Possibility of Phase Transformation of Al2O3 by a Laser: A Review
Abstract
:1. Introduction
2. Dependence of the Al2O3 Phase on Its Formation Method
2.1. PVD Method
2.2. CVD Method
2.3. Thermal Spraying
2.4. Sol-Gel Method
2.5. Electrochemical Method
2.6. PEO Method
2.7. Laser Ablation and Texturing
2.8. Laser Texturing and PEO
2.9. Laser-Assisted CVD
3. Al2O3 Structure Transformation Depending on Heating and Cooling Rates
4. Conclusions
- The phase of anodic Al2O3 depends on its formation method and electrolyte composition.
- The nature of the Al substrate may affect the phase composition of anodic Al2O3.
- The phase of anodic Al2O3 is determined not only by the annealing temperature, but also by the heating and cooling rates.
- Annealing of pure Al substrate before anodizing has no pronounced impact on the phase structure of anodic Al2O3.
- High heating and cooling rates influence the formation of the α-Al2O3 phase when using laser irradiation. Therefore, laser treatment might be beneficial for the formation of a highly crystalline α phase on anodic Al2O3 in a very thin surface layer.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Heinz, A.; Haszler, A.; Keidel, C.; Moldenhauer, S.; Benedictus, R.; Miller, W.S. Recent development in aluminium alloys for aerospace applications. Mater. Sci. Eng. A 2000, 280, 102–107. [Google Scholar] [CrossRef]
- Williams, J.C.; Starke, E.A., Jr. Progress in structural materials for aerospace systems. Acta Mater. 2003, 51, 5775–5799. [Google Scholar] [CrossRef]
- Xu, W.; Luo, Y.; Zhang, W.; Fu, M. Comparative study on local and global mechanical properties of bobbin tool and conventional friction stir welded 7085-T7452 aluminum thick plate. J. Mater. Sci. Technol. 2018, 34, 173–184. [Google Scholar] [CrossRef]
- Jeong, H.Y.; Lee, J.Y.; Choi, S.Y.; Kim, J.W. Microscopic origin of bipolar resistive switching of nanoscale titanium oxide thin films. Appl. Phys. Lett. 2009, 95, 162108. [Google Scholar] [CrossRef]
- Zaraska, L.; Sulka, G.D.; Jaskuła, M. Anodic alumina membranes with defined pore diameters and thicknesses obtained by adjusting the anodizing duration and pore opening/widening time. J. Solid State Electrochem. 2011, 15, 2427–2436. [Google Scholar] [CrossRef]
- Shirai, T.; Watanabe, H.; Fuji, M.; Takahashi, M. Structural properties and surface characteristics on aluminum oxide powders. Annu. Rep. Ceram. Res. Lab. Nagoya Inst. Technol. 2009, 9, 23–31. [Google Scholar]
- Lamouri, S.; Hamidouche, M.; Bouaouadja, N.; Belhouchet, H.; Garnier, V.; Fantozzi, G.; Trelkat, J.F. Control of the γ-alumina to α-alumina phase transformation for an optimized alumina densification. Bol. Soc. Esp. Ceram. Vidr. 2017, 56, 47–54. [Google Scholar] [CrossRef]
- Chen, B.; Xu, X.; Chen, X.; Kong, L.; Chen, D. Transformation behavior of gibbsite to boehmite by steam-assisted synthesis. J. Solid State Chem. 2018, 265, 237–243. [Google Scholar] [CrossRef]
- Kovarik, L.; Bowden, M.; Szanyi, J. High temperature transition aluminas in δ-Al2O3/θ-Al2O3 stability range. J. Catal. 2021, 393, 357–368. [Google Scholar] [CrossRef]
