Effects of Ultrasonic Treatment on Grain Refinement and Gas Removal in Magnesium Alloys
Abstract
:1. Introduction
2. Experimental Materials and Methods
3. Experiment Results
3.1. Effect of Ultrasonic Treatment on Degassing Efficiency of Mg-3Ca Magnesium Alloy
- : Density of the untreated (g·cm−3).
- : Density of the treated ingot by ultrasonic treatment (g·cm−3).
- : Theoretical density of the alloy (Mg-3Ca and Mg-6Zn-1Ca have densities of 1.7317 g·cm−3 and 1.8183 g·cm−3, respectively).
3.2. The Effect of Ultrasonic Treatment on Degassing Efficiency of Mg-6Zn-1Ca Magnesium Alloy
3.3. The Effect of Ultrasonic Treatment on Degassing Efficiency of AZ80 Magnesium Alloy
4. Conclusions
- (1)
- Appropriate ultrasonic treatment can refine the grain structure and degassing of magnesium alloys, improving the density and degassing efficiency of ingots. The second phases become smaller and more uniform. In these experiments, both density measurement of the ingot and solid-state hydrogen measurement can reflect the degree of degassing. The hydrogen removal effect of Mg-3Ca, Mg-6Zn-1Ca, and AZ80 magnesium alloys was greatly improved by ultrasonic treatment, with maximum hydrogen removal efficiency of 53.8%, 67.5%, and 34.9%, respectively. The effect of ultrasonic treatment on grain size and morphology of Mg17Al12 particles in AZ80 alloy was attributed to acoustic cavitation and acoustic streaming.
- (2)
- The lowest hydrogen content of AZ80 magnesium alloy after hydrogen removal can reach 8.2 cm3/100 g. The corresponding tensile strengths were 174 MPa, 79 MPa, and 6.2%, which increased by 41.5%, 38.6%, and 87.9% respectively. The cavitation effect and acoustic streaming effect with appropriate ultrasonic treatment duration resulted in grain refinement, degassing, and uniform dispersion of second phases. This can significantly improve the mechanical properties and provide a basis for industrial production.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, P.; Blawert, C.; Bohlen, J.; Zheludkevich, M.L. Corrosion performance, corrosion fatigue behavior and mechanical integrity of an extruded Mg4Zn0.2Sn alloy. J. Mater. Sci. Technol. 2020, 59, 107–116. [Google Scholar] [CrossRef]
- Pan, H.; Qin, G.; Xu, M.; Fu, H.; Ren, Y.; Pan, F.; Song, B. Enhancing mechanical properties of Mg–Sn alloys by combining addition of Ca and Zn. Mater. Des. 2015, 83, 736–744. [Google Scholar] [CrossRef]
- Boby, A.; Srinivasan, A.; Pillai, U.; Pai, B. Mechanical characterization and corrosion behavior of newly designed Sn and Y added AZ91 alloy. Mater. Des. 2015, 88, 871–879. [Google Scholar] [CrossRef]
- Li, K.; Chen, Z.; Chen, T.; Shao, J.; Liu, C. Hot Deformation and dynamic recrystallization behaviors of Mg-Gd-Zn alloy with LPSO phases. J. Magnes. Alloys 2019, 792, 894–906. [Google Scholar] [CrossRef]
- Chang, L.; Tang, H.; Guo, J. Strengthening effect of nano and micro-sized precipitates in the hot-extruded Mg-5Sn-3Zn alloys with Ca addition. J. Alloys Compd. 2017, 703, 552–559. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X.; Lu, Y.; Li, X. Microstructure and mechanical properties of as-extruded Mg-Sn-Zn-Ca alloy with different extrusion ratios. Trans. Nonferrous Met. Soc. China 2018, 28, 2190–2198. [Google Scholar] [CrossRef]
