many new technologies have been used for the processing of PCFCs, most of them do not have the processing ability for complex and fine structures, which limits the development limit of equipment. Therefore, it is necessary to develop new technologies for ceramic energy equipment, achieve cost-effective requirements, and quickly prepare proton ceramic electrochemical devices with controllable structures, high energy density, and excellent performance, which become the key to the widespread application of such materials and equipment.
- (3)
- At present, most of the characterized superior properties of medium temperature proton ceramic energy devices come from small structures, which cannot meet the actual needs of large energy density devices. This is because the operating temperature range of the device imposes demanding requirements on the sealing, operation, and long-term stability of the cell stack. How to design and manufacture proton conductor ceramic devices with high integration, flexible and controllable structures, and meet different test requirements has become the direction of researchers’ efforts.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cyril, P.H.; Saravanan, G. Development of advanced materials for cleaner energy generation through fuel cells. New J. Chem. 2020, 44, 19977–19995. [Google Scholar] [CrossRef]
- Kalinina, E.G.; Pikalova, E.Y. New trends in the development of electrophoretic deposition method in the solid oxide fuel cell technology: Theoretical approaches, experimental solutions and development prospects. Russ. Chem. Rev. 2019, 88, 1179–1219. [Google Scholar] [CrossRef]
- Ruiz-Morales, J.C.; Hernández-Rodríguez, E.M.; Acosta-Mora, P.; Méndez-Ramos, J.; Borges Chinea, E.; Esparza Ferrera, P.; Canales-Vázquez, J.; Núñez, P. Prospective use of the 3D printing technology for the microstructural engineering of Solid Oxide Fuel Cell components. Boletín De La Soc. Española De Cerámica Y Vidr. 2014, 53, 213–216. [Google Scholar] [CrossRef]
- Liu, J.; Sun, G. A survey of fuel cells. Physics 2004, 33, 79–84. [Google Scholar]
- Minh, N.Q.; Shirley Meng, Y. Future energy, fuel cells, and solid-oxide fuel-cell technology. MRS Bull. 2019, 44, 682–683. [Google Scholar] [CrossRef]
- Belhaj, I.; Faria, M.; Šljukić, B.; Geraldes, V.; Santos, D.M.F. Bipolar Membranes for Direct Borohydride Fuel Cells—A Review. Membranes 2023, 13, 730. [Google Scholar] [CrossRef]
- Ma, Y.; Huang, J.; He, B. Scalable fabrication process for new structure BaZr0.8Y0.2O3−δ-based protonic ceramic fuel cells. Ceram. Int. 2021, 47, 14680–14688. [Google Scholar] [CrossRef]
- Ivers-Tiffée, E.; Weber, A.; Herbstritt, D. Materials and technologies for SOFC-components. J. Eur. Ceram. Soc. 2001, 21, 1805–1811. [Google Scholar] [CrossRef]
- Priya, S.D.; Selvakumar, A.I.; Nesaraj, A.S. Overview on Ceramic and Nanostructured Materials for Solid Oxide Fuel Cells (SOFCs) Working at Different Temperatures. J. Electrochem. Sci. Technol. 2020, 11, 99–116. [Google Scholar] [CrossRef]
- Yang, G.; Su, C.; Shi, H.; Zhu, Y.; Song, Y.; Zhou, W.; Shao, Z. Toward reducing the operation temperature of solid oxide fuel cells: Our past 15 years of efforts in cathode development. Energy Fuels 2020, 34, 15169–15194. [Google Scholar] [CrossRef]
- Ali, A.; Irshad, M.; Siraj, K.; Raza, R.; Rafique, A.; Ullah, M.K.; Usman, A.; Tiwari, P.; Zhu, B.; Ali, A. A Brief Description of High Temperature Solid Oxide Fuel Cell’s Operation, Materials, Design, Fabrication Technologies and Performance. Appl. Sci. 2016, 6, 75. [Google Scholar]
- Kim, Y.S.; Chang, W.; Jeong, H.J.; Kim, K.H.; Park, H.S.; Shim, J.H. High performance of protonic ceramic fuel cells with 1-μm-thick electrolytes fabricated by inkjet printing. Addit. Manuf. 2023, 71, 103590. [Google Scholar] [CrossRef]
- Mu, S.; Zhao, Z.; Huang, H.; Lei, J.; Peng, F.; Xiao, H.; Brinkman, K.S.; Tong, J.J. Advanced Manufacturing of Intermediate-Temperature Protonic Ceramic Electrochemical Cells. Electrochem. Soc. Interface 2020, 29, 67. [Google Scholar] [CrossRef]
