A Modern Approach to HEAs: From Structure to Properties and Potential Applications
Abstract
:1. Introduction
2. Crystallographic Structures of High-Entropy Alloys
3. Formation and Stability of High-Entropy Alloy Structures
4. Properties of High-Entropy Alloys
5. Applications of High-Entropy Alloys in Extreme Conditions
6. Future Directions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, L.; Wang, Z.; Wu, Q.; Jia, Y.; Xu, Q.; He, F.; Li, J.; Wang, J. A hypoeutectic high-entropy alloy with hierarchical microstructure for high-temperature application. Scr. Mater. 2023, 232, 115502. [Google Scholar] [CrossRef]
- Wan, Y.; Cheng, Y.; Chen, Y.; Zhang, Z.; Liu, Y.; Gong, H.; Shen, B.; Liang, X. A Nitride-Reinforced NbMoTaWHfN Refractory High-Entropy Alloy with Potential Ultra-High-Temperature Engineering Applications. Engineering 2023, 30, 110–120. [Google Scholar] [CrossRef]
- Wu, S.; Tang, Y.; Gu, J.; Li, R.; Liang, Y.; Liu, P.; Wang, H.; An, C.; Deng, Q.; Zhao, L.; et al. Controllable preparation of metal-based lubrication coatings in extreme environmental applications. Mater. Des. 2024, 241, 112922. [Google Scholar] [CrossRef]
- Dong, D.; Jiang, W.; Wang, X.; Ma, T.; Zhu, D.; Wang, Y.; Huo, J. Enhanced mechanical properties of high pressure solidified CoCrFeNiMo0.3 high entropy alloy via nano-precipitated phase. Intermetallics 2024, 166, 108192. [Google Scholar] [CrossRef]
- Fu, G.; Liu, X.; Yi, X.; Zhang, S.; Cao, X.; Meng, X.; Gao, Z.; Wang, H. Development of High-Entropy Shape-Memory Alloys: A Review. Metals 2023, 13, 1279. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Wu, T.; Huang, G. An all-around way to analyze the corrosion behavior and the potential applications of high-entropy alloys coating. Ceram. Int. 2024, 50, 5893–5913. [Google Scholar] [CrossRef]
- Krishna, S.A.; Noble, N.; Radhika, N.; Saleh, B. A comprehensive review on advances in high entropy alloys: Fabrication and surface modification methods, properties, applications, and future prospects. J. Manuf. Process. 2024, 109, 583–606. [Google Scholar] [CrossRef]
- Naseri, M.; Moghadam, A.O.; Anandkumar, M.; Sudarsan, S.; Bodrov, E.; Samodurova, M.; Trofimov, E. Enhancing the mechanical properties of high-entropy alloys through severe plastic deformation: A review. J. Alloy. Metall. Syst. 2024, 5, 100054. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Ali, N.; Zhang, L.; Dongming, L.; Zhou, H.; Sanaullah, K.; Zhang, C.; Nian, Y.; Cheng, J. Enhancing the strength-ductility synergy in hot-forged Fe50Mn30Co10Cr10 high entropy alloy (HEA) through carbon additions. J. Mater. Res. Technol. 2024, 29, 5646–5655. [Google Scholar] [CrossRef]
- Ojha, P.K.; Yoshida, S.; Sunkari, U.; Tripathy, B.; Tsuji, N.; Bhattacharjee, P.P. Highly deformable Laves phase in a high entropy alloy. Scr. Mater. 2024, 240, 115828. [Google Scholar] [CrossRef]
- Cui, P.; Wang, W.; Nong, Z.; Lai, Z.; Liu, Y.; Zhu, J. Effects of Cr Content on Microstructure and Mechanical Properties of Co-Free FeCryNiAl0.8 High-Entropy Alloys. Materials 2023, 16, 3348. [Google Scholar] [CrossRef]
- Ye, Q.; Zhang, Z.; Wang, Q.; Xu, X.; Wang, K.; Zhao, J.; Xu, B.; Zhang, J.; Liu, D.; Deng, Y.; et al. Promoting nanoscale deformation twinning through FCC phase decomposition in AlCoCrFeMo0.05Ni2 high entropy alloy. J. Alloys Compd. 2024, 985, 174086. [Google Scholar] [CrossRef]
- Li, D.; Liaw, P.K.; Xie, L.; Zhang, Y.; Wang, W. Advanced high-entropy alloys breaking the property limits of current materials. J. Mater. Sci. Technol. 2024, 186, 219–230. [Google Scholar] [CrossRef]
- Liu, X.; Liu, H.; Wu, Y.; Li, M.; Xing, C.; He, Y. Tailoring phase transformation and precipitation features in a Al21Co19.5Fe9.5Ni50 eutectic high-entropy alloy to achieve different strength-ductility combinations. J. Mater. Sci. Technol. 2024, 195, 111–125. [Google Scholar] [CrossRef]
