Irradiation Effects on Tensile Properties of Reduced Activation Ferritic/Martensitic Steel: A Micromechanical-Damage-Model-Based Numerical Investigation
Abstract
:1. Introduction
2. Numerical Simulation Methods
2.1. Ductile Damage Model
2.2. Finite Element Model of Tensile Test
2.3. Flow Stress Behavior
3. Results
4. Discussion
5. Conclusions
- Through a numerical study of tensile curves, the GTN parameters were identified reasonably and we obtained satisfying simulation results for RAFM steels. For irradiated materials, the combination of Swift law and Voce law was used to define the flow behavior. Meanwhile, we found that the proportion of saturated hardening (Swift law) rose with the recovery of uniform elongation.
- The deformation localization can be adjusted effectively by setting εn at the strain near necking, leading εn to change with uniform elongation. Therefore, εn decreased with the testing temperature and rose with irradiation at temperatures above 300 °C.
- The nucleation parameter fn increased with the testing temperature before irradiation. In the irradiation tests, there was barely any change in fn at low irradiation temperatures of below 300 °C and then there was a rise in fn at higher irradiation temperatures. Nevertheless, the fractography dominated by brittle fracturing may not be related to fn in the GTN model for ductile damage.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lian, J.; Sharaf, M.; Archie, F.; Münstermann, S. A hybrid approach for modelling of plasticity and failure behaviour of advanced high-strength steel sheets. Int. J. Damage Mech. 2012, 22, 188–218. [Google Scholar] [CrossRef]
- Tanigawa, H.; Gaganidze, E.; Hirose, T.; Ando, M.; Zinkle, S.J.; Lindau, R.; Diegele, E. Development of benchmark reduced activation ferritic/martensitic steels for fusion energy applications. Nucl. Fusion 2017, 57, 092004. [Google Scholar] [CrossRef]
- Liao, H.B.; Wang, X.Y.; Yang, G.P.; Feng, Y.J.; Wang, P.H.; Feng, K.M. Recent progress of R&D activities on reduced activation ferritic/martensitic steel (CLF-1). Fusion Eng. Des. 2019, 147, 111235. [Google Scholar]
- Tavassoli, A.A.F. Present limits and improvements of structural materials for fusion reactors—A review. J. Nucl. Mater. 2002, 302, 73–88. [Google Scholar] [CrossRef]
- Zinkle, S.J. Fusion materials science: Overview of challenges and recent progressa). Phys. Plasmas 2005, 12, 058101. [Google Scholar] [CrossRef]
- Dai, Y.; Long, B.; Tong, Z.F. Tensile properties of ferritic/martensitic steels irradiated in STIP-I. J. Nucl. Mater. 2008, 377, 115–121. [Google Scholar] [CrossRef]
- Henry, J.; Averty, X.; Dai, Y.; Pizzanelli, J.P. Tensile behaviour of 9Cr–1Mo tempered martensitic steels irradiated up to 20dpa in a spallation environment. J. Nucl. Mater. 2008, 377, 80–93. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Chen, X.; Graening, T.; Geringer, J.W.; Reed, J.; Henry, J.; Pilloni, L.; Terentyev, D.; Puype, A.; Byun, T.S.; et al. Irradiation hardening and ductility loss of Eurofer97 steel variants after neutron irradiation to ITER-TBM relevant conditions. Fusion Eng. Des. 2021, 173, 112935. [Google Scholar] [CrossRef]
- Ge, H.E.; Peng, L.; Dai, Y.; Huang, Q.Y.; Ye, M.Y. Tensile properties of CLAM steel irradiated up to 20.1 dpa in STIP-V. J. Nucl. Mater. 2016, 468, 240–245. [Google Scholar] [CrossRef]
- Huang, X.; Yi, J.H.; Ding, J.; Song, K.; Lu, S.Q.; Liu, H.; Wang, L.S. Radiation damage behavior and mechanism in RAFM steel: Orientation effect. Vacuum 2022, 205, 111445. [Google Scholar] [CrossRef]
- Xia, L.D.; Huo, X.J.; Chen, H.; Yang, Z.G.; Zhang, C. Experimental and Theoretical Analysis of Void Evolution During Irradiation in 0.29V-0.09Ta RAFM Steel. Rare Met. Mater. Eng. 2021, 50, 1139–1145. [Google Scholar]
