Novel Detector Configurations in Cone-Beam CT Systems: A Simulation Study
Abstract
:1. Introduction
2. Materials and Methods
Scintillating Materials Properties | BGO | LSO:Ce | LYSO:Ce | LuAG:Ce | CsI:Tl | LaBr3:Ce |
---|---|---|---|---|---|---|
Light output (%NaI) | 30 | 85 | 85 | 66 | 45 | 166 |
Decay time (ns) | 60/300 | 40 | 53 | 70 | 1000 | 26 |
Emission peak (nm) | 480 | 420 | 420 | 535 | 550 | 380 |
Refraction index | 2.15 | 1.82 | 1.81 | 1.84 | 1.79 | 2.05 |
Density (g/cm3) | 7.13 | 7.35 | 5.37 | 6.67 | 4.51 | 5.23 |
Zeff | 75 | 66 | 66 | 61 | 54 | 46.9 |
Properties | Si | CZT |
---|---|---|
Energy gap (ev) | 1.12 | 1.4–2.2 |
Average energy/e-h coupling | 3.61 | 4.67 |
Dielectric constant | 11.9 | 10.9 |
Density (g/cm3) | 2.3 | 5.8 |
Atomic number | 14 | 50 |
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- O’Connell, A.M.; Marini, T.J.; Kawakyu-O’Connor, D.T. Cone-Beam Breast Computed Tomography: Time for a New Paradigm in Breast Imaging. J. Clin. Med. 2021, 10, 5135. [Google Scholar] [CrossRef] [PubMed]
- Komolafe, T.E.; Zhang, C.; Olagbaju, O.A.; Yuan, G.; Du, Q.; Li, M.; Zheng, J.; Yang, X. Comparison of Diagnostic Test Accuracy of Cone-Beam Breast Computed Tomography and Digital Breast Tomosynthesis for Breast Cancer: A Systematic Review and Meta-Analysis Approach. Sensors 2022, 22, 3594. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, C.; Yilmaz, J.S.; Bronsert, P.; Pichotka, M.; Bamberg, F.; Windfuhr-Blum, M.; Erbes, T.; Neubauer, J. Accuracy of Cone-Beam Computed Tomography, Digital Mammography and Digital Breast Tomosynthesis for Microcalcifications and Margins to Microcalcifications in Breast Specimens. Sci. Rep. 2022, 12, 17639. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; O’Connell, A.M.; Ma, Y.; Liu, A.; Li, H.; Zhang, Y.; Zhang, X.; Ye, Z. Dedicated Breast CT: State of the Art—Part I. Historical Evolution and Technical Aspects. Eur. Radiol. 2022, 32, 1579–1589. [Google Scholar] [CrossRef] [PubMed]
- Dagnall, K.A.; Conley, A.M.; Yoon, L.U.; Rajeev, H.S.; Lee, S.-H.; Choi, J.J. Ytterbium-Doped Cesium Lead Chloride Perovskite as an X-ray Scintillator with High Light Yield. ACS Omega 2022, 7, 20968–20974. [Google Scholar] [CrossRef] [PubMed]
- Mikhailik, V.B.; Kapustyanyk, V.; Tsybulskyi, V.; Rudyk, V.; Kraus, H. Luminescence and Scintillation Properties of CsI: A Potential Cryogenic Scintillator. Phys. Status Solidi (B) 2015, 252, 804–810. [Google Scholar] [CrossRef]
- Zaidi, H. (Ed.) Molecular Imaging of Small Animals: Instrumentation and Applications; Springer: New York, NY, USA, 2014; ISBN 978-1-4939-0893-6. [Google Scholar]
- García-Jiménez, G.; Cabanelas, P.; González-Caamaño, D.; Alvarez-Pol, H.; Vicente-Pardal, M.A.; Benlliure, J.; Cederkäll, J.; Cortina-Gil, D.; Feijoo-Fontán, M.; Graña-González, A.; et al. Study of Scintillation Properties and Performance of CsI(Tl) Detectors over Time. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2024, 1059, 169003. [Google Scholar] [CrossRef]
- Tian, C.; Liu, S.; Xie, Y.; Guo, L.; Chen, D.; Liu, Y.; Zhong, Z. Study on the Mechanism of Afterglow in CsI: Tl and the Afterglow Suppression in CsI: Tl, Eu. J. Radioanal. Nucl. Chem. 2019, 320, 123–128. [Google Scholar] [CrossRef]
- Lecoq, P. Development of New Scintillators for Medical Applications. Nucl. Instrum. Methods Phys. Res. Sect. A 2016, 809, 130–139. [Google Scholar] [CrossRef]
- Lu, L.; Sun, M.; Wu, T.; Lu, Q.; Chen, B.; Huang, B. All-Inorganic Perovskite Nanocrystals: Next-Generation Scintillation Materials for High-Resolution X-ray Imaging. Nanoscale Adv. 2022, 4, 680–696. [Google Scholar] [CrossRef]
- Danielsson, M.; Persson, M.; Sjölin, M. Photon-Counting X-ray Detectors for CT. Phys. Med. Biol. 2021, 66, 03TR01. [Google Scholar] [CrossRef] [PubMed]