- Cheng, J.C.; Li, N.; Huang, J.Y.; Cui, A.R.; Zhao, X.J.; Cai, Y.; Wang, Q.Y.; Luo, S.N. Dynamic compression responses of heterogeneous-structured CrMnFeCoNi high-entropy alloy at cryogenic temperatures. Mater. Sci. Eng. A 2024, 892, 146063. [Google Scholar] [CrossRef]
- Stoian, A.B.; Nartita, R.; Totea, G.; Ionita, D.; Burnei, C. Complex Bioactive Chitosan–Bioglass Coatings on a New Advanced TiTaZrAg Medium–High-Entropy Alloy. Coatings 2023, 13, 971. [Google Scholar] [CrossRef]
- Nartita, R.; Ionita, D.; Demetrescu, I.; Enachescu, M. A fresh perspective on medium entropy alloys applications as coating and coating substrate. Ann. Acad. Rom. Sci. Ser. Phys. Chem. 2022, 7, 34–46. [Google Scholar] [CrossRef]
- Wu, Y.; Du, C.; Yu, Z.; Wang, R.; Ren, X. Effect of Cu content on the microstructure and mechanical properties of Fe20Co30Ni10Cr20Mn20 FCC-typed HEAs. Mater. Sci. Eng. A 2024, 897, 146336. [Google Scholar] [CrossRef]
- Li, C.; Ma, Z.; Tong, S.; Liu, J.; Zhang, W.; Shen, G.; Wang, S.; Zhao, H.; Ren, L. Mechanical-thermal coupling fatigue failure of CoCrFeMnNi high entropy alloy. J. Mater. Res. Technol. 2024, 30, 3430–3437. [Google Scholar] [CrossRef]
- Matsuzaka, T.; Hyakubu, A.; Kim, Y.S.; Matsugaki, A.; Nagase, T.; Ishimoto, T.; Ozasa, R.; Kim, H.S.; Mizuguchi, T.; Gokcekaya, O.; et al. Development of an equiatomic octonary TiNbTaZrMoHfWCr super-high-entropy alloy for biomedical applications. Mater. Chem. Phys. 2024, 316, 129120. [Google Scholar] [CrossRef]
- Naveen, L.; Umre, P.; Chakraborty, P.; Rahul, M.R.; Samal, S.; Tewari, R. Development of single-phase BCC refractory high entropy alloys using machine learning techniques. Comput. Mater. Sci. 2024, 238, 112917. [Google Scholar] [CrossRef]
- Wakai, E.; Noto, H.; Shibayama, T.; Furuya, K.; Ando, M.; Kamada, T.; Ishida, T.; Makimura, S. Microstructures and hardness of BCC phase iron-based high entropy alloy Fe-Mn-Cr-V-Al-C. Mater. Charact. 2024, 211, 113881. [Google Scholar] [CrossRef]
- Yusenko, K.V.; Riva, S.; Crichton, W.A.; Spektor, K.; Bykova, E.; Pakhomova, A.; Tudball, A.; Kupenko, I.; Rohrbach, A.; Klemme, S.; et al. High-pressure high-temperature tailoring of High Entropy Alloys for extreme environments. J. Alloys Compd. 2018, 738, 491–500. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Shi, Z.; Liang, J. Phase Structure, Microstructure, Corrosion, and Wear Resistance of Al0.8CrFeCoNiCu0.5 High-Entropy Alloy. Lubricants 2023, 11, 358. [Google Scholar] [CrossRef]
- Huang, D.C.; Ran, X.X.; Cai, Y.; Liu, X.H.; Lu, L. Strain partitioning in dual-phase eutectic high-entropy alloy: Dependence on phase boundary morphology. Scr. Mater. 2024, 247, 116077. [Google Scholar] [CrossRef]
- Li, G.; Li, Y.; Liang, J.; Wen, Z.; Zhang, T.; Ding, X.; Qu, Y. Influence of C14 Laves phase and Zr-rich phase interactions on the hydrogen storage properties of Ti32.5V27.5Zr7.5Nb32.5 high entropy hydrogen storage alloy. Intermetallics 2024, 168, 108239. [Google Scholar] [CrossRef]
- Yusenko, K.V.; Riva, S.; Carvalho, P.A.; Yusenko, M.V.; Arnaboldi, S.; Sukhikh, A.S.; Hanfland, M.; Gromilov, S.A. First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation. Scr. Mater. 2017, 138, 22–27. [Google Scholar] [CrossRef]
- Araujo, R.B.; Bayrak Pehlivan, I.; Edvinsson, T. High-entropy alloy catalysts: Fundamental aspects, promises towards electrochemical NH3 production, and lessons to learn from deep neural networks. Nano Energy 2023, 105, 108027. [Google Scholar] [CrossRef]
- Kumari, P.; Gupta, A.K.; Mishra, R.K.; Ahmad, M.S.; Shahi, R.R. A Comprehensive Review: Recent Progress on Magnetic High Entropy Alloys and Oxides. J. Magn. Magn. Mater. 2022, 554, 169142. [Google Scholar] [CrossRef]
- Aidhy, D.S. Chemical randomness, lattice distortion and the wide distributions in the atomic level properties in high entropy alloys. Comput. Mater. Sci. 2024, 237, 112912. [Google Scholar] [CrossRef]