- Duan, C.; Tong, J.; Shang, M.; Nikodemski, S.; Sanders, M.; Ricote, S.; Almansoori, A.; O’Hayre, R. Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 2015, 349, 1321–1326. [Google Scholar] [CrossRef]
- Yang, L.; Wang, S.; Blinn, K.; Liu, M.; Liu, Z.; Cheng, Z.; Liu, M. Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3−δ. Science 2009, 326, 126–129. [Google Scholar] [CrossRef]
- Choi, S.; Kucharczyk, C.J.; Liang, Y.; Zhang, X.; Takeuchi, I.; Ji, H.-I.; Haile, S.M. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nat. Energy 2018, 3, 202–210. [Google Scholar] [CrossRef]
- An, H.; Lee, H.-W.; Kim, B.-K.; Son, J.-W.; Yoon, K.J.; Kim, H.; Shin, D.; Ji, H.-I.; Lee, J.-H. A 5 × 5 cm2 protonic ceramic fuel cell with a power density of 1.3 W cm−2 at 600 °C. Nat. Energy 2018, 3, 870–875. [Google Scholar] [CrossRef]
- Duan, C.; Kee, R.J.; Zhu, H.; Karakaya, C.; Chen, Y.; Ricote, S.; Jarry, A.; Crumlin, E.J.; Hook, D.; Braun, R. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells. Nature 2018, 557, 217–222. [Google Scholar] [CrossRef]
- Bello, I.T.; Zhai, S.; He, Q.; Cheng, C.; Dai, Y.; Chen, B.; Zhang, Y.; Ni, M. Materials development and prospective for protonic ceramic fuel cells. Int. J. Energy Res. 2021, 46, 2212–2240. [Google Scholar] [CrossRef]
- Yu, J.; Ran, R.; Zhong, Y.; Zhou, W.; Ni, M.; Shao, Z. Advances in porous perovskites: Synthesis and electrocatalytic performance in fuel cells and metal–air batteries. Energy Environ. Mater. 2020, 3, 121–145. [Google Scholar] [CrossRef]
- Babilo, P.; Uda, T.; Haile, S.M. Processing of yttrium-doped barium zirconate for high proton conductivity. J. Mater. Res. 2007, 22, 1322–1330. [Google Scholar] [CrossRef]
- Kreuer, K.-D. Proton-conducting oxides. Annu. Rev. Mater. Res. 2003, 33, 333–359. [Google Scholar] [CrossRef]
- Mu, S.; Zhao, Z.; Lei, J.; Hong, Y.; Hong, T.; Jiang, D.; Song, Y.; Jackson, W.; Brinkman, K.S.; Peng, F. Engineering of microstructures of protonic ceramics by a novel rapid laser reactive sintering for ceramic energy conversion devices. Solid State Ion. 2018, 320, 369–377. [Google Scholar] [CrossRef]
- Bohn, H.G.; Schober, T.J. Electrical conductivity of the high-temperature proton conductor BaZr0.9Y0.1O2.95. J. Am. Ceram. Soc. 2000, 83, 768–772. [Google Scholar] [CrossRef]
- Iguchi, F.; Yamada, T.; Sata, N.; Tsurui, T.; Yugami, H. The influence of grain structures on the electrical conductivity of a BaZr0.95Y0.05O3 proton conductor. Solid State Ion. 2006, 177, 2381–2384. [Google Scholar] [CrossRef]
- Duval, S.; Holtappels, P.; Vogt, U.; Pomjakushina, E.; Conder, K.; Stimming, U.; Graule, T. Electrical conductivity of the proton conductor BaZr0.9Y0.1O3−δ obtained by high temperature annealing. Solid State Ion. 2007, 178, 1437–1441. [Google Scholar] [CrossRef]
- Tong, J.; Clark, D.; Bernau, L.; Sanders, M.; O’Hayre, R. Solid-state reactive sintering mechanism for large-grained yttrium-doped barium zirconate proton conducting ceramics. J. Mater. Chem. 2010, 20, 6333–6341. [Google Scholar] [CrossRef]
- Wang, Y.; Leung, D.Y.C.; Xuan, J.; Wang, H. A review on unitized regenerative fuel cell technologies, part B: Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell. Renew. Sustain. Energy Rev. 2017, 75, 775–795. [Google Scholar] [CrossRef]
- Ma, Y.; He, B.; Wang, J.; Cheng, M.; Zhong, X.; Huang, J. Porous/dense bilayer BaZr0.8Y0.2O3−δ electrolyte matrix fabricated by tape casting combined with solid-state reactive sintering for protonic ceramic fuel cells. Int. J. Hydrogen Energy 2021, 46, 9918–9926. [Google Scholar] [CrossRef]
- Marrony, M.; Ancelin, M.; Lefevre, G.; Dailly, J. Elaboration of intermediate size planar proton conducting solid oxide cell by wet chemical routes: A way to industrialization. Solid State Ion. 2015, 275, 97–100. [Google Scholar] [CrossRef]
- Téllez Lozano, H.; Druce, J.; Cooper, S.J.; Kilner, J.A. Double perovskite cathodes for proton-conducting ceramic fuel cells: Are they triple mixed ionic electronic conductors? Sci. Technol. Adv. Mater. 2017, 18, 977–986. [Google Scholar] [CrossRef]