- Koltsov, I.; Smalc-Koziorowska, J.; Prześniak-Welenc, M.; Małysa, M.; Kimmel, G.; McGlynn, J.; Ganin, A.; Stelmakh, S. Mechanism of reduced sintering temperature of Al2O3–ZrO2 nanocomposites obtained by microwave hydrothermal synthesis. Materials 2018, 11, 829. [Google Scholar] [CrossRef]
- Chang, P.L.; Wu, Y.C.; Lai, S.J.; Yen, F.S. Size effects on χ-to α-Al2O3 phase transformation. J. Eur. Ceram. Soc. 2009, 29, 3341–3348. [Google Scholar] [CrossRef]
- Isfahani, T.; Javadpour, J.; Khavandi, A. Formation mechanism and phase transformations in mechanochemically prepared Al2O3-40wt% ZrO2 nanocomposite powder. Compos. Interfaces 2019, 26, 887–904. [Google Scholar] [CrossRef]
- Vaidya, S.D.; Thakkar, N.V. Effect of temperature, pH and ageing time on hydration of rho alumina by studying phase composition and surface properties of transition alumina obtained after thermal dehydration. Mater. Lett. 2001, 51, 295–300. [Google Scholar] [CrossRef]
- Sato, T. Preparation of Rho Alumina. Shigen Sozai 2004, 120, 197–201. [Google Scholar] [CrossRef]
- Chandran, C.V.; Kirschhock, C.E.; Radhakrishnan, S.; Taulelle, F.; Martens, J.A.; Breynaert, E. Alumina: Discriminative analysis using 3D correlation of solid-state NMR parameters. Chem. Soc. Rev. 2019, 48, 134–156. [Google Scholar] [CrossRef]
- Garcia-Guinea, J.; Correcher, V.; Rubio, J.; Valle-Fuentes, F.J. Effects of preheating on diaspore: Modifications in colour centres, structure and light emission. J. Phys. Chem. Solids 2005, 66, 1220–1227. [Google Scholar] [CrossRef]
- van Gog, H. First-principles study of dehydration interfaces between diaspore and corundum, gibbsite and boehmite, and boehmite and γ-Al2O3: Energetic stability, interface charge effects, and dehydration defects. Appl. Surf. Sci. 2021, 541, 148501. [Google Scholar] [CrossRef]
- Trueba, M.; Trasatti, S.P. γ-Alumina as a support for catalysts: A review of fundamental aspects. Eur. J. Inorg. Chem. 2005, 2005, 3393–3403. [Google Scholar] [CrossRef]
- Aryasomayajula, A.; Randall, N.X.; Gordon, M.H.; Bhat, D. Tribological and mechanical properties of physical vapor deposited alpha alumina thin film coating. Thin Solid Films 2008, 517, 819–823. [Google Scholar] [CrossRef]
- Tian, L.; Wang, X. Pulsed laser-induced rapid surface cooling and amorphization. Jpn. J. Appl. Phys. 2008, 47, 8113. [Google Scholar] [CrossRef]
- Cheng, Y.; Qiu, W.; Zhou, K.; Yang, Y.; Jiao, D.; Liu, Z.; Zhong, X. Low-temperature deposition of α-Al2O3 film using Al+ α-Al2O3 composite target by radio frequency magnetron sputtering. Mater. Res. Express 2019, 6, 086412. [Google Scholar] [CrossRef]
- Åstrand, M.; Selinder, T.I.; Fietzke, F.; Klostermann, H. PVD-Al2O3-coated cemented carbide cutting tools. Surf. Coat. Technol. 2004, 188, 186–192. [Google Scholar] [CrossRef]
- Blittersdorf, S.; Bahlawane, N.; Kohse-Höinghaus, K.; Atakan, B.; Müller, J. CVD of Al2O3 thin films using aluminum tri-isopropoxide. Chem. Vap. Depos. 2003, 9, 194–198. [Google Scholar] [CrossRef]
- Dhonge, B.P.; Mathews, T.; Kumar, N.; Ajikumar, P.K.; Manna, I.; Dash, S.; Tyagi, A.K. Wear and oxidation resistance of combustion CVD grown alumina films. Surf. Coat. Technol. 2012, 206, 4574–4579. [Google Scholar] [CrossRef]