- Zhang, Z.; Le, Q.; Cui, J. Effects of high-intensity ultrasonic on solidification structure of Mg-Ca alloy. Rare Met. Mater. Eng. 2008, 37, 436–439. [Google Scholar]
- Feng, H.; Jia, Z. Effect of C2Cl6 on Degassing and Grain Refinement of AZ91 Magnesium Alloy. Foundry Technol. 2016, 37, 2257–2260. [Google Scholar]
- Zhang, Z.; Le, Q.; Cui, J. Microstructures of Mg–Al binary magnesium alloy solidified with ultrasonic treatment. Mater. Sci. Technol. 2009, 25, 931–934. [Google Scholar] [CrossRef]
- Fu, Y.; Li, J.; Song, X. Restraining solute segregation of Al–1%Si alloy in diverse physical field. Mater. Technol. 2012, 27, 173–175. [Google Scholar] [CrossRef]
- Chen, X.; Liao, Q.; Niu, Y.; Jia, Y.; Le, Q.; Ning, S.; Hu, C.; Hu, K.; Yu, F. Comparison study of hot deformation behavior and processing map of AZ80 magnesium alloy casted with and without ultrasonic vibration. J. Alloys Compd. 2019, 803, 585–596. [Google Scholar] [CrossRef]
- Chen, X.; Ning, S.; Wang, A.; Le, Q.; Liao, Q.; Jia, Y.; Cheng, C.; Li, X.; Atrens, A.; Yu, F. Microstructure, mechanical properties and corrosion behavior of quasicrystal-reinforced Mg-Zn-Y alloy subjected to dual-frequency ultrasonic field. Corros. Sci. 2020, 163, 108289. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Li, H.; Le, Q.; Zhang, Z.; Hu, W.; Bao, L. Electrical resistivity behaviors of liquid Pb-Sn binary alloy in the presence of ultrasonic field. Ultrasonics 2015, 55, 6–9. [Google Scholar] [CrossRef]
- Haghayeghi, R.; Bahai, H.; Kapranos, P. Effect of ultrasonic argon degassing on dissolved hydrogen in aluminium alloy. Mater. Lett. 2012, 82, 230–232. [Google Scholar] [CrossRef]
- Li, J.; Momono, T.; Fu, Y.; Jia, Z.; Tayu, Y. Effect of ultrasonic stirring on temperature distribution and grain refinement in Al-1.65%Si alloy melt. Trans. Nonferrous Met. Soc. China 2007, 17, 691–697. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Y.; Song, Y.; Yong, Z. Effects of Power ultrasonic treatment on microstructure and mechanical properties of T10 steel. Mater. Lett. 2007, 61, 2422–2425. [Google Scholar] [CrossRef]
- Helder, P.; Joaquim, B.; Seabra, E.; Ribeiro, S.; Prokic, M. The influence of processing parameters on the ultrasonic degassing of molten AlSi9Cu3 aluminium alloy. Mater. Lett. 2009, 63, 806–808. [Google Scholar]
- Watanabe, T.; Huang, Y.C.; Komatsu, R. Determination of hydrogen content in magnesium. Light Met. 1976, 26, 67–75. [Google Scholar] [CrossRef]
- Watanabe, T.; Tachihara, Y.; Huang, Y.C. The effect of various alloying elements on solubility of hydrogen in magnesium. Light Met. 1976, 26, 167–174. [Google Scholar] [CrossRef]
- Li, J.; Momono, T. Effects of ultrasonic power on refining the crystal structures of ingots and its experimental simulation. J. Mater. Sci. Technol. 2005, 21, 47–52. [Google Scholar]
- Thomson, J.; Liu, P.; Sadayappan, K.; Sadayappan, M. Effect of C2Cl6 on mechanical properties and microstructure of gravity permanent mold cast AZ91E. AFS Trans. 2004, 995–1006. [Google Scholar]
- Zhang, E.; Wang, G.; Xu, J.; Hu, Z. Grain refinement of AZ91D by spinning spray of carbon dioxide gas and its effect on mechanical property. Mater. Sci. Technol. 2010, 26, 956–961. [Google Scholar] [CrossRef]
- Li, J.; Momono, T.; Yoshinori, T.; Ying, F. Application of ultrasonic treating to degassing of metal ingots. Mater. Lett. 2008, 62, 4152–4154. [Google Scholar] [CrossRef]