- Katz, E.; Bollella, P. Fuel Cells and Biofuel Cells: From Past to Perspectives. Isr. J. Chem. 2020, 61, 68–84. [Google Scholar] [CrossRef]
- Suzuki, M.; Sasaki, H.; Otoshi, S.; Kajimura, A.; Sugiura, N.; Ippommatsu, M. High performance solid oxide fuel cell cathode fabricated by electrochemical vapor deposition. J. Electrochem. Soc. 1994, 141, 1928. [Google Scholar] [CrossRef]
- Lu, J.B.; Zhang, Z.T.; Tang, Z.L. Review on the Development of Solid Oxide Fuel Cells. Rare Met. Mater. Eng. 2005, 34, 1177–1180. [Google Scholar]
- Ye, H. Preparation and Electrochemical Performance of Mixed-Conducting Cathode Materials for Protonic Ceramic Fuel Cell. Master’s Thesis, Guangdong University of Technology, Guangzhou, China, 2020. [Google Scholar]
- Jouttijärvi, S.; Asghar, M.I.; Lund, P.D. Microscopic techniques for analysis of ceramic fuel cells. WIREs Energy Environ. 2018, 7, e299. [Google Scholar] [CrossRef]
- Mather, G.C.; Muñoz-Gil, D.; Zamudio-García, J.; Porras-Vázquez, J.M.; Marrero-López, D.; Pérez-Coll, D. Perspectives on Cathodes for Protonic Ceramic Fuel Cells. Appl. Sci. 2021, 11, 5363. [Google Scholar] [CrossRef]
- Diao, Z.; Nishidate, K.; Imaizumi, T.; Kimura, Y.; Nakamura, T.; Mikami, Y.; Kuroha, T.; Yashiro, K.; Kawada, T.; Amezawa, K. Evaluation of Reaction Mechanism of PCFC Composite Cathodes by Utilizing Patterned Thin Film Model Electrodes. ECS Trans. 2021, 103, 1745–1751. [Google Scholar] [CrossRef]
- Tarutin, A.; Danilov, N.; Lyagaeva, J.; Medvedev, D. One-Step Fabrication of Protonic Ceramic Fuel Cells Using a Convenient Tape Calendering Method. Appl. Sci. 2020, 10, 2481. [Google Scholar] [CrossRef]
- Loureiro, F.J.A.; Ramasamy, D.; Graça, V.C.D.; Holz, L.I.V.; Mikhalev, S.M.; Fagg, D.P. Analysis of La4Ni3O10±δ-BaCe0.9Y0.1O3−δ Composite Cathodes for Proton Ceramic Fuel Cells. Appl. Sci. 2021, 11, 3407. [Google Scholar] [CrossRef]
- Guo, R. Design and Performance Modulation of Electrolyte Materials for low-Temperature Protonic Ceramic. Ph.D. Thesis, Jilin University, Changchun, China, 2023. [Google Scholar]
- Chien, A.C.; Chen, W.Y.; Zheng, M.S. Direct Conversion of Ammonia to Electricity on a PCFC and an SOFC. J. Electrochem. Soc. 2023, 170, 044505. [Google Scholar] [CrossRef]
- Cao, J.; Ji, Y.; Shao, Z. Perovskites for protonic ceramic fuel cells: A review. Energy Environ. Sci. 2022, 15, 2200–2232. [Google Scholar] [CrossRef]
- Le, L.Q.; Hernandez, C.H.; Rodriguez, M.H.; Zhu, L.; Duan, C.; Ding, H.; O’Hayre, R.P.; Sullivan, N.P. Proton-conducting ceramic fuel cells: Scale up and stack integration. J. Power Sources 2021, 482, 228868. [Google Scholar] [CrossRef]
- Mu, S.; Huang, H.; Ishii, A.; Hong, Y.; Santomauro, A.; Zhao, Z.; Zou, M.; Peng, F.; Brinkman, K.S.; Xiao, H.; et al. Rapid Laser Reactive Sintering for Sustainable and Clean Preparation of Protonic Ceramics. ACS Omega 2020, 5, 11637–11642. [Google Scholar] [CrossRef]
- Tong, J.; Clark, D.; Bernau, L.; Subramaniyan, A.; O’Hayre, R. Proton-conducting yttrium-doped barium cerate ceramics synthesized by a cost-effective solid-state reactive sintering method. Solid State Ion. 2010, 181, 1486–1498. [Google Scholar] [CrossRef]
- Nikodemski, S.; Tong, J.; O’Hayre, R. Solid-State Reactive Sintering Mechanism for Proton Conducting Ceramics. Solid State Ion. 2013, 253, 201–210. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, W.J.G.C.; Technology, S. Mixed Conducting Ceramic Membranes; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Braun, R.J.; Dubois, A.; Ferguson, K.; Duan, C.; Karakaya, C.; Kee, R.J.; Zhu, H.; Sullivan, N.P.; Tang, E.; Pastula, M. Development of kW-scale protonic ceramic fuel cells and systems. ECS Trans. 2019, 91, 997. [Google Scholar] [CrossRef]
- Zhao, Z.; Zou, M.; Huang, H.; Wofford, H.; Tong, J. Stable perovskite-fluorite dual-phase composites synthesized by one-pot solid-state reactive sintering for protonic ceramic fuel cells. Ceram. Int. 2021, 47, 32856–32866. [Google Scholar] [CrossRef]
- Tong, J.; Clark, D.; Hoban, M.; O’Hayre, R. Cost-effective solid-state reactive sintering method for high conductivity proton conducting yttrium-doped barium zirconium ceramics. Solid State Ion. 2010, 181, 496–503. [Google Scholar] [CrossRef]