- Šuopys, A.; Marcinauskas, L.; Grigaitienė, V.; Kėželis, R.; Aikas, M.; Uscila, R.; Tučkutė, S.; Lelis, M. The effect of heat treatment on the microstructure and phase composition of plasma sprayed Al2O3 and Al2O3-TiO2 coatings for applications in biomass firing plants. Coatings 2021, 11, 1289. [Google Scholar] [CrossRef]
- Michalak, M.; Latka, L.; Sokolowski, P.; Toma, F.L.; Myalska, H.; Denoirjean, A.; Ageorges, H. Microstructural, mechanical and tribological properties of finely grained Al2O3 coatings obtained by SPS and S-HVOF methods. Surf. Coat. Technol. 2020, 404, 126463. [Google Scholar] [CrossRef]
- Shojaie-Bahaabad, M.; Taheri-Nassaj, E. Economical synthesis of nano alumina powder using an aqueous sol–gel method. Mater. Lett. 2008, 62, 3364–3366. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Wang, S.; Li, Y.; Zhai, Y. Synthesis of γ-alumina via precipitation in ethanol. Mater. Lett. 2008, 62, 3552–3554. [Google Scholar] [CrossRef]
- Hu, B.; Jia, E.; Du, B.; Yin, Y. A new sol-gel route to prepare dense Al2O3 thin films. Ceram. Int. 2016, 42, 16867–16871. [Google Scholar] [CrossRef]
- Rutkowska, I.; Marchewka, J.; Jeleń, P.; Odziomek, M.; Korpyś, M.; Paczkowska, J.; Sitarz, M. Chemical and structural characterization of amorphous and crystalline alumina obtained by alternative sol–gel preparation routes. Materials 2021, 14, 1761. [Google Scholar] [CrossRef]
- Liu, X.Z.; Yan, X.H.; Wang, G.; Liu, X.Z.; Chen, J.; Zhu, Y.C. Preparation and Effect of Heat Treatment Temperature on the Crystal Phase of Anodic Aluminum Oxide Films. Appl. Mech. Mater. 2014, 577, 11–14. [Google Scholar] [CrossRef]
- Benea, L.; Simionescu–Bogatu, N.; Chiriac, R. Electrochemically obtained Al2O3 nanoporous layers with increased anticorrosive properties of aluminum alloy. J. Mater. Res. Technol. 2022, 17, 2636–2647. [Google Scholar] [CrossRef]
- Tian, Y.M.; Xu, M.X.; Liu, X.Z.; Ge, L.; Zhang, P. Microstructure Control and Phase Structure Study of Porous Alumina Membrane. Key Eng. Mater. 2007, 336, 2232–2234. [Google Scholar] [CrossRef]
- Roslyakov, I.V.; Kolesnik, I.V.; Levin, E.E.; Katorova, N.S.; Pestrikov, P.P.; Kardash, T.Y.; Solovyov, L.A.; Napolskii, K.S. Annealing induced structural and phase transitions in anodic aluminum oxide prepared in oxalic acid electrolyte. Surf. Coat. Technol. 2020, 381, 125159. [Google Scholar] [CrossRef]
- Roslyakov, I.V.; Shirin, N.A.; Evdokimov, P.V.; Berekchiian, M.V.; Simonenko, N.P.; Lyskov, N.V.; Napolskii, K.S. High-temperature annealing of porous anodic aluminium oxide prepared in selenic acid electrolyte. Surf. Coat. Technol. 2022, 433, 128080. [Google Scholar] [CrossRef]
- Kim, M.; Choi, E.; So, J.; Shin, J.S.; Chung, C.W.; Maeng, S.J.; Yun, J.Y. Improvement of corrosion properties of plasma in an aluminum alloy 6061-T6 by phytic acid anodization temperature. J. Mater. Res. Technol. 2021, 11, 219–226. [Google Scholar] [CrossRef]