- He, Z.; Jia, N.; Wang, H.; Yan, H.; Shen, Y. Synergy effect of multi-strengthening mechanisms in FeMnCoCrN HEA at cryogenic temperature. J. Mater. Sci. Technol. 2021, 86, 158–170. [Google Scholar] [CrossRef]
- Ghosh, P.S.; Ali, K.; Arya, A. Efficient screening of single phase forming low-activation high entropy alloys. J. Alloys Compd. 2024, 978, 173172. [Google Scholar] [CrossRef]
- Gludovatz, B.; Ritchie, R.O. Fracture properties of high-entropy alloys. MRS Bull. 2022, 47, 176–185. [Google Scholar] [CrossRef]
- Shi, P.; Ren, W.; Zheng, T.; Ren, Z.; Hou, X.; Peng, J.; Hu, P.; Gao, Y.; Zhong, Y.; Liaw, P.K. Enhanced strength–ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae. Nat. Commun. 2019, 10, 489. [Google Scholar] [CrossRef] [PubMed]
- Nene, S.S.; Frank, M.; Agrawal, P.; Sinha, S.; Liu, K.; Shukla, S.; Mishra, R.S.; McWilliams, B.A.; Cho, K.C. Microstructurally flexible high entropy alloys: Linkages between alloy design and deformation behavior. Mater. Des. 2020, 194, 108968. [Google Scholar] [CrossRef]
- Jiang, K.; Li, J.; Suo, T. Extensive phase transformation in an equiatomic CrCoNi medium entropy alloy under extreme uniaxial tension. Int. J. Plast. 2024, 176, 103968. [Google Scholar] [CrossRef]
- Yoon, K.N.; Oh, H.S.; Kim, J.Y.; Kim, M.S.; Zhang, J.; Park, E.S. A new class of light-weight metastable high entropy alloy with high strength and large ductility. Materialia 2022, 21, 101284. [Google Scholar] [CrossRef]
- Chen, W.; Li, X. Structure and mechanical properties of novel lightweight refractory high entropy alloys NbMoTiZr-(Al/V): A combined first principles and experimental study. J. Alloys Compd. 2024, 973, 172855. [Google Scholar] [CrossRef]
- Basu, S.S.; Jana, P.P.; Ghosh, M. A new insight into the phase stability in high entropy alloys. Mater. Today Commun. 2023, 37, 107394. [Google Scholar] [CrossRef]
- Balaji, V.; Xavior, A. Development of high entropy alloys (HEAs): Current trends. Heliyon 2024, 10, e26464. [Google Scholar] [CrossRef] [PubMed]
- Jian, W.; Ren, L. Insights into orientation-dependent plasticity deformation of HfNbTaTiZr refractory high entropy alloy: An atomistic investigation. Int. J. Plast. 2024, 173, 103867. [Google Scholar] [CrossRef]
- Kang, B.; Lee, S.; Lee, W.; Yoon, K.N.; Park, E.S.; Jang, H. Review on thermal transport and lattice dynamics of high-entropy alloys containing Ni. Curr. Opin. Solid State Mater. Sci. 2024, 29, 101146. [Google Scholar] [CrossRef]
- Peng, J.; Li, J.; Mohammadzadeh, R. Role of lattice resistance in the shock dynamics of fcc-structured high entropy alloy. Mater. Today Commun. 2022, 33, 104884. [Google Scholar] [CrossRef]
- Jiang, K.; Zhang, Q.; Li, J.; Li, X.; Zhao, F.; Hou, B.; Suo, T. Abnormal hardening and amorphization in an FCC high entropy alloy under extreme uniaxial tension. Int. J. Plast. 2022, 159, 103463. [Google Scholar] [CrossRef]
- Li, R.; Xie, L.; Wang, W.Y.; Liaw, P.K.; Zhang, Y. High-Throughput Calculations for High-Entropy Alloys: A Brief Review. Front. Mater. 2020, 7, 290. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, Y.; Cheng, W.; Chen, Y.; Gu, J. High temperature oxidation behavior of CoCrFeNiMo0.2 high-entropy alloy coatings produced by laser cladding. Mater. Today Commun. 2024, 39, 108639. [Google Scholar] [CrossRef]
- Li, Y.; Bai, Y.; Liu, Z.; Jiang, Q.; Zhang, K.; Wei, B. Additive manufacturing-induced anisotropy in damping performance of a dual-phase high-entropy alloy. J. Mater. Res. Technol. 2024, 29, 5752–5764. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, Y.; Guan, S.; Wang, C.; Jiang, B.; Wang, W.; Huang, M.; Peng, B.; Li, Q.; Peng, F.; et al. High-pressure preparation of high-hardness CoCrFeNiMo0.4 high-entropy alloy. Int. J. Refract. Met. Hard Mater. 2022, 102, 105718. [Google Scholar] [CrossRef]
