The Epitaxial Growth of Ge and GeSn Semiconductor Thin Films on C-Plane Sapphire
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Growth of Ge Using GaAs Buffer on C-plane Al2O3
3.2. Growth of GeSn on Ge Buffer
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, D.; Jin, L.; Li, J.; Wen, T.; Liu, C.; Xu, F.; Kolodzey, J.; Liao, Y. MBE growth of ultra-thin GeSn film with high Sn content and its infrared/terahertz properties. J. Alloys Compd. 2016, 665, 131–136. [Google Scholar] [CrossRef]
- Reboud, V.; Gassenq, A.; Hartmann, J.; Widiez, J.; Virot, L.; Aubin, J.; Guilloy, K.; Tardif, S.; Fédéli, J.; Pauc, N.; et al. Germanium based photonic components toward a full silicon/germanium photonic platform. Prog. Cryst. Growth Charact. Mater. 2017, 63, 1–24. [Google Scholar] [CrossRef]
- Jia, H.; Jurczak, P.; Yang, J.; Tang, M.; Li, K.; Deng, H.; Dang, M.; Chen, S.; Liu, H. Impact of ex-situ annealing on strain and composition of MBE grown GeSn. J. Phys. D Appl. Phys. 2020, 53, 485104. [Google Scholar] [CrossRef]
- Kumar, R.; Saha, S.K.; Kuchuk, A.; de Oliveira, F.M.; Khiangte, K.R.; Yu, S.-Q.; Mazur, Y.I.; Salamo, G.J. Improving the Material Quality of GaAs Grown on the c-Plane Sapphire by Molecular Beam Epitaxy to Achieve Room-Temperature Photoluminescence. Cryst. Growth Des. 2023, 23, 7385–7393. [Google Scholar] [CrossRef]
- Assali, S.; Nicolas, J.; Moutanabbir, O. Enhanced Sn incorporation in GeSn epitaxial semiconductors via strain relaxation. J. Appl. Phys. 2019, 125, 025304. [Google Scholar] [CrossRef]
- Rathore, J.S.; Nanwani, A.; Mukherjee, S.; Das, S.; Moutanabbir, O.; Mahapatra, S. Composition uniformity and large degree of strain relaxation in MBE-grown thick GeSn epitaxial layers, containing 16% Sn. J. Phys. D Appl. Phys. 2021, 54, 185105. [Google Scholar] [CrossRef]
- Oliveira, F.; Fischer, I.A.; Benedetti, A.; Zaumseil, P.; Cerqueira, M.F.; Vasilevskiy, M.I.; Stefanov, S.; Chiussi, S.; Schulze, J. Fabrication of GeSn-multiple quantum wells by overgrowth of Sn on Ge by using molecular beam epitaxy. Appl. Phys. Lett. 2015, 107, 262102. [Google Scholar] [CrossRef]
- Talochkin, A.B.; Mashanov, V.I. Formation of GeSn alloy on Si(100) by low-temperature molecular beam epitaxy. Appl. Phys. Lett. 2014, 105, 263101. [Google Scholar] [CrossRef]
- Werner, J.; Oehme, M.; Schirmer, A.; Kasper, E.; Schulze, J. Molecular beam epitaxy grown GeSn p-i-n photodetectors integrated on Si. Thin Solid Films 2012, 520, 3361–3364. [Google Scholar] [CrossRef]
- Zhang, L.; Song, Y.; Driesch, N.v.D.; Zhang, Z.; Buca, D.; Grützmacher, D.; Wang, S. Structural Property Study for GeSn Thin Films. Materials 2020, 13, 3645. [Google Scholar] [CrossRef]
- Zhang, Z.P.; Song, Y.X.; Zhu, Z.Y.S.; Han, Y.; Chen, Q.M.; Li, Y.Y.; Zhang, L.Y.; Wang, S.M. Structural properties of GeSn thin films grown by molecular beam epitaxy. AIP Adv. 2017, 7, 045211. [Google Scholar] [CrossRef]
- Bhargava, N.; Coppinger, M.; Gupta, J.P.; Wielunski, L.; Kolodzey, J. Lattice constant and substitutional composition of GeSn alloys grown by molecular beam epitaxy. Appl. Phys. Lett. 2013, 103, 041908. [Google Scholar] [CrossRef]
- Yu, K.; Zhao, Y.; Li, C.; Feng, S.; Chen, X.; Wang, Y.; Zuo, Y.; Cheng, B. The Growth of GeSn Layer on Patterned Si Substrate by MBE Method. ECS Trans. 2018, 86, 349–355. [Google Scholar] [CrossRef]