- Juyana, A.W.; Derman, M.N.B. Characterization of porous anodic aluminium oxide film on aluminium templates formed in anodizing process. Adv. Mat. Res. 2011, 173, 55–60. [Google Scholar] [CrossRef]
- Kao, T.T.; Chang, Y.C. Influence of anodization parameters on the volume expansion of anodic aluminum oxide formed in mixed solution of phosphoric and oxalic acids. Appl. Surf. Sci. 2014, 288, 654–659. [Google Scholar] [CrossRef]
- Famiyeh, L.; Huang, X. Plasma electrolytic oxidation coatings on aluminum alloys: Microstructures, properties, and applications. Mod. Concepts Mater. Sci. 2019, 2, 000526. [Google Scholar]
- Bousser, E.; Rogov, A.; Shashkov, P.; Gholinia, A.; Laugel, N.; Slater, T.J.; Withers, P.J.; Matthews, A.; Yerokhin, A. Phase transitions in alumina films during post-sparking anodising of Al alloys. Acta Mater. 2023, 244, 118587. [Google Scholar] [CrossRef]
- Ismail, R.A.; Zaidan, S.A.; Kadhim, R.M. Preparation and characterization of aluminum oxide nanoparticles by laser ablation in liquid as passivating and anti-reflection coating for silicon photodiodes. Appl. Nanosci. 2017, 7, 477–487. [Google Scholar] [CrossRef]
- Jing, X.; Zhai, Q.; Zheng, S.; Zhang, D.; Qi, H.; Zhang, D. Surface modification and effects on tribology by laser texturing in Al2O3. Appl. Opt. 2021, 60, 9696–9705. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, C. Preparation of the wear and corrosion-resistant coating using a composite process of laser surface texturing technology and plasma electrolytic oxidation. AIP Adv. 2023, 13, 035204. [Google Scholar] [CrossRef]
- Ito, A.; Kadokura, H.; Kimura, T.; Goto, T. Texture and orientation characteristics of α-Al2O3 films prepared by laser chemical vapor deposition using Nd: YAG laser. J. Alloys Compd. 2010, 489, 469–474. [Google Scholar] [CrossRef]
- You, Y.; Ito, A.; Goto, T. Highly (001)-oriented α-Al2O3 films prepared by laser chemical vapor deposition. Mater. Lett. 2013, 106, 11–13. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, J.; Zhang, L.; Han, J.; Du, S. Low-temperature crystallization and hardness enhancement of alumina films using the resputtering technique. J. Non-Cryst. Solids 2013, 362, 34–39. [Google Scholar] [CrossRef]
- Choy, K.L. Chemical vapour deposition of coatings. Prog. Mater. Sci. 2003, 48, 57–170. [Google Scholar] [CrossRef]
- Li, W.; Yang, Y.; Liang, H.E.; Zhang, X.; Wang, Y.W.; Gou, J.F. Ablation resistance and mechanism of niobium carbide coatings fabricated by plasma spraying. Surf. Coat. Technol. 2023, 472, 129934. [Google Scholar] [CrossRef]
- Singh, G.; Vohra, H.; Kaur, M. Fabrication and Characterization of Aluminium Matrix Composites by High Velocity Oxy-Fuel Thermal Spraying. Adv. Mater. Res. 2012, 585, 317–321. [Google Scholar] [CrossRef]
- Jia, S.K.; Yong, Z.O.U.; Xu, J.Y.; Jing, W.A.N.G.; Lei, Y.U. Effect of TiO2 content on properties of Al2O3 thermal barrier coatings by plasma spraying. Trans. Nonferrous Met. Soc. China 2015, 25, 175–183. [Google Scholar] [CrossRef]
- Khorrami, S.A.; Ahmad, M.B.; Lotfi, R.; Shameli, K.; Sedaghat, S.; Shabanzadeh, P.; Baghchesara, M.A. Preparation of γ-Al2O3 nanocrystallites by sol-gel auto combustion process and production of Al-Al2O3 aluminum matrix composites. Dig. J. Nanomater. Biostructures 2012, 7, 871–876. [Google Scholar]