- Lan, Y.; Zhang, Y.; Peng, Y.; Wang, A.; Gao, Y.; Yang, W.; Fan, W.; Zhang, W.; Liu, Y. In-situ synthesis of dual-phase nitrides and multiple strengthening mechanisms in FeCoCrNiAl0.5 high entropy matrix composite coatings by laser cladding and plasma nitriding. J. Alloys Compd. 2024, 990, 174400. [Google Scholar] [CrossRef]
- Verma, P.K.; Singh, A.; Kumar, A. Microstructure characterization and phase evolution of equiatomic AlCoMoFeNi high entropy alloy synthesized by mechanical alloying. Mater. Chem. Phys. 2024, 318, 129325. [Google Scholar] [CrossRef]
- Yan, P.X.; Chang, J.; Wang, W.L.; Zhu, X.N.; Lin, M.J.; Wei, B. Metastable phase separation and crystalline orientation feature of electromagnetic levitation processed CoCrCuFeNi high entropy alloy. Acta Mater. 2024, 269, 119778. [Google Scholar] [CrossRef]
- Salifu, S.; Olubambi, P.A.; Teffo, L. Phase stability and microstructural properties of high entropy alloy reinforced aluminium matrix composites consolidated via spark plasma sintering. Heliyon 2024, 10, e24498. [Google Scholar] [CrossRef] [PubMed]
- Meghwal, A.; Pinches, S.; Anupam, A.; Lie, L.; Munroe, P.; Berndt, C.C.; Siao Ming Ang, A. Structure-property correlation of a CoCrFeNi medium-entropy alloy manufactured using extreme high-speed laser material deposition (EHLA). Intermetallics 2023, 152, 107769. [Google Scholar] [CrossRef]
- Zhou, J.L.; Cheng, Y.H.; Wan, Y.X.; Chen, H.; Wang, Y.F.; Yang, J.Y. Strengthening by Ti, Nb, and Zr doping on microstructure, mechanical, tribological, and corrosion properties of CoCrFeNi high-entropy alloys. J. Alloys Compd. 2024, 984, 173819. [Google Scholar] [CrossRef]
- Toroghinejad, M.R.; Pirmoradian, H.; Shabani, A. Synthesis of FeCrCoNiCu high entropy alloy through mechanical alloying and spark plasma sintering processes. Mater. Chem. Phys. 2022, 289, 126433. [Google Scholar] [CrossRef]
- Straumal, B.B.; Klinger, L.; Kuzmin, A.; Lopez, G.A.; Korneva, A.; Straumal, A.B.; Vershinin, N.; Gornakova, A.S. High Entropy Alloys Coatings Deposited by Laser Cladding: A Review of Grain Boundary Wetting Phenomena. Coatings 2022, 12, 343. [Google Scholar] [CrossRef]
- Onawale, O.T.; Cobbinah, P.V.; Nzeukou, R.A.; Matizamhuka, W.R. Synthesis Route, Microstructural Evolution, and Mechanical Property Relationship of High-Entropy Alloys (HEAs): A Review. Materials 2021, 14, 3065. [Google Scholar] [CrossRef] [PubMed]
- Sonar, T.; Ivanov, M.; Trofimov, E.; Tingaev, A.; Suleymanova, I. An overview of microstructure, mechanical properties and processing of high entropy alloys and its future perspectives in aeroengine applications. Mater. Sci. Energy Technol. 2024, 7, 35–60. [Google Scholar] [CrossRef]
- Zhang, W.; Shen, J.; Oliveira, J.P.; Kooi, B.J.; Pei, Y. Crystallographic orientation-dependent deformation characteristics of additive manufactured interstitial-strengthened high entropy alloys. Scr. Mater. 2023, 222, 115049. [Google Scholar] [CrossRef]
- Yang, Z.; Fu, B.; Ning, Z.; Bai, X.; Yang, H.; Chen, Q.; Luo, D.; Qiu, N.; Wang, Y. Amorphization activated by semicoherent interfaces of FCC/BCC HEA multilayers during deformation. Mater. Des. 2023, 225, 111469. [Google Scholar] [CrossRef]
- Li, K.; Zhai, Y.; Lai, M.; Song, M.; Zou, S.; Huang, G.; Yaqoob, K.; Wang, Z.; Zhang, N. Corrosion of Eutectic High-Entropy Alloys: A Review. Crystals 2023, 13, 1231. [Google Scholar] [CrossRef]
- Yang, Z.; Qiu, N.; Yang, H.; Chen, Q.; Wang, Y. Irradiation tolerance enhanced by coherent interfaces of FCC/BCC HEA multilayers. Surf. Coat. Technol. 2023, 457, 129338. [Google Scholar] [CrossRef]
- Liu, J.; Li, Z.; Lin, D.; Tang, Z.; Song, X.; He, P.; Zhang, S.; Bian, H.; Fu, W.; Song, Y. Eutectic high-entropy alloys and their applications in materials processing engineering: A review. J. Mater. Sci. Technol. 2024, 189, 211–246. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, Z.; Dong, Y.; Li, C.; Wang, Y. High strength and ductility eutectic high entropy alloy with unique core-shell structure. J. Alloys Compd. 2024, 976, 173141. [Google Scholar] [CrossRef]