- Chen, J.G.; Liu, C.X.; Liu, Y.C.; Yan, B.Y.; Li, H.J. Effects of tantalum content on the microstructure and mechanical properties of low-carbon RAFM steel. J. Nucl. Mater. 2016, 479, 295–301. [Google Scholar] [CrossRef]
- Simonovski, I.; Holmström, S.; Baraldi, D.; Delville, R. Investigation of cracking in small punch test for semi-brittle materials. Theor. Appl. Fract. Mech. 2020, 108, 102646. [Google Scholar] [CrossRef]
- Chiyatan, T.; Uthaisangsuk, V. Mechanical and fracture behavior of high strength steels under high strain rate deformation: Experiments and modelling. Mater. Sci. Eng. A 2020, 779, 139125. [Google Scholar] [CrossRef]
- Tiwari, A.; Singh, R.N.; Ståhle, P.; Chakravartty, J.K. Master curve in upper region of ductile brittle transition: A modification based on local damage approach. In Proceedings of the 21st European Conference on Fracture, (ECF21), Catania, Italy, 20–24 June 2016; pp. 1553–1560. [Google Scholar]
- Tvergaard, V.; Needleman, A. An analysis of the brittle-ductile transition in dynamic crack growth. Int. J. Fract. 1993, 59, 53–67. [Google Scholar] [CrossRef]
- Hug, E.; Martinez, M.; Chottin, J. Temperature and stress state influence on void evolution in a high-strength dual-phase steel. Mater. Sci. Eng. A 2015, 626, 286–295. [Google Scholar] [CrossRef]
- Wang, C.; Liu, X.G.; Gui, J.T.; Du, Z.L.; Xu, Z.F.; Guo, B.F. Effect of MnS inclusions on plastic deformation and fracture behavior of the steel matrix at high temperature. Vacuum 2020, 174, 109209. [Google Scholar] [CrossRef]
- Tanguy, B.; Bouchet, C.; Bugat, S.; Besson, J. Local approach to fracture based prediction of the ΔT56J and ΔTKIc,100 shifts due to irradiation for an A508 pressure vessel steel. Eng. Fract. Mech. 2006, 73, 191–206. [Google Scholar] [CrossRef]
- Farrell, K.; Byun, T.S. Tensile properties of ferritic/martensitic steels irradiated in HFIR, and comparison with spallation irradiation data. J. Nucl. Mater. 2003, 318, 274–282. [Google Scholar] [CrossRef]
- Tanigawa, H.; Klueh, R.L.; Hashimoto, N.; Sokolov, M.A. Hardening mechanisms of reduced activation ferritic/martensitic steels irradiated at 300 °C. J. Nucl. Mater. 2009, 386–388, 231–235. [Google Scholar] [CrossRef]
- Chakraborty, P.; Biner, S.B. Parametric study of irradiation effects on the ductile damage and flow stress behavior in ferritic-martensitic steels. J. Nucl. Mater. 2015, 465, 89–96. [Google Scholar] [CrossRef]
- Chen, L.R.; Liu, W.B.; Yu, L.; Cheng, Y.Y.; Ren, K.; Sui, H.N.; Yi, X.; Duan, H.L. Probabilistic and constitutive models for ductile-to-brittle transition in steels: A competition between cleavage and ductile fracture. J. Mech. Phys. Solids 2020, 135, 103809. [Google Scholar] [CrossRef]
- Gurson, A.L. Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media. J. Eng. Mater. Technol. 1977, 99, 2–15. [Google Scholar] [CrossRef]
- Tavassoli, A.A.F.; Rensman, J.W.; Schirra, M.; Shiba, K. Materials design data for reduced activation martensitic steel type F82H. Fusion Eng. Des. 2002, 61–62, 617–628. [Google Scholar] [CrossRef]
- Djouabi, M.; Ati, A.; Manach, P.Y. Identification strategy influence of elastoplastic behavior law parameters on Gurson-Tvergaard-Needleman damage parameters: Application to DP980 steel. Int. J. Damage Mech. 2019, 28, 427–454. [Google Scholar] [CrossRef]
- Samal, M.K.; Seidenfuss, M.; Roos, E.; Dutta, B.K.; Kushwaha, H.S. Experimental and numerical investigation of ductile-to-brittle transition in a pressure vessel steel. Mater. Sci. Eng. A 2008, 496, 25–35. [Google Scholar] [CrossRef]
- Tvergaard, V. Influence of void nucleation on ductile shear fracture at a free surface. J. Mech. Phys. Solids 1982, 30, 399–425. [Google Scholar] [CrossRef]
- Soyarslan, C.; Gülçimen, B.; Bargmann, S.; Hähner, P. Modeling of fracture in small punch tests for small- and large-scale yielding conditions at various temperatures. Int. J. Mech. Sci. 2016, 106, 266–285. [Google Scholar] [CrossRef]