- Korzekwa, J. Modification of the structure and properties of oxide layers on aluminium alloys: A review. Rev. Adv. Mater. Sci. 2023, 62, 20230108. [Google Scholar] [CrossRef]
- Elkilany, H.A.; Shoeib, M.A.; Abdel-Salam, O.E. Influence of hard anodizing on the mechanical and corrosion properties of different aluminum alloys. Metallogr. Microstruct. Anal. 2019, 8, 861–870. [Google Scholar] [CrossRef]
- Ali, H.O. Review of porous anodic aluminium oxide (AAO) applications for sensors, MEMS and biomedical devices. Transactions of the IMF 2017, 95, 290–296. [Google Scholar] [CrossRef]
- Yao, M.; Chen, J.; Yang, P.; Shan, W.; Hu, B.; Yao, X. Preparation and breakdown property of aluminum oxide thin films deposited onto anodized aluminum substrate. Ferroelectrics 2013, 455, 21–28. [Google Scholar] [CrossRef]
- Brudzisz, A.M.; Giziński, D.; Stępniowski, W.J. Incorporation of ions into nanostructured anodic oxides—Mechanism and functionalities. Molecules 2021, 26, 6378. [Google Scholar] [CrossRef] [PubMed]
- Choudhari, K.S.; Choi, C.H.; Chidangil, S.; George, S.D. Recent progress in the fabrication and optical properties of nanoporous anodic alumina. Nanomaterials 2022, 12, 444. [Google Scholar] [CrossRef]
- Javidi, M.; Fadaee, H. Plasma electrolytic oxidation of 2024-T3 aluminum alloy and investigation on microstructure and wear behavior. Appl. Surf. Sci. 2013, 286, 212–219. [Google Scholar] [CrossRef]
- Dunleavy, C.S.; Golosnoy, I.O.; Curran, J.A.; Clyne, T.W. Characterisation of discharge events during plasma electrolytic oxidation. Surf. Coat. Technol. 2009, 203, 3410–3419. [Google Scholar] [CrossRef]
- Fernández-López, P.; Alves, S.A.; San-Jose, J.T.; Gutierrez-Berasategui, E.; Bayón, R. Plasma Electrolytic Oxidation (PEO) as a Promising Technology for the Development of High-Performance Coatings on Cast Al-Si Alloys: A Review. Coatings 2024, 14, 217. [Google Scholar] [CrossRef]
- Sikdar, S.; Menezes, P.V.; Maccione, R.; Jacob, T.; Menezes, P.L. Plasma electrolytic oxidation (PEO) process—Processing, properties, and applications. Nanomaterials 2021, 11, 1375. [Google Scholar] [CrossRef]
- Hussein, R.O.; Nie, X.; Northwood, D.O. An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing. Electrochim. Acta 2013, 112, 111–119. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X.; Yin, X.; Du, N. Influence of electrolyte components on the microstructure and growth mechanism of plasma electrolytic oxidation coatings on 1060 aluminum alloy. Surf. Coat. Technol. 2020, 381, 125214. [Google Scholar] [CrossRef]
- Nsilani Kouediatouka, A.; Ma, Q.; Liu, Q.; Mawignon, F.J.; Rafique, F.; Dong, G. Design methodology and application of surface texture: A review. Coatings 2022, 12, 1015. [Google Scholar] [CrossRef]
- Kromer, R.; Costil, S.; Cormier, J.; Courapied, D.; Berthe, L.; Peyre, P.; Boustie, M. Laser surface patterning to enhance adhesion of plasma sprayed coatings. Surf. Coat. Technol. 2015, 278, 171–182. [Google Scholar] [CrossRef]