- Xiao, L.; Feng, J.; Pan, W.; Zhang, G.; Yue, P.; Yang, S. Extreme thermal stability in crystal-amorphous nanocrystalline CoCrFeMnNi high entropy alloy. Mater. Lett. 2023, 352, 135206. [Google Scholar] [CrossRef]
- Siddique, A.; Abid, T.; Akram, M.A.; Bin Yaqub, T.; Karim, M.R.A.; Fernandes, F.; Khan, R.; Yaqoob, K. Design and development of NbTiVZr porous high entropy alloys for energy applications. J. Energy Storage 2023, 73, 109131. [Google Scholar] [CrossRef]
- Liu, G.; Li, S.; Song, C.; Liu, Z.; Du, J.; Xie, X.; Wang, Y.; Cong, D. High-entropy Ti-Zr-Hf-Ni-Cu alloys as solid-solid phase change materials for high-temperature thermal energy storage. Intermetallics 2024, 166, 108177. [Google Scholar] [CrossRef]
- Yoshizaki, T.; Fujita, T. Thermal stability and phase separation of nanoporous high-entropy alloys containing 23 elements. J. Alloys Compd. 2023, 968, 172056. [Google Scholar] [CrossRef]
- Nitol, M.S.; Echeverria, M.J.; Dang, K.; Baskes, M.I.; Fensin, S.J. New modified embedded-atom method interatomic potential to understand deformation behavior in VNbTaTiZr refractory high entropy alloy. Comput. Mater. Sci. 2024, 237, 112886. [Google Scholar] [CrossRef]
- Ren, H.; Chen, R.R.; Gao, X.F.; Liu, T.; Qin, G.; Wu, S.P.; Guo, J.J. High-performance AlCoCrFeNi high entropy alloy with marine application perspective. J. Mater. Res. Technol. 2023, 25, 6751–6763. [Google Scholar] [CrossRef]
- Ionita, D.; Pirvu, C.; Stoian, A.B.; Demetrescu, I. The Trends of TiZr Alloy Research as a Viable Alternative for Ti and Ti16Zr Roxolid Dental Implants. Coatings 2020, 10, 422. [Google Scholar] [CrossRef]
- Pantazi, A.; Vardaki, M.; Mihai, G.; Ionita, D.; Stoian, A.B.; Enachescu, M.; Demetrescu, I. Understanding surface and interface properties of modified Ti50Zr with nanotubes. Appl. Surf. Sci. 2020, 506, 144661. [Google Scholar] [CrossRef]
- Mazare, A.; Totea, G.; Burnei, C.; Schmuki, P.; Demetrescu, I.; Ionita, D. Corrosion, antibacterial activity and haemocompatibility of TiO2 nanotubes as a function of their annealing temperature. Corros. Sci. 2016, 103, 215–222. [Google Scholar] [CrossRef]
- Berger, J.E.; Jorge, A.M.; Asato, G.H.; Roche, V. Formation of self-ordered oxide nanotubes layer on the equiatomic TiNbZrHfTa high entropy alloy and bioactivation procedure. J. Alloys Compd. 2021, 865, 158837. [Google Scholar] [CrossRef]
- Bi, D.; Chang, Y.; Luo, H.; Pan, Z.; Zhao, Q.; Cheng, H.; Wang, X.; Qiao, C.; Ni, Z.; Liu, A.; et al. Corrosion behavior and passive film characteristics of AlNbTiZrSix high-entropy alloys in simulated seawater environment. Corros. Sci. 2023, 224, 111530. [Google Scholar] [CrossRef]
- Tunes, M.A.; Fritze, S.; Osinger, B.; Willenshofer, P.; Alvarado, A.M.; Martinez, E.; Menon, A.S.; Ström, P.; Greaves, G.; Lewin, E.; et al. From high-entropy alloys to high-entropy ceramics: The radiation-resistant highly concentrated refractory carbide (CrNbTaTiW)C. Acta Mater. 2023, 250, 118856. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, J.; Fu, H.; Xiong, Y.; Ma, S.; Xiang, X.; Xu, B.; Lu, W.; Zhang, Y.; Weber, W.J.; et al. Irradiation performance of high entropy ceramics: A comprehensive comparison with conventional ceramics and high entropy alloys. Prog. Mater. Sci. 2024, 143, 101250. [Google Scholar] [CrossRef]
- Qi, Y.; Xu, H.; He, T.; Feng, M. Effect of crystallographic orientation on mechanical properties of single-crystal CoCrFeMnNi high-entropy alloy. Mater. Sci. Eng. A 2021, 814, 141196. [Google Scholar] [CrossRef]
- Liu, B.; Jian, Z.; Guo, L.; Li, X.; Wang, K.; Deng, H.; Hu, W.; Xiao, S.; Yuan, D. Effect of crystallographic orientations on shock-induced plasticity for CoCrFeMnNi high-entropy alloy. Int. J. Mech. Sci. 2022, 226, 107373. [Google Scholar] [CrossRef]