- Simonenko, T.L.; Kalinina, M.V.; Simonenko, N.P.; Simonenko, E.P.; Glumov, O.V.; Mel’Nikova, N.A.; Murin, I.V.; Shichalin, O.O.; Papynov, E.K.; Shilova, O.A. Synthesis of BaCe_(0.9-x)Zr_xY_(0.1)O_(3-δ) nanopowders and the study of proton conductors fabricated on their basis by low-temperature spark plasma sintering. Int. J. Hydrogen Energy 2019, 44, 20345–20354. [Google Scholar] [CrossRef]
- Wang, S.; Xie, M.; Zhang, J.; Yang, Y.; Liu, M.; Chen, Y.; Wang, S. Development of Spark Plasma Sintering Technology. Precious Met. 2012, 33, 73–77. [Google Scholar]
- Sakajio, M.; Beilin, V.; Mann-Lahav, M.; Zamir, S.; Shter, G.E.; Grader, G.S. Highly Transparent Polycrystalline MgO via Spark Plasma Sintering. ACS Appl. Mater. Interfaces 2022, 14, 52108–52116. [Google Scholar] [CrossRef] [PubMed]
- Ma, R. Preparation of SiCnf Reinforced SiC Ceramics Composites by Hot Pressong Sintering; Zhejiang Sci-Tech University: Hangzhou, China, 2019. [Google Scholar]
- Wang, R.; Li, S.; Hu, P.; Chen, S.; Wang, J. Densification Behavior and Microstructure Evolution of Mo Manocrystals by Microwave Sintering. ES Mater. Manuf. 2021, 13, 97–105. [Google Scholar] [CrossRef]
- Liu, W.; Kou, H.; Wang, X.; Bi, L.; Zhao, X.S. Improving the performance of the Ba0.5Sr0.5Co0.8Fe0.2O3- cathode for proton-conducting SOFCs by microwave sintering. Ceram. Int. 2019, 45, 20994–20998. [Google Scholar] [CrossRef]
- Rumman, R.; Chuan, L.C.; Quinton, J.S.; Ghomashchi, R. Understanding the potential of microwave sintering on WC—Co. Int. J. Refract. Met. Hard Mater. 2019, 81, 7–14. [Google Scholar] [CrossRef]
- Cai, X.; Teng, Y.; Wu, L.; Zhang, K. Hot-press sintering Sr2Nb2O7 ceramics and their electrical properties. J. Mater. Sci. Mater. Electron. 2016, 28, 4239–4244. [Google Scholar] [CrossRef]
- Haertling, G.H.J. Properties of Hot-Pressed Ferroelectric Alkali Niobate Ceramics. J. Am. Ceram. Soc. 2010, 50, 329–330. [Google Scholar] [CrossRef]
- Wang, X.X.; Murakami, K.; Sugiyama, O.; Kaneko, S. Piezoelectric properties, densification behavior and microstructural evolution of low temperature sintered PZT ceramics with sintering aids. J. Eur. Ceram. Soc. 2001, 21, 1367–1370. [Google Scholar] [CrossRef]
- Juan, G. Research on Manufacturing Complex Parts Based on 3D Printing Technology. Agric. Mach. Using Maint. 2023, 7, 54–56. [Google Scholar] [CrossRef]
- Wang, Z. Optimal Design of 3D Printing Extrusion Device Based on Rheological Properties of Ceramic Slurry. Master’s Thesis, Hebei University of Technology, Wuhan, China, 2021. [Google Scholar]
- Minh, N.Q.J. Ceramic fuel cells. J. Am. Ceram. Soc. 1993, 76, 563–588. [Google Scholar] [CrossRef]
- Thorel, A. Chapter Tape Casting Ceramics for High Temperature Fuel Cell Applications; IntechOpen: Rijeka, Croatia, 2010. [Google Scholar]
- Dubois, A.; Ricote, S.; Braun, R.J. Benchmarking the expected stack manufacturing cost of next generation, intermediate-temperature protonic ceramic fuel cells with solid oxide fuel cell technology. J. Power Sources 2017, 369, 65–77. [Google Scholar] [CrossRef]
- Ruiz-Morales, J.; Tarancón, A.; Canales-Vázquez, J.; Méndez-Ramos, J.; Hernández-Afonso, L.; Acosta-Mora, P.; Rueda, J.M.; Fernández-González, R. Three dimensional printing of components and functional devices for energy and environmental applications. Energy Environ. Sci. 2017, 10, 846–859. [Google Scholar] [CrossRef]
- Lim, T.-H.; Park, J.-L.; Lee, S.-B.; Park, S.-J.; Song, R.-H.; Shin, D.-R. Fabrication and operation of a 1 kW class anode-supported flat tubular SOFC stack. Int. J. Hydrogen Energy 2010, 35, 9687–9692. [Google Scholar] [CrossRef]
- Wei, L.; Zhang, J.; Yu, F.; Zhang, W.; Meng, X.; Yang, N.; Liu, S. A novel fabrication of yttria-stabilized-zirconia dense electrolyte for solid oxide fuel cells by 3D printing technique. Int. J. Hydrogen Energy 2019, 44, 6182–6191. [Google Scholar] [CrossRef]
- Huang, J.; Qin, Q.; Wang, J. A Review of Stereolithography: Processes and Systems. Processes 2020, 8, 1138. [Google Scholar] [CrossRef]