- Cao, Q.; Wang, Z.; He, W.; Guan, Y. Fabrication of super hydrophilic surface on alumina ceramic by ultrafast laser microprocessing. Appl. Surf. Sci. 2021, 557, 149842. [Google Scholar] [CrossRef]
- Sciancalepore, C.; Gemini, L.; Romoli, L.; Bondioli, F. Study of the wettability behavior of stainless steel surfaces after ultrafast laser texturing. Surf. Coat. Technol. 2018, 352, 370–377. [Google Scholar] [CrossRef]
- Shaikh, S.; Kedia, S.; Singh, D.; Subramanian, M.; Sinha, S. Surface texturing of Ti6Al4V alloy using femtosecond laser for superior antibacterial performance. J. Laser Appl. 2019, 31, 022011. [Google Scholar] [CrossRef]
- Tomanik, M.; Kobielarz, M.; Filipiak, J.; Szymonowicz, M.; Rusak, A.; Mroczkowska, K.; Antończak, A.; Pezowicz, C. Laser texturing as a way of influencing the micromechanical and biological properties of the poly (L-lactide) surface. Materials 2020, 13, 3786. [Google Scholar] [CrossRef]
- Yang, C.; Jing, X.; Wang, F.; Ehmann, K.F.; Tian, Y.; Pu, Z. Fabrication of controllable wettability of crystalline silicon surfaces by laser surface texturing and silanization. Appl. Surf. Sci. 2019, 497, 143805. [Google Scholar] [CrossRef]
- Etsion, I. Improving tribological performance of mechanical components by laser surface texturing. Tribol. Lett. 2004, 17, 733–737. [Google Scholar] [CrossRef]
- Mao, B.; Siddaiah, A.; Liao, Y.; Menezes, P.L. Laser surface texturing and related techniques for enhancing tribological performance of engineering materials: A review. J. Manuf. Process. 2020, 53, 153–173. [Google Scholar] [CrossRef]
- Gachot, C.; Rosenkranz, A.; Hsu, S.M.; Costa, H.L. A critical assessment of surface texturing for friction and wear improvement. Wear 2017, 372, 21–41. [Google Scholar] [CrossRef]
- Ferreira, R.; Carvalho, Ó.; Sobral, L.; Carvalho, S.; Silva, F. Laser texturing of piston ring for tribological performance improvement. Friction 2023, 11, 1895–1905. [Google Scholar] [CrossRef]
- Shamsul Baharin, A.F.; Ghazali, M.J.; Wahab, A.J. Laser surface texturing and its contribution to friction and wear reduction: A brief review. Ind. Lubr. Tribol. 2016, 68, 57–66. [Google Scholar] [CrossRef]
- Cao, L.; Chen, Y.; Cui, J.; Li, W.; Lin, Z.; Zhang, P. Corrosion wear performance of pure titanium laser texturing surface by nitrogen ion implantation. Metals 2020, 10, 990. [Google Scholar] [CrossRef]
- Fan, Y.; Xu, L.; Liu, S.; Li, J.; Xia, J.; Qin, X.; Li, Y.; Gao, T.; Tang, X. The state-of-the-art and perspectives of laser ablation for tumor treatment. Cyborg Bionic Syst. 2024, 5, 0062. [Google Scholar] [CrossRef] [PubMed]
- Holá, M.; Ondráček, J.; Nováková, H.; Vojtíšek-Lom, M.; Hadravová, R.; Kanický, V. The influence of material properties on highly time resolved particle formation for nanosecond laser ablation. Acta B At. Spectrosc. 2018, 148, 193–204. [Google Scholar] [CrossRef]
- John, M.; Ralls, A.M.; Kuruveri, U.B.; Menezes, P.L. Tribological, corrosion, and microstructural features of laser-shock-peened steels. Metals 2023, 13, 397. [Google Scholar] [CrossRef]