- Wang, N.; Xue, C.; Wan, F.; Zhao, Y.; Xu, G.; Liu, Z.; Zheng, J.; Zuo, Y.; Cheng, B.; Wang, Q. Spontaneously Conversion from Film to High Crystalline Quality Stripe during Molecular Beam Epitaxy for High Sn Content GeSn. Sci. Rep. 2020, 10, 6161. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Wang, L.; Zhu, G.; Hu, X.; Dong, Z.; Zhong, Z.; Jia, Q.; Yang, X.; Jiang, Z. Dislocation-related photoluminescence of GeSn films grown on Ge (001) substrates by molecular beam epitaxy. Semicond. Sci. Technol. 2018, 33, 125022. [Google Scholar] [CrossRef]
- Li, H.; Chang, C.; Chen, T.P.; Cheng, H.H.; Shi, Z.W.; Chen, H. Characteristics of Sn segregation in Ge/GeSn heterostructures. Appl. Phys. Lett. 2014, 105. [Google Scholar] [CrossRef]
- Chen, R.; Lin, H.; Huo, Y.; Hitzman, C.; Kamins, T.I.; Harris, J.S. Increased photoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy. Appl. Phys. Lett. 2011, 99, 181125. [Google Scholar] [CrossRef]
- Bonino, V.; Pauc, N.; Calvo, V.; Frauenrath, M.; Hartmann, J.-M.; Chelnokov, A.; Reboud, V.; Rosenthal, M.; Segura-Ruiz, J. Microstructuring to Improve the Thermal Stability of GeSn Layers. ACS Appl. Mater. Interfaces 2022, 14, 22270–22277. [Google Scholar] [CrossRef]
- Wangila, E.; Lytvyn, P.; Stanchu, H.; Gunder, C.; de Oliveira, F.M.; Saha, S.; Das, S.; Eldose, N.; Li, C.; Zamani-Alavijeh, M.; et al. Growth of germanium thin film on sapphire by molecular beam epitaxy. Crystals 2023, 13, 1557. [Google Scholar] [CrossRef]
- Gupta, N.; Mishra, A. Selection of substrate material for hybrid microwave integrated circuits (HMICs). Energetika 2016, 62, 78–86. [Google Scholar] [CrossRef]
- Pallecchi, E.; Benz, C.; Betz, A.C.; Löhneysen, H.V.; Plaçais, B.; Danneau, R. Graphene microwave transistors on sapphire substrates. Appl. Phys. Lett. 2011, 99, 113502. [Google Scholar] [CrossRef]
- Lu, W.; Kumar, V.; Schwindt, R.; Piner, E.; Adesida, I. DC, RF, and microwave noise performances of AlGaN/GaN HEMTs on sapphire substrates. IEEE Trans. Microw. Theory Tech. 2002, 50, 2499–2504. [Google Scholar] [CrossRef]
- Kawagishi, K.; Komori, K.; Fukutomi, M.; Togano, K. Factors affecting the microwave surface resistance of crack-free thick YBCO films on sapphire substrates. Phys. C Supercond. Its Appl. 2003, 392–396, 1236–1240. [Google Scholar] [CrossRef]
- Gunder, C.; Alavijeh, M.Z.; Wangila, E.; de Oliveira, F.M.; Sheibani, A.; Kryvyi, S.; Mazur, Y.I.; Yu, S.Q.; Salamo, G. Algorithm based high composition-controlled growths of GeSn on GaAs (001) via molecular beam epitaxy. arXiv 2023, arXiv:2309.06695. [Google Scholar]
- Gunder, C.; de Oliveira, F.M.; Wangila, E.; Stanchu, H.; Zamani-Alavijeh, M.; Ojo, S.; Acharya, S.; Said, A.; Li, C.; Mazur, Y.I.; et al. The growth of Ge and direct bandgap Ge1−xSnx on GaAs (001) by molecular beam epitaxy. RSC Adv. 2024, 14, 1250–1257. [Google Scholar] [CrossRef] [PubMed]
- Moram, M.A.; Vickers, M.E. X-ray diffraction of III-nitrides. Rep. Prog. Phys. 2009, 72, 036502. [Google Scholar] [CrossRef]
- Kim, H.J.; Duzik, A.; Choi, S.H. Lattice-alignment mechanism of SiGe on Sapphire. Acta Mater. 2018, 145, 1–7. [Google Scholar] [CrossRef]
- Wangila, E.; Saha, S.K.; Kumar, R.; Kuchuk, A.; Gunder, C.; Amoah, S.; Khiangte, K.R.; Chen, Z.; Yu, S.-Q.; Salamo, G.J. Single crystalline Ge thin film growth on c-plane sapphire substrates by molecular beam epitaxy (MBE). CrystEngComm 2022, 24, 4372–4380. [Google Scholar] [CrossRef]
- Zardo, I.; Conesa-Boj, S.; Peiro, F.; Morante, J.R.; Arbiol, J.; Uccelli, E.; Abstreiter, G.; i Morral, A.F. Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: Polarization dependence, selection rules, and strain effects. Phys. Rev. B 2009, 80, 245324. [Google Scholar] [CrossRef]
- Grant, J.; Abernathy, G.; Olorunsola, O.; Ojo, S.; Amoah, S.; Wanglia, E.; Saha, S.K.; Sabbar, A.; Du, W.; Alher, M.; et al. Growth of Pseudomorphic GeSn at Low Pressure with Sn Composition of 16.7%. Materials 2021, 14, 7637. [Google Scholar] [CrossRef]