- Griffith, M.L.; Halloran, J.W.J. Freeform fabrication of ceramics via stereolithography. J. Am. Ceram. Soc. 1996, 79, 2601–2608. [Google Scholar] [CrossRef]
- Sun, D.; Lu, Y.; Karaki, T. Review of the Applications of 3D Printing Technology in the Field of Piezoelectric Ceramics. Resour. Chem. Mater. 2023, 2, 128–142. [Google Scholar] [CrossRef]
- Zhou, M.; Liu, W.; Wu, H.; Song, X.; Chen, Y.; Cheng, L.; He, F.; Chen, S.; Wu, S. Preparation of a defect-free alumina cutting tool via additive manufacturing based on stereolithography–Optimization of the drying and debinding processes. Ceram. Int. 2016, 42, 11598–11602. [Google Scholar] [CrossRef]
- Goswami, A.; Ankit, K.; Balashanmugam, N.; Umarji, A.M.; Madras, G. Optimization of rheological properties of photopolymerizable alumina suspensions for ceramic microstereolithography. Ceram. Int. 2014, 40, 3655–3665. [Google Scholar] [CrossRef]
- Gentry, S.P.; Halloran, J.W. Depth and width of cured lines in photopolymerizable ceramic suspensions. J. Eur. Ceram. Soc. 2013, 33, 1981–1988. [Google Scholar] [CrossRef]
- Chartier, T.; Badev, A.; Abouliatim, Y.; Lebaudy, P.; Lecamp, L. Stereolithography process: Influence of the rheology of silica suspensions and of the medium on polymerization kinetics–cured depth and width. J. Eur. Ceram. Soc. 2012, 32, 1625–1634. [Google Scholar] [CrossRef]
- Tomeckova, V.; Halloran, J.W. Critical energy for photopolymerization of ceramic suspensions in acrylate monomers. J. Eur. Ceram. Soc. 2010, 30, 3273–3282. [Google Scholar] [CrossRef]
- Wozniak, M.; de Hazan, Y.; Graule, T.; Kata, D. Rheology of UV curable colloidal silica dispersions for rapid prototyping applications. J. Eur. Ceram. Soc. 2011, 31, 2221–2229. [Google Scholar] [CrossRef]
- Wu, H.; Liu, W.; He, R.; Wu, Z.; Jiang, Q.; Song, X.; Chen, Y.; Cheng, L.; Wu, S. Fabrication of dense zirconia-toughened alumina ceramics through a stereolithography-based additive manufacturing. Ceram. Int. 2017, 43, 968–972. [Google Scholar] [CrossRef]
- He, R.; Liu, W.; Wu, Z.; An, D.; Huang, M.; Wu, H.; Jiang, Q.; Ji, X.; Wu, S.; Xie, Z. Fabrication of complex-shaped zirconia ceramic parts via a DLP-stereolithography-based 3D printing method. Ceram. Int. 2018, 44, 3412–3416. [Google Scholar] [CrossRef]
- Komissarenko, D.A.; Sokolov, P.S.; Evstigneeva, A.D.; Slyusar, I.V.; Nartov, A.S.; Volkov, P.A.; Lyskov, N.V.; Evdokimov, P.V.; Putlayev, V.I.; Dosovitsky, A.E. DLP 3D printing of scandia-stabilized zirconia ceramics. J. Eur. Ceram. Soc. 2021, 41, 684–690. [Google Scholar] [CrossRef]
- Mu, S.; Hong, Y.; Huang, H.; Ishii, A.; Lei, J.; Song, Y.; Li, Y.; Brinkman, K.S.; Peng, F.; Xiao, H. A Novel Laser 3D Printing Method for the Advanced Manufacturing of Protonic Ceramics. Membranes 2020, 10, 98. [Google Scholar] [CrossRef] [PubMed]
- Zou, M.; Conrad, J.; Sheridan, B.; Zhang, J.; Huang, H.; Mu, S.; Zhou, T.; Zhao, Z.; Brinkman, K.S.; Xiao, H.; et al. 3D Printing Enabled Highly Scalable Tubular Protonic Ceramic Fuel Cells. ACS Energy Lett. 2023, 8, 3545–3551. [Google Scholar] [CrossRef]
- Hong, Y.; Lei, J.; Heim, M.; Song, Y.; Yuan, L.; Mu, S.; Bordia, R.K.; Xiao, H.; Tong, J.; Peng, F.J. Fabricating ceramics with embedded microchannels using an integrated additive manufacturing and laser machining method. J. Am. Ceram. Soc. 2019, 102, 1071–1082. [Google Scholar] [CrossRef]
- Ishii, A.; Mu, S.; Meng, Y.; Huang, H.; Lei, J.; Li, Y.; Peng, F.; Xiao, H.; Tong, J.; Brinkman, K.S. Rapid Laser Processing of Thin Sr-Doped LaCrO3–δ Interconnects for Solid Oxide Fuel Cells. ECS Trans. 2020, 8, 2000364. [Google Scholar]
- Mu, S.; Huang, H.; Ishii, A.; Zhao, Z.; Zou, M.; Kuzbary, P.; Peng, F.; Brinkman, K.S.; Xiao, H.; Tong, J. Rapid laser reactive sintering of BaCe0.7Zr0.1Y0.1Yb0.1O3−δ electrolyte for protonic ceramic fuel cells. J. Power Sources Adv. 2020, 4, 100017. [Google Scholar] [CrossRef]
- Chen, A.-N.; Li, M.; Wu, J.-M.; Cheng, L.-J.; Liu, R.-Z.; Shi, Y.-S.; Li, C.-H. Enhancement mechanism of mechanical performance of highly porous mullite ceramics with bimodal pore structures prepared by selective laser sintering. J. Alloys Compd. 2019, 776, 486–494. [Google Scholar] [CrossRef]