- Gu, C.; Tian, Z.; Zhao, J.; Wang, Y. Investigation of microstructure and tribological property of Ti-6Al-4V alloy by laser shock peening processing. Int. J. Adv. Manuf. Technol. 2023, 129, 955–967. [Google Scholar] [CrossRef]
- Shukla, P.; Crookes, R.; Wu, H. Shock-wave induced compressive stress on alumina ceramics by laser peening. Mater. Des. 2019, 167, 107626. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, C.; Lu, Y.; Nastasi, M.; Cui, B. Laser shock processing of polycrystalline alumina ceramics. J. Am. Ceram. Soc. 2017, 100, 911–919. [Google Scholar] [CrossRef]
- Sathyaseelan, B.; Baskaran, I.; Sivakumar, K. Phase transition behavior of nanocrystalline Al2O3 powders. Soft Nanosci. Lett. 2013, 3, 69–74. [Google Scholar] [CrossRef]
- Matori, K.A.; Wah, L.C.; Hashim, M.; Ismail, I.; Zaid, M.H.M. Phase transformations of α-alumina made from waste aluminum via a precipitation technique. Int. J. Mol. Sci. 2012, 13, 16812–16821. [Google Scholar] [CrossRef] [PubMed]
- Palmero, P.; Lombardi, M.; Montanaro, L.; Azar, M.; Chevalier, J.; Garnier, V.; Fantozzi, G. Effect of heating rate on phase and microstructural evolution during pressureless sintering of a nanostructured transition alumina. Int. J. Appl. Ceram. Technol. 2009, 6, 420–430. [Google Scholar] [CrossRef]
- Mahat, A.M.; Mastuli, M.S.; Kamarulzaman, N. Influence of annealing temperature on the phase transformation of Al2O3. AIP Conf. Proc. 2016, 1711, 050001. [Google Scholar]
- Zhou, J.; Liao, C.; Shen, H.; Ding, X. Surface and property characterization of laser polished Ti6Al4V. Surf. Coat. Technol. 2019, 380, 125016. [Google Scholar] [CrossRef]
- Moura, C.G.; Carvalho, O.; Gonçalves, L.M.V.; Cerqueira, M.F.; Nascimento, R.; Silva, F. Laser surface texturing of Ti-6Al-4V by nanosecond laser: Surface characterization, Ti-oxide layer analysis and its electrical insulation performance. Mater. Sci. Eng. C 2019, 104, 109901. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ren, X.; Zhou, W.; Tong, Z.; Adu-Gyamfi, S.; Ye, Y.; Ren, Y. Evolution of microstructure and grain refinement mechanism of pure nickel induced by laser shock peening. Mater. Sci. Eng. A 2018, 728, 20–29. [Google Scholar] [CrossRef]
- Wang, H.; Lin, H.; Wang, C.; Zheng, L.; Hu, X. Laser drilling of structural ceramics—A review. J. Eur. Ceram. Soc. 2017, 37, 1157–1173. [Google Scholar] [CrossRef]
- Li, Z.; Li, B.Q.; Bai, P.; Liu, B.; Wang, Y. Research on the thermal behaviour of a selectively laser melted aluminium alloy: Simulation and experiment. Materials 2018, 11, 1172. [Google Scholar] [CrossRef] [PubMed]
- Byskov-Nielsen, J. Short-Pulse Laser Ablation of Metals: Fundamentals and Applications for Micro-Mechanical Interlocking. Doctoral Dissertation, Department of Physics and Astronomy, University of Aarhus, Aarhus, Danmark, 2010. [Google Scholar]
- Zhao, W.; Mei, X.; Yang, Z. Simulation and experimental study on group hole laser ablation on Al2O3 ceramics. Ceram. Int. 2022, 48, 4474–4483. [Google Scholar] [CrossRef]
- Farshidianfar, M.H.; Khajepour, A.; Gerlich, A.P. Effect of real-time cooling rate on microstructure in laser additive manufacturing. J. Mater. Process. Technol. 2016, 231, 468–478. [Google Scholar] [CrossRef]