- Ashby, M.F.; Cebon, D. Materials selection in mechanical design. Le J. Phys. IV 1993, 3, C7-1–C7-9. [Google Scholar] [CrossRef]
- Ashby, M.F. Materials and Sustainable Development; Elsevier: Amsterdam, The Netherlands, 2023; ISBN 9780323983617. [Google Scholar]
- Chakraborty, P.; Sarkar, A.; Ali, K.; Jha, J.; Jothilakshmi, N.; Arya, A.; Tewari, R. Design and development of low density, high strength ZrNbAlVTi high entropy alloy for high temperature applications. Int. J. Refract. Met. Hard Mater. 2023, 113, 106222. [Google Scholar] [CrossRef]
- Yang, H.; Shao, Z.; Lu, Q.; Cui, C.; Xu, L.; Yang, G. Development of reduced-activation and radiation-resistant high-entropy alloys for fusion reactor. Int. J. Refract. Met. Hard Mater. 2024, 121, 106674. [Google Scholar] [CrossRef]
- Gawel, R.; Rogal, Ł.; Smoła, G.; Grzesik, Z. High-temperature oxidation and diffusion studies on selected Al–Cr–Fe–Ni high-entropy alloys for potential application in thermal barrier coatings. Intermetallics 2024, 169, 108273. [Google Scholar] [CrossRef]
- Güler, S.H.; Güler, Ö.; Kavaz, E.; Almisned, G.; Issa, B.; Tekin, H.O. Exploring critical behavioral differences in physical, structural, and nuclear radiation attenuation properties of produced High Entropy Alloy (HEA) and Refractory-High Entropy Alloy (RHEA) samples. Curr. Appl. Phys. 2024, 58, 1–10. [Google Scholar] [CrossRef]
- Golgovici, F.; Tudose, A.E.; Diniasi, D.; Nartita, R.; Fulger, M.; Demetrescu, I. Aspects of Applied Chemistry Related to Future Goals of Safety and Efficiency in Materials Development for Nuclear Energy. Molecules 2023, 28, 874. [Google Scholar] [CrossRef]
- Zareipour, F.; Shahmir, H.; Huang, Y. Formation and significance of topologically close-packed Laves phases in refractory high-entropy alloys. J. Alloys Compd. 2024, 986, 174148. [Google Scholar] [CrossRef]
- Kalita, D.; Jóźwik, I.; Kurpaska, Ł.; Zhang, Y.; Mulewska, K.; Chrominski, W.; O’Connell, J.; Ge, Y.; Boldman, W.L.; Rack, P.D.; et al. The microstructure and He+ ion irradiation behavior of novel low-activation W-Ta-Cr-V refractory high entropy alloy for nuclear applications. Nucl. Mater. Energy 2023, 37, 101513. [Google Scholar] [CrossRef]
- Li, P.; Zhang, J.; Yang, T.; Zhang, T.; Zhang, J.; Lin, J.; Yan, Y.; Li, C.; Si, X.; Cao, J.; et al. Characteristics, applications and perspective of high entropy alloys for interfacial joining: A review. J. Manuf. Process. 2024, 110, 303–317. [Google Scholar] [CrossRef]
- Senkov, O.N.; Miracle, D.B.; Rao, S.I. Correlations to improve room temperature ductility of refractory complex concentrated alloys. Mater. Sci. Eng. A 2021, 820, 141512. [Google Scholar] [CrossRef]
- Tunes, M.A.; Vo, H.T.; Baldwin, J.K.S.; Saleh, T.A.; Fensin, S.J.; El-Atwani, O. Perspectives on novel refractory amorphous high-entropy alloys in extreme environments. Appl. Mater. Today 2023, 32, 101796. [Google Scholar] [CrossRef]
- Senkov, O.N.; Gorsse, S.; Miracle, D.B. High temperature strength of refractory complex concentrated alloys. Acta Mater. 2019, 175, 394–405. [Google Scholar] [CrossRef]
- Wang, F.; Yang, T.; Zhong, Y.; Li, L.; Yuan, T. Design crystallographic ordering in NbTa0.5TiAlx refractory high entropy alloys with strength-plasticity synergy. J. Mater. Res. Technol. 2023, 27, 8386–8402. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Ma, Z.L.; Wang, M.; Chen, Y.W.; Tan, Y.D.; Cheng, X.W. Design of novel low-density refractory high entropy alloys for high-temperature applications. Mater. Sci. Eng. A 2019, 755, 318–322. [Google Scholar] [CrossRef]
- Yu, K.; Cheng, J.; Cheng, Q.; Geng, Y.; Zhu, S.; Liu, M.; Wan, S.; Yang, J. Enhanced wear resistance in (CoCrNi)94Al3Ti3 medium-entropy alloy at high temperatures via nano-Al2O3 reinforcing phase. Tribol. Int. 2024, 195, 109569. [Google Scholar] [CrossRef]
- Hu, J.C.; Yang, K.; Wang, Q.Y.; Zhao, Q.C.; Jiang, Y.H.; Liu, Y.J. Ultra-long life fatigue behavior of a high-entropy alloy. Int. J. Fatigue 2024, 178, 108013. [Google Scholar] [CrossRef]