- Dong, Y.; Jiang, H.; Chen, A.; Yang, T.; Gao, S.; Liu, S. Near-zero-shrinkage Al2O3 ceramic foams with coral-like and hollow-sphere structures via selective laser sintering and reaction bonding. J. Eur. Ceram. Soc. 2021, 41, 239–246. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, F.; Wu, Z.; Lu, Y.; Yan, X.; Nastasi, M.; Chen, Y.; Hao, Y.; Hong, X.; Cui, B.J. Direct selective laser sintering of hexagonal barium titanate ceramics. J. Am. Ceram. Soc. 2021, 104, 1271–1280. [Google Scholar] [CrossRef]
- Zhu, Z.; Gong, Z.; Qu, P.; Li, Z.; Rasaki, S.A.; Liu, Z.; Wang, P.; Liu, C.; Lao, C.; Chen, Z. Additive manufacturing of thin electrolyte layers via inkjet printing of highly-stable ceramic inks. J. Adv. Ceram. 2021, 10, 279–290. [Google Scholar] [CrossRef]
- Yang, P.; Fan, H.J. Inkjet and Extrusion Printing for Electrochemical Energy Storage: A Minireview. Adv. Mater. Technol. 2020, 5, 2000217. [Google Scholar] [CrossRef]
- Hoth, C.N.; Schilinsky, P.; Choulis, S.A.; Brabec, C.J. Printing highly efficient organic solar cells. Nano Lett. 2008, 8, 2806–2813. [Google Scholar] [CrossRef] [PubMed]
- Hoth, C.N.; Choulis, S.A.; Schilinsky, P.; Brabec, C.J. High photovoltaic performance of inkjet printed polymer: Fullerene blends. Adv. Mater. 2007, 19, 3973–3978. [Google Scholar] [CrossRef]
- Lavery, L.L.; Whiting, G.L.; Arias, A.C. All ink-jet printed polyfluorene photosensor for high illuminance detection. Org. Electron. 2011, 12, 682–685. [Google Scholar] [CrossRef]
- Dua, V.; Surwade, S.P.; Ammu, S.; Agnihotra, S.R.; Jain, S.; Roberts, K.E.; Park, S.; Ruoff, R.S.; Manohar, S.K. All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem. 2010, 122, 2200–2203. [Google Scholar] [CrossRef]
- Correia, V.; Mitra, K.; Castro, H.; Rocha, J.; Sowade, E.; Baumann, R.; Lanceros-Méndez, S. Design and fabrication of multilayer inkjet-printed passive components for printed electronics circuit development. J. Manuf. Process. 2018, 31, 364–371. [Google Scholar] [CrossRef]
- Kang, B.J.; Lee, C.K.; Oh, J.H. All-inkjet-printed electrical components and circuit fabrication on a plastic substrate. Microelectron. Eng. 2012, 97, 251–254. [Google Scholar] [CrossRef]
- Qu, P.; Ou, J.; Gong, Z.; Liu, C.; Lao, C.; Chen, Z. Fabrication of Porous Fuel Cell Electrode Layers via Inkjet Printing. J. Chin. Ceram. Soc. 2020, 48, 1613–1621. [Google Scholar] [CrossRef]
- Han, G.D.; Bae, K.; Kang, E.H.; Choi, H.J.; Shim, J.H. Inkjet printing for manufacturing solid oxide fuel cells. ACS Energy Lett. 2020, 5, 1586–1592. [Google Scholar] [CrossRef]
- Yang, J.; Xiao, Z.; Chen, J.; Zhang, S. Study on process parameters and structural angles of printed part of slurry extrusion ceramic 3D printing. Manuf. Technol. Mach. Tool 2023, 6, 11–15. [Google Scholar] [CrossRef]
- Xu, X.; Bi, L.; Zhao, X.S. Highly-conductive proton-conducting electrolyte membranes with a low sintering temperature for solid oxide fuel cells. J. Membr. Sci. 2018, 558, 17–25. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, L.; Meng, X.; Yu, F.; Yang, N.; Liu, S. Digital light processing-stereolithography three-dimensional printing of yttria-stabilized zirconia. Ceram. Int. 2020, 46, 8745–8753. [Google Scholar] [CrossRef]
- Ullah, M.K.; Ahmad, N.; Ud-Din Khan, S.; Alvi, F.; Abbas, G.; Rafique, A.; Ali, A.; Ahmad, M.A.; Raza, R. Structural and electrochemical studies of microwave sintered nanocomposite electrolytes for solid oxide fuel cells. Int. J. Hydrogen Energy 2019, 44, 10964–10970. [Google Scholar] [CrossRef]
- Roy, R.; Agrawal, D.; Cheng, J.; Gedevanishvili, S. Full sintering of powdered-metal bodies in a microwave field. Nature 1999, 399, 668–670. [Google Scholar] [CrossRef]
- Huang, J.; Ma, Y.; Cheng, M.; Ruan, S. Fabrication of integrated BZY electrolyte matrices for protonic ceramic membrane fuel cells by tape-casting and solid-state reactive sintering. Int. J. Hydrogen Energy 2018, 43, 12835–12846. [Google Scholar] [CrossRef]