- Noel, A.; Thibault, F. Digital Detectors for Mammography: The Technical Challenges. Eur. Radiol. 2004, 14, 1990–1998. [Google Scholar] [CrossRef] [PubMed]
- Michail, C.; Liaparinos, P.; Kalyvas, N.; Kandarakis, I.; Fountos, G.; Valais, I. Phosphors and Scintillators in Biomedical Imaging. Crystals 2024, 14, 169. [Google Scholar] [CrossRef]
- Shi, L.; Bennett, N.R.; Shapiro, E.; Colbeth, R.E.; Star-Lack, J.; Lu, M.; Wang, A.S. Comparative Study of Dual Energy Cone-Beam CT Using a Dual-Layer Detector and kVp Switching for Material Decomposition. In Proceedings of the Medical Imaging 2020: Physics of Medical Imaging, Houston, TX, USA, 16–19 February 2020; SPIE: Bellingham, WA, USA, 2020; Volume 11312, pp. 481–486. [Google Scholar]
- Karpetas, G.E.; Michail, C.M.; Fountos, G.P.; Kalyvas, N.I.; Valais, I.G.; Kandarakis, I.S.; Panayiotakis, G.S. Detective Quantum Efficiency (DQE) in PET Scanners: A Simulation Study. Appl. Radiat. Isot. 2017, 125, 154–162. [Google Scholar] [CrossRef]
- Withers, P.J.; Bouman, C.; Carmignato, S.; Cnudde, V.; Grimaldi, D.; Hagen, C.K.; Maire, E.; Manley, M.; Du Plessis, A.; Stock, S.R. X-ray Computed Tomography. Nat. Rev. Methods Primers 2021, 1, 18. [Google Scholar] [CrossRef]
- van der Sar, S.; Brunner, S.; Schaart, D. X-ray Photon-Counting Using Silicon Photomultiplier-Based Scintillation Detectors at High X-ray Tube Currents. In Proceedings of the SPIE 12031, Medical Imaging 2022: Physics of Medical Imaging, 120310I, San Diego, CA, USA, 4 April 2022; Volume 12031, p. 120310I. [Google Scholar]
- Pepin, C.M.; Berard, P.; Perrot, A.-L.; Pepin, C.; Houde, D.; Lecomte, R.; Melcher, C.L.; Dautet, H. Properties of LYSO and Recent LSO Scintillators for Phoswich PET Detectors. IEEE Trans. Nucl. Sci. 2004, 51, 789–795. [Google Scholar] [CrossRef]
- Nikl, M.; Yoshikawa, A.; Kamada, K.; Nejezchleb, K.; Stanek, C.R.; Mares, J.A.; Blazek, K. Development of LuAG-Based Scintillator Crystals—A Review. Prog. Cryst. Growth Charact. Mater. 2013, 59, 47–72. [Google Scholar] [CrossRef]
- Zatcepin, A.; Ziegler, S.I. Detectors in Positron Emission Tomography. Z. Med. Phys. 2023, 33, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Kim, K.J.; Park, K.; Kim, Y. A LaBr3(Ce) Detector System with a Simple Spectral Shift Correction Method for Applications in Harsh Environments. Radiat. Meas. 2021, 142, 106567. [Google Scholar] [CrossRef]
- Dey Chaudhuri, S.; Banerjee, D.; Bhattacharjee, T.; Wasim Raja, S.; Acharya, R.; Pujari, P.K. Performance Study of LaBr3:Ce Detectors Coupled to R2083 PM Tube for Energy and Timing Characteristics. J. Radioanal. Nucl. Chem. 2020, 324, 829–835. [Google Scholar] [CrossRef]
- Matsumoto, S.; Ito, A. High-Throughput Production of LuAG-Based Highly Luminescent Thick Film Scintillators for Radiation Detection and Imaging. Sci. Rep. 2022, 12, 19319. [Google Scholar] [CrossRef] [PubMed]
- Kamada, K.; Yanagida, T.; Usuki, Y.; Yoshikawa, A. Detection of Scintillation Light from Pr:Lu3Al5O12(LuAG) by Gallium Nitride Photodiode. Nucl. Instrum. Methods Phys. Res. Sect. A 2009, 610, 215–217. [Google Scholar] [CrossRef]
- Tseremoglou, S.; Michail, C.; Valais, I.; Ninos, K.; Bakas, A.; Kandarakis, I.; Fountos, G.; Kalyvas, N. Optical Photon Propagation Characteristics and Thickness Optimization of LaCl3:Ce and LaBr3:Ce Crystal Scintillators for Nuclear Medicine Imaging. Crystals 2024, 14, 24. [Google Scholar] [CrossRef]
- Fahrig, R.; Jaffray, D.A.; Sechopoulos, I.; Webster Stayman, J. Stayman Flat-Panel Conebeam CT in the Clinic: History and Current State. J. Med. Imaging 2021, 8, 052115. [Google Scholar] [CrossRef] [PubMed]
- OpenGATE Collaboration. GATE Documentation—GAM Documentation. Available online: https://opengate-python.readthedocs.io/en/0.3.5/ (accessed on 27 February 2024).