- West, O.; Lian, J.H.; Münstermann, S.; Bleck, W. Numerical Determination of the Damage Parameters of a Dual-phase Sheet Steel. ISIJ Int. 2012, 52, 743–752. [Google Scholar] [CrossRef]
- Wang, Y.L.; Song, K.X.; Zhang, Y.M.; Wang, G.X. Microstructure evolution and fracture mechanism of H13 steel during high temperature tensile deformation. Mater. Sci. Eng. A 2019, 746, 127–133. [Google Scholar] [CrossRef]
- Xie, Y.; Peng, L.; Zhang, W.Z.; Liao, H.B.; Qian, G.A.; Wan, Y.X. Temperature effect on fracture toughness of CLF-1 steel with miniature three-point bend specimens. J. Nucl. Mater. 2020, 531, 151992. [Google Scholar] [CrossRef]
- Cui, Y.; Po, G.; Ghoniem, N. Size-Tuned Plastic Flow Localization in Irradiated Materials at the Submicron Scale. Phys. Rev. Lett. 2018, 120, 215501. [Google Scholar] [CrossRef] [PubMed]
- Yakushiji, K.; Lee, H.T.; Oya, M.; Tokitani, M.; Sagara, A.; Hamaji, Y.; Uenishi, K.; Ibano, K.; Ueda, Y. Erosion and morphology changes of F82H steel under simultaneous hydrogen and helium irradiation. Fusion Eng. Des. 2017, 124, 356–359. [Google Scholar] [CrossRef]
Materials | Ttesting/°C | E/GPa | v | ε0 | A | n |
---|---|---|---|---|---|---|
F82H | RT | 216 | 0.33 | 0.00116 | 880.7 | 0.090 |
150 | 209 | 0.33 | 0.00005 | 763.9 | 0.066 | |
300 | 202 | 0.33 | 0.00024 | 665.5 | 0.061 | |
350 | 200 | 0.33 | 0.00016 | 681.8 | 0.064 | |
CLAM | RT | 216 | 0.33 | 0.00137 | 950.9 | 0.106 |
300 | 202 | 0.33 | 0.00002 | 694.2 | 0.073 |
Materials | dpa | Tirr./°C | K0 | Q | B | A | ε0 | n | α |
---|---|---|---|---|---|---|---|---|---|
F82H | 5.7 | 173 | 760.0 | 128.2 | 841.6 | 1059.75 | 1.04 × 10−5 | 0.032 | 0.1 |
12.0 | 315 | 726.7 | 410.1 | 696.7 | 1417.91 | 3.67 × 10−5 | 0.053 | 0.7 | |
CLAM | 6.7 | 105 | 719.3 | 275.8 | 1564.23 | 1679.2 | 4.01 × 10−5 | 0.085 | 0.12 |
11.4 | 144 | 886.7 | 170.0 | 1290.6 | 1356.63 | 9.24 × 10−5 | 0.043 | 0.45 | |
20 | 313 | 1027.9 | 136.2 | 572.7 | 1318.91 | 9.91 × 10−5 | 0.027 | 0.7 |
Ttesting/°C | dpa | fn | εn | sn | fc | ff |
---|---|---|---|---|---|---|
RT | - | 0.010 | 0.060 | 0.020 | 0.20 | 0.25 |
150 | - | 0.031 | 0.040 | 0.025 | 0.40 | 0.50 |
300 | - | 0.040 | 0.038 | 0.035 | 0.50 | 0.60 |
350 | - | 0.072 | 0.022 | 0.025 | 0.40 | 0.45 |
RT | 5.7 | 0.005 | 0.003 | 0.001 | 0.15 | 0.20 |
RT | 12.0 | 0.015 | 0.040 | 0.020 | 0.17 | 0.21 |
Ttesting/°C | dpa | fn | εn | sn | fc | ff |
---|---|---|---|---|---|---|
RT | - | 0.006 | 0.15 | 0.10 | 0.20 | 0.26 |
300 | - | 0.020 | 0.045 | 0.025 | 0.31 | 0.41 |
RT | 6.6 | 0.008 | 0.0045 | 0.0015 | 0.30 | 0.35 |
RT | 11.4 | 0.008 | 0.002 | 0.001 | 0.35 | 0.45 |
RT | 20.0 | 0.030 | 0.048 | 0.016 | 0.027 | 0.029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Xie, Y.; Peng, L.; Shi, J.; Chen, S.; Sun, Y. Irradiation Effects on Tensile Properties of Reduced Activation Ferritic/Martensitic Steel: A Micromechanical-Damage-Model-Based Numerical Investigation. Crystals 2024, 14, 417. https://doi.org/10.3390/cryst14050417
Liu Y, Xie Y, Peng L, Shi J, Chen S, Sun Y. Irradiation Effects on Tensile Properties of Reduced Activation Ferritic/Martensitic Steel: A Micromechanical-Damage-Model-Based Numerical Investigation. Crystals. 2024; 14(5):417. https://doi.org/10.3390/cryst14050417
Chicago/Turabian StyleLiu, Yifei, Yao Xie, Lei Peng, Jingyi Shi, Shangming Chen, and Yongjie Sun. 2024. "Irradiation Effects on Tensile Properties of Reduced Activation Ferritic/Martensitic Steel: A Micromechanical-Damage-Model-Based Numerical Investigation" Crystals 14, no. 5: 417. https://doi.org/10.3390/cryst14050417
APA StyleLiu, Y., Xie, Y., Peng, L., Shi, J., Chen, S., & Sun, Y. (2024). Irradiation Effects on Tensile Properties of Reduced Activation Ferritic/Martensitic Steel: A Micromechanical-Damage-Model-Based Numerical Investigation. Crystals, 14(5), 417. https://doi.org/10.3390/cryst14050417