- Ramos, K.; Wendler, L.P.; Chinelatto, A.L.; Chinelatto, A.A.; de Souza, D.P.F. High-density BaCe0.9Y0.1O3−δ obtained by solid-state reaction sintered at 1200 °C without sintering aid. J. Mater. Sci. Mater. Electron. 2023, 34, 174. [Google Scholar] [CrossRef]
- Li, L.; Xu, Y.; Lin, C.; Xu, Z.; Sun, D.; Peng, H. Microwave sintering feasibility of zinc oxide varistors. Electron. Compon. Mater. 2007, 3, 41–43. [Google Scholar]
- Ng, C.K.; Ramesh, S.; Tan, C.Y.; Muchtar, A.; Somalu, M.R. Microwave sintering of ceria-doped scandia stabilized zirconia as electrolyte for solid oxide fuel cell. Int. J. Hydrogen Energy 2016, 41, 14184–14190. [Google Scholar] [CrossRef]
- Kang, E.H.; Han, G.D.; Choi, H.J.; Bae, K.; Jeong, H.; Jang, D.Y.; Shim, J.H. Inkjet Printing of Solid Oxide Fuel Cells and Proton Ceramic Fuel Cells. ECS Trans. 2019, 91, 1059. [Google Scholar] [CrossRef]
- Wang, B.; Bi, L.; Zhao, X.S. Fabrication of one-step co-fired proton-conducting solid oxide fuel cells with the assistance of microwave sintering. J. Eur. Ceram. Soc. 2018, 38, 5620–5624. [Google Scholar] [CrossRef]
- Chang, W.; Kang, E.H.; Jeong, H.J.; Choi, W.; Shim, J.H. Inkjet printing of perovskite ceramics for high-performance proton ceramic fuel cells. Energy 2023, 268, 126489. [Google Scholar] [CrossRef]
Printing Method | Raw Material Status | Advantages | Disadvantages |
---|---|---|---|
Light-curing Printing | Liquid | Fast molding speed and high surface quality | Expensive equipment and resin |
Selective Laser Sintering | Powder | High material utilization rate (close to 100%) | Rough surface quality due to powder heating and melting molding |
Laser 3D Printing | Liquid | Precise and fast processing (sintering, cutting, polishing, melting, welding) | Thermal stress residual and pre-processing required |
Extrusion 3D Printing | Liquid | Low cost without laser components | Low mechanical strength due to many additives |
Inkjet Printing | Liquid | No support structure required | Difficult to prepare highly uniform inks |
Manufacturing Methods | SEM | XRD | Results |
---|---|---|---|
SSRS | At a certain sintering temperature and sintering aids, the porosity of the electrolyte is small and the degree of densification is high [105]. | Under a certain sintering temperature and with sintering additives, the phase was pure | In Ramos [106] et al.’s study, powders were prepared by solid- state reaction through three procedures, and it was possible to obtain dense pellets of BaCe0.9Y0.1O3−δ at sintering temperature as low as 1200 °C without sintering aid. |
Microwave Sintering | Liu et al. [57] prepared BSCF cathodes for H-SOFC applications using microwave sintering. It allowed the BSCF cathode to adhere well to the electrolyte without destroying its microstructure, and the low sintering temperature also mitigated the Ba interdiffusion. | Verification of phase structure | Li et al. [107] found that the microwave sintering process significantly improved the densification behavior of ZnO varistors. |
Stereolithography Apparatus | Under certain printing mechanisms, the samples have a good microstructure with a high degree of densification and uniform distribution. | Verification of phase structure | Suitable for parts with complex shapes, good surface quality, relatively smooth, suitable for fine parts, can show the best details, ideal for small parts, the equipment is integrated and relatively easy to operate. |
Inkjet Printing | The surface microstructure quality is better when dry sintering under certain printing parameters, and the number and size of cracks are less, which has less of an effect on the electrode performance. The pore size and distribution are also more uniform. | Verification of phase structure | The advantages of low-cost, easy, fast, and precise fabrication, which can be achieved using repeated deposition for layer-by-layer cumulative 3D printing fabrication. This is currently used for the preparation of some precision ceramic artifacts, especially thin layers of ceramics [98]. |