- Jun, W.; Ying, F.; Momono, T. Method of fast, effective ultrasonic degassing by forced cooling. Mater. Res. Innov. 2010, 14, 210–215. [Google Scholar]
- Xu, H.; Meek, T.; Han, Q. Effects of ultrasonic field and vacuum on degassing of molten aluminum alloy. Mater. Lett. 2007, 61, 1246–1250. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Q.; Gu, J.; Tong, Y. Behavior of Mg–15Gd–5Y–0.5Zr alloy during solution heat treatment from 500 to 540 °C. Mater. Sci. Eng. A 2007, 459, 117–123. [Google Scholar] [CrossRef]
- Zhong, G.; Wu, S.S.; Jiang, H.; An, P. Effects of ultrasonic vibration on the iron-containing intermetallic compounds of high silicon aluminum alloy with 2% Fe. J. Alloys Compd. 2010, 492, 482–487. [Google Scholar] [CrossRef]
- Eskin, G. Ultrasonic Treatment of Light Alloy Melts; Gordon and Breach Science Publishers: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Abramov, O. High-Intensity Ultrasonics: Theory and Industrial Applications; Gordon and Breach Science Publishers: London, UK, 1998. [Google Scholar]
- Abramov, V.; Abramov, O.; Straumal, B.B.; Gust, W. Hypereutectic Al-Si based alloys with a thixotropic microstructure produced by ultra sonic treatment. Mater. Design 1997, 18, 323–326. [Google Scholar] [CrossRef]
- Xu, H.; Han, Q.; Meek, T. Effects of ultrasonic vibration on degassing of aluminum alloys. Mater. Sci. Eng. A-Struct. 2008, 473, 96–104. [Google Scholar] [CrossRef]
- Jian, X.; Xu, H.; Han, Q. Effect of power ultrasound on solidification of aluminum A356 alloy. Mater. Lett. 2005, 59, 190–193. [Google Scholar] [CrossRef]
- Jian, X.; Meek, T.; Han, Q. Refinement of eutectic silicon phase of aluminum A356 alloy using high-intensity ultrasonic vibration. Scr. Mater. 2006, 54, 893–896. [Google Scholar] [CrossRef]
- Wu, S.; Liu, L.; Ma, Q.; Mao, Y.; Ping, A. Degassing effect of ultrasonic vibration in molten melt and semi-solid slurry of Al-Si alloys. China Foundry 2012, 9, 201–206. [Google Scholar]
- Wu, S.; Lin, C.; Lü, S.; Meng, S. Research progress on microstructure evolution of semi-solid aluminum alloys in ultrasonic field and their rheocasting. China Foundry 2014, 11, 258–267. [Google Scholar]
- Lü, S.; Wu, S.; Dai, W.; An, P.; Mao, Y. Preparation of semi-solid 5052 aluminum alloy slurry by indirect ultrasonic vibration. Acta Metall. Sin. 2011, 47, 634–640. [Google Scholar]
- Wu, S.; Lü, S.; An, P.; Nakae, H. Microstructure and property of rheocasting aluminum-alloy made with indirect ultrasonic vibration process. Mater. Lett. 2012, 73, 150–153. [Google Scholar] [CrossRef]
- He, L.; Li, J. Effect of ultrasonic power on solidification structure and porosity in commercial pure magnesium. Spec. Cast. Nonferrous Alloys 2013, 33, 182–185. [Google Scholar]
- Meidani, A.; Hasan, M. A study of hydrogen bubble growth during ultrasonic degassing of Al-Cu alloy melts. J. Mater. Process. Technol. 2004, 147, 311–320. [Google Scholar] [CrossRef]
- Lin, C.; Wu, S.; Zeng, J.; Ping, A.; Li, W. Combined effects of ultrasonic vibration and manganese on Fe-containing intermetallic compounds and mechanical properties of Al-17Si alloy with 3wt.%Fe. China Foundry 2013, 10, 148–154. [Google Scholar]
- Jia, Z.; Zhang, Z.; Le, Q.; Bao, L.; Cui, J. Effect of ultrasonic melt treatment on degassing of Mg-6Zn-1Ca alloy. China Foundry 2015, 12, 15–19. [Google Scholar]