- Jenczyk, P.; Jarzabek, D.M.; Lu, Z.; Gadalińska, E.; Levintant-Zayonts, N.; Zhang, Y. Unexpected crystallographic structure, phase transformation, and hardening behavior in the AlCoCrFeNiTi0.2 high-entropy alloy after high-dose nitrogen ion implantation. Mater. Des. 2022, 216, 110568. [Google Scholar] [CrossRef]
- Ganesh Reddy Majji, B.; Vasudev, H.; Bansal, A. Application of plasma-sprayed AlxCrCoFeNi High-Entropy alloys for high-temperature oxidation resistance. Mater. Lett. 2024, 361, 136069. [Google Scholar] [CrossRef]
- Kwon, H.J.; Lim, K.R.; Kim, Y.K.; Na, Y.S.; Yi, S. Design strategy for high-entropy alloys with enhanced microstructural stability and mechanical properties for high-temperature applications. Mater. Sci. Eng. A 2024, 889, 145836. [Google Scholar] [CrossRef]
- Kumar, A.; Abu, M.; Krishna, N.; Yadav, P. Phase transformation of AB 5 to AB 2 type phase on substitution of Mn with Zr in TiVCoNi (ZrxMn2−x) (x = 0, 0.3, 0.6, 1.0) high entropy alloys. Mater. Chem. Phys. 2024, 318, 129291. [Google Scholar] [CrossRef]
- Shen, J.; Hu, J.; An, X. Regulation of phase partition and wear resistance for FeCoCrV high entropy alloy by heat treatment. Intermetallics 2024, 167, 108232. [Google Scholar] [CrossRef]
- Yang, Z.; Qiu, N.; Yang, H.; Wang, Y. Vacancies-mediated atomic diffusion controlled by the interfacial structure of FCC/BCC HEA multilayers. J. Alloys Compd. 2023, 947, 169512. [Google Scholar] [CrossRef]
- Anamu, U.S.; Ayodele, O.O.; Olorundaisi, E.; Babalola, B.J.; Odetola, P.I.; Ogunmefun, A.; Ukoba, K.; Jen, T.C.; Olubambi, P.A. Fundamental design strategies for advancing the development of high entropy alloys for thermo-mechanical application: A critical review. J. Mater. Res. Technol. 2023, 27, 4833–4860. [Google Scholar] [CrossRef]
- Zhang, S.X.; Huang, X.M.; Cai, G.M. The strategy of design and preparation for outstanding precipitation strengthened HEAs based on diffusion couple. Mater. Des. 2022, 217, 110667. [Google Scholar] [CrossRef]
- Charkhchian, J.; Zarei-Hanzaki, A.; Moshiri, A.; Schwarz, T.M.; Lawitzki, R.; Schmitz, G.; Schell, N.; Shen, J.; Oliveira, J.P.; Waryoba, D.; et al. Unraveling the formation of L12 nano-precipitates within the FCC-phase in AlCoCrFeNi2.1 eutectic high entropy alloy. Vacuum 2024, 221, 112919. [Google Scholar] [CrossRef]
- Dastanpour, E.; Huang, S.; Ström, V.; Varga, L.K.; Vitos, L.; Schönecker, S. An assessment of the Al50Cr21−xMn17+xCo12 (x = 0, 4, 8) high-entropy alloys for magnetocaloric refrigeration application. J. Alloys Compd. 2024, 984, 173977. [Google Scholar] [CrossRef]
- Için, K. Investigation of phase transformation related magnetic properties of Ti addition to FeCoCuNiMn and FeCoCuNiAl high entropy alloys by vacuum arc melting. Mater. Today Commun. 2024, 39, 108821. [Google Scholar] [CrossRef]
- Brodie, J.; Wang, J.; Couzinié, J.P.; Heczko, M.; Mazánová, V.; Mills, M.J.; Ghazisaeidi, M. Stability of the B2 phase in refractory high entropy alloys containing aluminum. Acta Mater. 2024, 268, 119745. [Google Scholar] [CrossRef]
- He, Z.; Zhang, H.; Cheng, H.; Ge, M.; Si, T.; Che, L.; Zheng, K.; Zeng, L.; Wang, Q. Machine learning guided BCC or FCC phase prediction in high entropy alloys. J. Mater. Res. Technol. 2024, 29, 3477–3486. [Google Scholar] [CrossRef]
- Chen, C.; Han, X.; Zhang, Y.; Liaw, P.K.; Ren, J. Phase prediction of high-entropy alloys based on machine learning and an improved information fusion approach. Comput. Mater. Sci. 2024, 239, 112976. [Google Scholar] [CrossRef]
- Guo, Q.; Xu, X.; Pei, X.; Duan, Z.; Liaw, P.K.; Hou, H.; Zhao, Y. Predict the phase formation of high-entropy alloys by compositions. J. Mater. Res. Technol. 2023, 22, 3331–3339. [Google Scholar] [CrossRef]