- Oehme, M.; Buca, D.; Kostecki, K.; Wirths, S.; Holländer, B.; Kasper, E.; Schulze, J. Epitaxial growth of highly compressively strained GeSn alloys up to 12.5% Sn. J. Cryst. Growth 2013, 384, 71–76. [Google Scholar] [CrossRef]
- Slav, A.; Dascalescu, I.; Lepadatu, A.-M.; Palade, C.; Zoita, N.C.; Stroescu, H.; Iftimie, S.; Lazanu, S.; Gartner, M.; Buca, D.; et al. GeSn/SiO2 Multilayers by Magnetron Sputtering Deposition for Short-Wave Infrared Photonics. ACS Appl. Mater. Interfaces 2020, 12, 56161–56171. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Miao, Y.; Wang, L.; Zhu, G.; Hu, H.; Zhong, Z.; Yang, X.; Jiang, Z. Temperature dependence of Raman scattering in GeSn films. J. Raman Spectrosc. 2020, 51, 1092–1099. [Google Scholar] [CrossRef]
- Oehme, M.; Kostecki, K.; Schmid, M.; Oliveira, F.; Kasper, E.; Schulze, J. Epitaxial growth of strained and unstrained GeSn alloys up to 25% Sn. Thin Solid Films 2014, 557, 169–172. [Google Scholar] [CrossRef]
- Nakamura, M.; Inagaki, S.; Okamura, Y.; Ogino, M.; Takahashi, Y.; Adachi, K.; Hashizume, D.; Tokura, Y.; Kawasaki, M. Band structures in orientation-controlled CuI thin films under epitaxial strain. Phys. Rev. B 2022, 106, 125307. [Google Scholar] [CrossRef]
Parameter | Sample Name | ||
---|---|---|---|
ES 85 | ES 89 | ES 103 | |
Growth temp (°C) | 400 | 400 | 500 |
Ge thickness (nm) | 50 | 150 | 150 |
FWHM (deg) | 0.001 | 0.001 | 0.001 |
Surface roughness (nm) | 29.1 | 14.0 | 5.78 |
Twinning ratio % | 8.85 | 5.0 | 8.45 |
Raman shift (cm−1) | −1.4 | −0.4 | −2.99 |
Parameter | Sample Name | ||
---|---|---|---|
ES95 | ES96 | ES97 | |
Growth temperature of Ge layer (°C) | 400 | 500 | 500 |
Surface roughness (nm) | 3.56 | 11.5 | 16.2 |
Surface roughness in inset image (nm) | 2.8 | 2.4 | 2.7 |
GeSn growth time (min) | 56 | 56 | 79 |
GeSn thickness (nm) | ~300 | ~300 | ~429 |
Sample Name | Ge Buffer | GeSn Layer | ||
---|---|---|---|---|
FWHM (deg) | Sn (%) | |||
ES95 | −3.45 | 0.23 | 7.0 | −7.10 |
ES96 | −0.95 | 0.19 | 8.1 | −5.37 |
ES97 | 0.05 | 0.28 | 10.0 | −2.42 |
GeSn layer − FWHM (deg) | ||||
Position across Omega-2theta | 88.25 | 88.83 | 89.5 | 90.0 |
ES97 | 0.67 | 0.73 | 0.67 | 0.28 (Broad peak) 0.06 (narrow peak) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wangila, E.; Gunder, C.; Lytvyn, P.M.; Zamani-Alavijeh, M.; Maia de Oliveira, F.; Kryvyi, S.; Stanchu, H.; Sheibani, A.; Mazur, Y.I.; Yu, S.-Q.; et al. The Epitaxial Growth of Ge and GeSn Semiconductor Thin Films on C-Plane Sapphire. Crystals 2024, 14, 414. https://doi.org/10.3390/cryst14050414
Wangila E, Gunder C, Lytvyn PM, Zamani-Alavijeh M, Maia de Oliveira F, Kryvyi S, Stanchu H, Sheibani A, Mazur YI, Yu S-Q, et al. The Epitaxial Growth of Ge and GeSn Semiconductor Thin Films on C-Plane Sapphire. Crystals. 2024; 14(5):414. https://doi.org/10.3390/cryst14050414
Chicago/Turabian StyleWangila, Emmanuel, Calbi Gunder, Petro M. Lytvyn, Mohammad Zamani-Alavijeh, Fernando Maia de Oliveira, Serhii Kryvyi, Hryhorii Stanchu, Aida Sheibani, Yuriy I. Mazur, Shui-Qing Yu, and et al. 2024. "The Epitaxial Growth of Ge and GeSn Semiconductor Thin Films on C-Plane Sapphire" Crystals 14, no. 5: 414. https://doi.org/10.3390/cryst14050414
APA StyleWangila, E., Gunder, C., Lytvyn, P. M., Zamani-Alavijeh, M., Maia de Oliveira, F., Kryvyi, S., Stanchu, H., Sheibani, A., Mazur, Y. I., Yu, S. -Q., & Salamo, G. (2024). The Epitaxial Growth of Ge and GeSn Semiconductor Thin Films on C-Plane Sapphire. Crystals, 14(5), 414. https://doi.org/10.3390/cryst14050414