- Furushima, Y.; Schick, C.; Toda, A. Crystallization, recrystallization, and melting of polymer crystals on heating and cooling examined with fast scanning calorimetry. Polym. Cryst. 2018, 1, e10005. [Google Scholar] [CrossRef]
- Lee, D.; Zhao, B.; Perim, E.; Zhang, H.; Gong, P.; Gao, Y.; Liu, Y.; Toher, C.; Curtarolo, S.; Schroers, J.; et al. Crystallization behavior upon heating and cooling in Cu50Zr50 metallic glass thin films. Acta Mater. 2016, 121, 68–77. [Google Scholar] [CrossRef]
- Ibrahim, A.; Hung, Y. Laser Surface Annealing of Plasma Sprayed Coatings. J. Surf. Eng. Mater. Adv. Technol. 2012, 2, 215–220. [Google Scholar] [CrossRef]
- Moriya, R.; Iguchi, M.; Sasaki, S.; Yan, J. Surface property modification of alumina sprayed coatings using Nd: YAG laser. Procedia CIRP 2016, 42, 464–469. [Google Scholar] [CrossRef]
Method | The Phase Structure | Reference | |
---|---|---|---|
As Received | After Calcination | ||
PVD | α-Al2O3 | N/A * | [21] |
γ-Al2O3 | N/A * | [22] | |
CVD | α-Al2O3 | N/A* | [23,24] |
Thermal spraying | γ-Al2O3 and α-Al2O3 | N/A * | [25,26] |
Sol-gel | N/A * | θ-Al2O3 and η-Al2O3 at 800 °C; α-Al2O3 at 1200 °C | [27] |
Amorphous Al2O3 | γ-Al2O3 at 857–1029 °C; α-Al2O3 at 1114–1200 °C | [28] | |
N/A * | amorphous Al2O3 at 500–700 °C | [29] | |
AlO(OH) and Al(OH)3 | γ-Al2O3 at 415–425 °C | [30] | |
H2SO4 acid | Amorphous Al2O3 | Amorphous Al2O3 to 800 °C; γ-Al2O3 at 850–900 °C; γ-Al2O3 and α-Al2O3 at 950–1000 °C; α-Al2O3 over 1000 °C | [31] |
α-Al2O3, γ-Al2O3, and amorphous Al2O3 | N/A * | [32] | |
Oxalic acid | Boehmite, gibbsite, and θ-Al2O3 | θ-Al2O3 at 500 °C | [33] |
Amorphous Al2O3 | γ-Al2O3 and θ-Al2O3 at 750 °C; α-Al2O3 at 1150 °C | [34] | |
Selenic acid | Amorphous Al2O3 | γ-Al2O3 at 803 °C; α-Al2O3 at 1153 °C | [35] |
Phytic acid | α-Al2O3 | N/A * | [36] |
H3PO4 and acetic acid | γ-Al2O3 | N/A * | [37] |
H3PO4 and oxalic acid | Amorphous Al2O3 | N/A * | [38] |
PEO | γ-Al2O3; γ-Al2O3, and α-Al2O3 | N/A * | [39] |
γ-Al2O3 and α-Al2O3 | N/A * | [40] | |
Laser ablation | γ-Al2O3; γ-Al2O3 and α-Al2O3 | N/A * | [41] |
Laser texturing | α-Al2O3 | N/A * | [42] |
Laser texturing and PEO | γ-Al2O3 and α-Al2O3 | N/A * | [43] |
Laser-assisted CVD | α-Al2O3 | N/A * | [44,45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matijošius, T.; Padgurskas, J.; Bikulčius, G. Possibility of Phase Transformation of Al2O3 by a Laser: A Review. Crystals 2024, 14, 415. https://doi.org/10.3390/cryst14050415
Matijošius T, Padgurskas J, Bikulčius G. Possibility of Phase Transformation of Al2O3 by a Laser: A Review. Crystals. 2024; 14(5):415. https://doi.org/10.3390/cryst14050415
Chicago/Turabian StyleMatijošius, Tadas, Juozas Padgurskas, and Gedvidas Bikulčius. 2024. "Possibility of Phase Transformation of Al2O3 by a Laser: A Review" Crystals 14, no. 5: 415. https://doi.org/10.3390/cryst14050415
APA StyleMatijošius, T., Padgurskas, J., & Bikulčius, G. (2024). Possibility of Phase Transformation of Al2O3 by a Laser: A Review. Crystals, 14(5), 415. https://doi.org/10.3390/cryst14050415