- Mandeville, J.B.; Efthimiou, N.; Weigand-Whittier, J.; Hardy, E.; Knudsen, G.M.; Jørgensen, L.M.; Chen, Y.-C.I. Partial Volume Correction of PET Image Data Using Geometric Transfer Matrices Based on Uniform B-Splines. Phys. Med. Biol. 2024, 69, 055020. [Google Scholar] [CrossRef]
- Vandenberghe, S.; Karakatsanis, N.A.; Akl, M.A.; Maebe, J.; Surti, S.; Dierckx, R.A.; Pryma, D.A.; Nehmeh, S.A.; Bouhali, O.; Karp, J.S. The Potential of a Medium-Cost Long Axial FOV PET System for Nuclear Medicine Departments. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 652–660. [Google Scholar] [CrossRef]
- Nasr, B.; Villa, M.; Benoit, D.; Visvikis, D.; Bert, J. Monte Carlo Dosimetry Validation for X-ray Guided Endovascular Procedures. Ann. Vasc. Surg. 2024, 99, 186–192. [Google Scholar] [CrossRef]
- Tsalafoutas, I.A.; AlKhazzam, S.; Tsapaki, V.; AlNaemi, H.; Kharita, M.H. Digital Radiography Image Quality Evaluation Using Various Phantoms and Software. J. Appl. Clin. Med. Phys. 2022, 23, e13823. [Google Scholar] [CrossRef]
- Ng, K.-H.; Yeong, C.-H. Imaging Phantoms: Conventional X-ray Imaging Applications. In The Phantoms of Medical and Health Physics: Devices for Research and Development; DeWerd, L.A., Kissick, M., Eds.; Springer: New York, NY, USA, 2014; pp. 91–122. ISBN 978-1-4614-8304-5. [Google Scholar]
- Kim, H.J.; Rooh, G.; Kim, S. Tl2LaCl5 (Ce3+): New Fast and Efficient Scintillator for X- and γ-ray Detection. J. Lumin. 2017, 186, 219–222. [Google Scholar] [CrossRef]
- Meng, F. Development and Improvement of Cerium Activated Gadolinium Gallium Aluminum Garnets Scintillators for Radiation Detectors by Codoping. Ph.D. Dissertation, University of Tennessee, Knoxville, TN, USA, 2015. [Google Scholar]
- Jeong, M.; Hammig, M. Development of Hand-Held Coded-Aperture Gamma Ray Imaging System Based on GAGG(Ce) Scintillator Coupled with SiPM Array. Nucl. Eng. Technol. 2020, 52, 2572–2580. [Google Scholar] [CrossRef]
- Venkataraman, R. Semiconductor Detectors. In Handbook of Radioactivity Analysis, 4th ed.; L’Annunziata, M.F., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 409–491. ISBN 978-0-12-814397-1. [Google Scholar]
- Hudson, H.M.; Larkin, R.S. Accelerated Image Reconstruction Using Ordered Subsets of Projection Data. IEEE Trans. Med. Imaging 1994, 13, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Shepp, L.A.; Vardi, Y. Maximum Likelihood Reconstruction for Emission Tomography. IEEE Trans. Med. Imaging. 1982, 1, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Lassot-Buys, M.; Verstraet, R.; Dabli, D.; Moliner, G.; Greffier, J. Task-Based Image Quality Assessment Comparing Classical and Iterative Cone Beam CT Images on Halcyon®. Diagnostics 2023, 13, 448. [Google Scholar] [CrossRef] [PubMed]
- Cherry, S.R.; Sorenson, J.A.; Phelps, M.E. Physics in Nuclear Medicine, 4th ed.; Elsevier/Saunders: Philadelphia, PA, USA, 2012. [Google Scholar]