- Zhao, J.; Ning, L.; Jiang, Z.; Li, Y. Design and Development of a Novel Ultrasonic Field Wetting Angle Measuring Instrument for Researching the Wetting of the Liquid–Solid Interface. Crystals 2021, 11, 1400. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, J.; Lv, J.; Meng, X.; Li, P.; Huang, S. A novel hybrid ultrasonic and electromagnetic field assisted laser cladding: Experimental study and synergistic effects. J. Mater. Process. Technol. 2022, 307, 117658. [Google Scholar] [CrossRef]
- Wei, Z.; Abolhassan, N.; Morteza, T.; Farzad, S.; Neda, D.; Gholamreza, K. The Effect of an Ultrasonic Field on the Microstructure and Tribological Behavior of ZrB2/ZrC+Ni60A/WC Composite Coating Applied by Laser Cladding. Coatings 2023, 13, 1928. [Google Scholar] [CrossRef]
- Zhao, S.; Morteza, T.; Kourosh, S.; Mehdi, N.; Khashayar, B.; Moslem, P.; Sai, W. Microstructure of NbMoTaTiNi Refractory High-Entropy Alloy Coating Fabricated by Ultrasonic Field-Assisted Laser Cladding Process. Coatings 2023, 13, 995. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, E.; Zeng, S. Theoretical analysis and experimental research of degassing of AZ91 magnesium alloy by spinning spraying degassing. Chin. J. Nonferrous Met. 2008, 18, 1622–1627. [Google Scholar]
- Leo, P.; Prasanna, B.; Regener, D. Computational microstructure analyzing technique for quantitative characterization of shrinkage and gas pores in pressure die cast AZ91 magnesium alloys. CMS 2005, 32, 480–488. [Google Scholar]
- Zhang, H.; Zhai, Q.; Qi, F.; Gong, Y. Effect of side transmission of power ultrasonic on structure of AZ81 magnesium alloy. Trans. Nonferrous Met. Soc. China 2004, 14, 302–305. [Google Scholar]
- Liu, X.; Yoshiaki, O.; Susumu, T.; Toshiji, M. Grain refinement of AZ91 alloy by introducing ultrasonic vibration during solidification. Mater. Lett. 2007, 62, 2872–2875. [Google Scholar] [CrossRef]
- Cui, Y.; Xu, C.; Han, Q. Effect of ultrasonic vibration on unmixed zone formation. Scr. Mater. 2006, 55, 975–978. [Google Scholar] [CrossRef]
- Jia, Z. Study on Melts Dehydrogenation Processing of Several Magnesium and Aluminium Alloys. Ph.D. Thesis, Northeastern University, Shenyang, China, 2013. [Google Scholar]
Area | Element (at.%) | Identified Phase | |||
---|---|---|---|---|---|
Mg | Al | Mn | Zn | ||
A | 76.37 | 22.56 | 0.02 | 1.05 | β-Mg17Al12 |
B | 82.02 | 14.35 | 0.03 | 0.80 | β-Mg17Al12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, W.; Le, Q.; Liao, Q.; Wang, T. Effects of Ultrasonic Treatment on Grain Refinement and Gas Removal in Magnesium Alloys. Crystals 2024, 14, 237. https://doi.org/10.3390/cryst14030237
Hu W, Le Q, Liao Q, Wang T. Effects of Ultrasonic Treatment on Grain Refinement and Gas Removal in Magnesium Alloys. Crystals. 2024; 14(3):237. https://doi.org/10.3390/cryst14030237
Chicago/Turabian StyleHu, Wenyi, Qichi Le, Qiyu Liao, and Tong Wang. 2024. "Effects of Ultrasonic Treatment on Grain Refinement and Gas Removal in Magnesium Alloys" Crystals 14, no. 3: 237. https://doi.org/10.3390/cryst14030237
APA StyleHu, W., Le, Q., Liao, Q., & Wang, T. (2024). Effects of Ultrasonic Treatment on Grain Refinement and Gas Removal in Magnesium Alloys. Crystals, 14(3), 237. https://doi.org/10.3390/cryst14030237