Laser 3D Printing | Under certain printing parameters and sintering conditions, the sintered layer is well-bonded and a fully densified electrolyte film with a large grain size can be obtained. | Certain conditions give the desired crystal structure. | Fabrication of sintered plasmonic ceramic components for use in mesothermal plasmonic ceramic devices with a variety of complex geometries and controlled microstructures [82]. |
A single Sintering Step | The samples prepared by Tarutin et al. [39] using this method exhibited basic properties including the dense state of the electrolyte and the porous structure of the functional cathode and anode. | Verification of the phase structure of electrolytes and electrodes | It achieves the required morphological properties—full densification of the electrolyte and sufficient electrode porosity [39]. |
Manufacturing Method | Electrochemical Properties |
---|---|
SSRS | The simplicity of fabrication provided by SSRS greatly enhances the potential for The deployment of deploying proton-conducting ceramics in various electrochemical devices [47]. |
Microwave Sintering | Li et al. [107] found that the microwave sintering enhanced the electrical properties of ZnO varistors. Liu et al. [57] proposed that batteries with microwave-sintered cathodes exhibit significantly better battery performance than those using conventionally sintered cathodes. Wang et al. [110] found that microwave sintering improved fuel cell performance. |
Stereolithography Apparatus | E. M. et al. [3] showed that the fabrication process does not have any adverse effect on the electrical properties of structured materials. |
Inkjet Printing | Many micropores and small cracks were formed in the cathode layer prepared under certain printing parameters, forming a porous, homogeneous structure with good interfacial bonding, which promotes oxygen penetration and increases the specific surface area to participate in the electrochemical ORR, which is favorable to the electrochemical performance [111]. And when the effective connection of the cathode layer is maintained, the oxygen ion conductivity is improved to enhance the efficiency of the cathode reduction reaction, which in turn improves the electrochemical performance output of the battery [98]. |
Laser 3D Printing | Mu et al. [23] conducted the electrochemical impedance measurement of the fully dense strips and showed promising protonic conductivities. |
A Single Sintering Step | Artem Tarutin et al. [39] performed the one-step fabrication of protonic ceramic fuel cells using a convenient tape calendering method. The PCFC fabricated in this way demonstrated both gas-tightness (1.03 V at 600 °C in the current-free mode) and high performance (~400 mW cm−2 at 600 °C). |
Manufacturing Method | Test Conditions | Conductivity (S/cm) | Peak Power Density (W cm−2) | References |
---|---|---|---|---|
SSRS | 600 °C in wet argon | 3.3 × 10−2 (total) 2.59 × 10−2 | 0.156 | [51,66] [106] |
A Single Sintering Step | 600 °C | - | 0.4 | [39] |
Microwave Sintering | 700 °C | - | 0.96 | [57] |
Stereolithography Apparatus | 900 °C | 0.05 | - | [3] |
Inkjet Printing | 600 °C | - | 0.728 | [111] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.; Feng, Q.; Liu, Z.; Zhang, P.; Zhu, X.; Mu, S. Recent Novel Fabrication Techniques for Proton-Conducting Solid Oxide Fuel Cells. Crystals 2024, 14, 225. https://doi.org/10.3390/cryst14030225
Yu M, Feng Q, Liu Z, Zhang P, Zhu X, Mu S. Recent Novel Fabrication Techniques for Proton-Conducting Solid Oxide Fuel Cells. Crystals. 2024; 14(3):225. https://doi.org/10.3390/cryst14030225
Chicago/Turabian StyleYu, Mengyang, Qiuxia Feng, Zhipeng Liu, Peng Zhang, Xuefeng Zhu, and Shenglong Mu. 2024. "Recent Novel Fabrication Techniques for Proton-Conducting Solid Oxide Fuel Cells" Crystals 14, no. 3: 225. https://doi.org/10.3390/cryst14030225
APA StyleYu, M., Feng, Q., Liu, Z., Zhang, P., Zhu, X., & Mu, S. (2024). Recent Novel Fabrication Techniques for Proton-Conducting Solid Oxide Fuel Cells. Crystals, 14(3), 225. https://doi.org/10.3390/cryst14030225