- Herman, G.T. Image Reconstruction from Projections: The Fundamentals of Computed Tomography; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Baldwin, C.J.; Kelly, E.J.; Batchelor, A.G. The Variation in Breast Density and Its Relationship to Delayed Wound Healing: A Prospective Study of 40 Reduction Mammoplasties. J. Plast. Reconstr. Aesthetic Surg. 2010, 63, 663–665. [Google Scholar] [CrossRef] [PubMed]
- Shannon, F. Characterization of Photon Counting CZT Detectors for Medical X-ray Imaging and Spectroscopy—UW-Madison Libraries. Ph.D. Dissertation, Louisiana State University, Baton Rouge, LA, USA, 2011. [Google Scholar]
- Marsh, J.F.; Jorgensen, S.M.; Rundle, D.S.; Vercnocke, A.J.; Leng, S.; Butler, P.H.; McCollough, C.H.; Ritman, E.L. Evaluation of a Photon Counting Medipix3RX Cadmium Zinc Telluride Spectral X-ray Detector. J. Med. Imaging 2018, 5, 043503. [Google Scholar] [CrossRef] [PubMed]
- Le, H.Q.; Ducote, J.L.; Molloi, S. Radiation Dose Reduction Using a CdZnTe-Based Computed Tomography System: Comparison to Flat-Panel Detectors. Med. Phys. 2010, 37, 1225–1236. [Google Scholar] [CrossRef] [PubMed]
- Kalluri, K.S.; Mahd, M.; Glick, S.J. Investigation of Energy Weighting Using an Energy Discriminating Photon Counting Detector for Breast CT. Med. Phys. 2013, 40, 081923. [Google Scholar] [CrossRef] [PubMed]
- Schulze, R.; Heil, U.; Groβ, D.; Bruellmann, D.; Dranischnikow, E.; Schwanecke, U.; Schoemer, E. Artefacts in CBCT: A Review. Dentomaxillofac. Radiol. 2011, 40, 265–273. [Google Scholar] [CrossRef] [PubMed]
FBP | OSEM | |||||||
---|---|---|---|---|---|---|---|---|
Detector Materials | CNRAl | CNRPVC | CNglass | CNRbone | CNRAl | CNRPVC | CNglass | CNRbone |
CsI:Tl | 12.5677 | 10.2876 | 5.4582 | 2.2838 | 16.2694 | 15.2954 | 7.9191 | 4.5620 |
BGO | 13.6643 | 11.1720 | 4.9783 | 2.3314 | 20.3974 | 19.4525 | 9.8848 | 5.9640 |
CZT | 11.6429 | 9.6542 | 6.6954 | 2.8265 | 15.2184 | 14.1728 | 8.6443 | 4.9778 |
LaBr3:Ce | 13.4469 | 11.1696 | 6.6189 | 3.5607 | 20.4403 | 19.4915 | 8.8816 | 5.2766 |
LSO:Ce | 12.4842 | 10.5126 | 5.8054 | 2.5998 | 12.2756 | 11.3903 | 8.1536 | 4.6478 |
LuAG:Ce | 13.1741 | 11.1357 | 6.2501 | 2.8842 | 15.7086 | 15.0080 | 7.5545 | 4.2416 |
LYSO:Ce | 14.5738 | 12.0385 | 4.2762 | 2.2064 | 21.1344 | 20.1747 | 9.5491 | 5.7420 |
Silicon | 12.0868 | 9.0101 | 5.9142 | 2.6967 | 11.0312 | 10.3268 | 5.9028 | 2.5920 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karali, E.; Michail, C.; Fountos, G.; Kalyvas, N.; Valais, I. Novel Detector Configurations in Cone-Beam CT Systems: A Simulation Study. Crystals 2024, 14, 416. https://doi.org/10.3390/cryst14050416
Karali E, Michail C, Fountos G, Kalyvas N, Valais I. Novel Detector Configurations in Cone-Beam CT Systems: A Simulation Study. Crystals. 2024; 14(5):416. https://doi.org/10.3390/cryst14050416
Chicago/Turabian StyleKarali, Evangelia, Christos Michail, George Fountos, Nektarios Kalyvas, and Ioannis Valais. 2024. "Novel Detector Configurations in Cone-Beam CT Systems: A Simulation Study" Crystals 14, no. 5: 416. https://doi.org/10.3390/cryst14050416
APA StyleKarali, E., Michail, C., Fountos, G., Kalyvas, N., & Valais, I. (2024). Novel Detector Configurations in Cone-Beam CT Systems: A Simulation Study. Crystals, 14(5), 416. https://doi.org/10.3390/cryst14050416