- Shen, L.; Chen, L.; Huang, J.; He, J.; Li, Z.; Pan, J.; Chang, F.; Dai, P.; Tang, Q. Predicting phases and hardness of high entropy alloys based on machine learning. Intermetallics 2023, 162, 108030. [Google Scholar] [CrossRef]
- Yin, K.X.; Huang, Z.W.; Wu, B.L.; Zhang, G.J.; Tian, Q.W.; Wang, Y.N. Prediction of phase stabilities of solid solutions for high entropy alloys. Acta Mater. 2024, 263, 119445. [Google Scholar] [CrossRef]
Application | HEA Type | Key Performance Metrics | Reference |
---|---|---|---|
Nuclear reactor components | General HEAs | Enhanced thermal conductivity; resistance to creep; superior radiation damage resistance. | [86] |
High-temperature aerospace applications | RCCAs and RHEAs | Maintain strength up to 0.6–0.7 times melting temp; operate effectively within 1363–1941 K. | [9,91,92] |
High-stress turbine blades | Second-generation RHEAs | Balance of strength and ductility; Reduced density; strength maintained at elevated temperatures. | [94] |
Automotive and aerospace structural components | Cantor alloys and derivatives | High synergy of strength and ductility across temperatures; low-stacking-fault energy-enhancing twinning and TRIP effect; overcoming the strength–ductility trade-off through innovative alloying and processing techniques. | [14,96] |
Lightweight structural applications | Lightweight metastable HEAs (LMH) | Low density with high specific strength and large ductility; TRIP-assisted dual-phase stability. | [38] |
High-performance coatings | Various HEA families (refractory, transition metals) | Improved wear and corrosion resistance, thermal stability; suitable for extreme conditions like aerospace engines. | [6,7] |
Interfacial joining in manufacturing and aerospace | General HEAs | Improved wetting characteristics, high mechanical strength, excellent corrosion and oxidation resistance, suitable for high-temperature applications. | [90] |
Corrosion resistance in marine environments | AlNbTiZrSix HEAs | Corrosion resistance varies with Si content; passive films mainly consist of TiO2, Nb2O5, and ZrO2. Si addition generally decreases passive film stability and corrosion resistance, particularly in simulated seawater. | [76] |
Ultralong-life fatigue resistance in structural components | CoCrFeMnNi (single-phase FCC equiatomic) | Exceptional very high cycle fatigue regime performance up to 109 cycles, high strength and ductility, sensitivity to microstructural control and casting defects. | [97] |
Applications requiring enhanced wear resistance and hardness | AlCoCrFeNiTi0.2 | Enhanced hardness and wear resistance post-nitrogen ion implantation; phase transformation from r to BCC; increased hardness-to-Young’s modulus ratio, suggesting improved resistance to mechanical wear and cracking. | [98] |
Extreme environment applications | Refractory amorphous high-entropy alloys (RAHEAs) | Enhanced phase stability under extreme conditions; excellent performance under high-temperature annealing and irradiation; potential self-healing properties through nanoprecipitate reassembly enhancing radiation resistance. | [92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nartita, R.; Ionita, D.; Demetrescu, I. A Modern Approach to HEAs: From Structure to Properties and Potential Applications. Crystals 2024, 14, 451. https://doi.org/10.3390/cryst14050451
Nartita R, Ionita D, Demetrescu I. A Modern Approach to HEAs: From Structure to Properties and Potential Applications. Crystals. 2024; 14(5):451. https://doi.org/10.3390/cryst14050451
Chicago/Turabian StyleNartita, Radu, Daniela Ionita, and Ioana Demetrescu. 2024. "A Modern Approach to HEAs: From Structure to Properties and Potential Applications" Crystals 14, no. 5: 451. https://doi.org/10.3390/cryst14050451
APA StyleNartita, R., Ionita, D., & Demetrescu, I. (2024). A Modern Approach to HEAs: From Structure to Properties and Potential Applications. Crystals, 14(5), 451. https://doi.org/10.3390/cryst14050451