Ozone-Assisted Hydrothermal Synthesis Method of Sb-Doped SnO2 Conductive Nanoparticles for Carbon-Free Oxygen-Reduction-Reaction Catalysts of Proton-Exchange-Membrane Hydrogen Fuel Cells
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Preparation Method of SnO2 and Sb-SnO2 Nanoparticles
2.3. Preparation Method of Thin Films of SnO2 and Sb-SnO2
2.4. Preparation Method of Pt/SnO2 and Pt/5 at.% Sb-SnO2
2.5. Materials Characterizations
2.6. Electrochemical Characterization of Pt/SnO2 and Pt/Sb-SnO2
3. Result and Discussion
3.1. Material Characteristics of SnO2 and Sb-SnO2
3.2. Electrochemical Characteristics of Pt/SnO2 and Pt/Sb-SnO2
3.3. Stability of Pt/SnO2 and Pt/Sb-SnO2 as ORR Catalyst
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Zhang, T.; Wang, P.; Chen, H.; Pei, P. A Review of Automotive Proton Exchange Membrane Fuel Cell Degradation under Start-Stop Operating Condition. Appl. Energy 2018, 223, 249–262. [Google Scholar] [CrossRef]
- Dubau, L.; Lopez-Haro, M.; Castanheira, L.; Durst, J.; Chatenet, M.; Bayle-Guillemaud, P.; Guétaz, L.; Caqué, N.; Rossinot, E.; Maillard, F. Probing the Structure, the Composition and the ORR Activity of Pt3Co/C Nanocrystallites during a 3422 h PEMFC Ageing Test. Appl. Catal. B 2013, 142–143, 801–808. [Google Scholar] [CrossRef]
- Wang, L.; Wurster, P.; Gazdzicki, P.; Roussel, M.; Sanchez, D.G.; Guétaz, L.; Jacques, P.A.; Gago, A.S.; Andreas Friedrich, K. Investigation of Activity and Stability of Carbon Supported Oxynitrides with Ultra-Low Pt Concentration as ORR Catalyst for PEM Fuel Cells. J. Electroanal. Chem. 2018, 819, 312–321. [Google Scholar] [CrossRef]
- Kangasniemi, K.H.; Condit, D.A.; Jarvi, T.D. Characterization of Vulcan Electrochemically Oxidized under Simulated PEM Fuel Cell Conditions. J. Electrochem. Soc. 2004, 151, E125. [Google Scholar] [CrossRef]
- Gribov, E.N.; Kuznetsov, A.N.; Voropaev, I.N.; Golovin, V.A.; Simonov, P.A.; Romanenko, A.V.; Okunev, A.G. Analysis of the Corrosion Kinetic of Pt/C Catalysts Prepared on Different Carbon Supports Under the “Start-Stop” Cycling. Electrocatalysis 2015, 7, 159–173. [Google Scholar] [CrossRef]
- Meier, J.C.; Galeano, C.; Katsounaros, I.; Topalov, A.A.; Kostka, A.; Schüth, F.; Mayrhofer, K.J.J. Degradation Mechanisms of Pt/C Fuel Cell Catalysts under Simulated Start-Stop Conditions. ACS Catal. 2012, 2, 832–843. [Google Scholar] [CrossRef]
- Ohma, A.; Shinohara, K.; Iiyama, A.; Yoshida, T.; Daimaru, A. Membrane and Catalyst Performance Targets for Automotive Fuel Cells by FCCJ Membrane, Catalyst, MEA WG. ECS Trans. 2011, 41, 775–784. [Google Scholar]
- Reiser, C.A.; Bregoli, L.; Patterson, T.W.; Yi, J.S.; Yang, J.D.; Perry, M.L.; Jarvi, T.D. A Reverse-Current Decay Mechanism for Fuel Cells. Electrochem. Solid-State Lett. 2005, 8, A273–A276. [Google Scholar] [CrossRef]
- Smiljanić, M.; Bele, M.; Moriau, L.J.; Vélez Santa, J.F.; Menart, S.; Šala, M.; Hrnjić, A.; Jovanovič, P.; Ruiz-Zepeda, F.; Gaberšček, M.; et al. Suppressing Platinum Electrocatalyst Degradation via a High-Surface-Area Organic Matrix Support. ACS Omega 2022, 7, 3540–3548. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.M.; Yun, S.W.; Kim, J.H.; You, S.H.; Park, J.; Lee, S.; Chang, S.H.; Chae, S.C.; Joo, S.H.; Jung, Y.; et al. Selective Electrocatalysis Imparted by Metal–Insulator Transition for Durability Enhancement of Automotive Fuel Cells. Nat. Catal. 2020, 3, 639–648. [Google Scholar] [CrossRef]
- Ioroi, T.; Siroma, Z.; Fujiwara, N.; Yamazaki, S.I.; Yasuda, K. Sub-Stoichiometric Titanium Oxide-Supported Platinum Electrocatalyst for Polymer Electrolyte Fuel Cells. Electrochem. Commun. 2005, 7, 183–188. [Google Scholar] [CrossRef]
- Chiwata, M.; Kakinuma, K.; Wakisaka, M.; Uchida, M.; Deki, S.; Watanabe, M.; Uchida, H. Oxygen Reduction Reaction Activity and Durability of Pt Catalysts Supported on Titanium Carbide. Catalysts 2015, 5, 966–980. [Google Scholar] [CrossRef]
- Martín, A.J.; Chaparro, A.M. Influence of Operation Parameters on the Response of a PEMFC with Electrodeposited Pt-WO3 Cathode. Fuel Cells 2014, 14, 742–749. [Google Scholar] [CrossRef]
- Escalante-Garcia, I.L.; Duron-Torres, S.M.; Cruz, J.C.; Arguello-Hurtado, L.G. Electrochemical Characterization of IrO2-Pt and RuO2-Pt Mixtures as Bifunctional Electrodes for Unitized Regenerative Fuel Cells. J. New Mater. Electrochem. Syst. 2010, 13, 227–233. [Google Scholar]
- Altamirano-Gutiérrez, A.; Fernández, A.M.; Rodríguez Varela, F.J. Preparation and Characterization of Pt-CeO2 and Pt-Pd Electrocatalysts for the Oxygen Reduction Reaction in the Absence and Presence of Methanol in Alkaline Medium. Int. J. Hydrog. Energy 2013, 38, 12657–12666. [Google Scholar] [CrossRef]
- Ganesan, A.; Narayanasamy, M.; Shunmugavel, K. Self-Humidifying Manganese Oxide-Supported Pt Electrocatalysts for Highly-Durable PEM Fuel Cells. Electrochim. Acta 2018, 285, 47–59. [Google Scholar] [CrossRef]
- Ávila-Vázquez, V.; Galván-Valencia, M.; Ledesma-García, J.; Arriaga, L.G.; Collins-Martínez, V.H.; Guzman-Martınez, C.; Escalante-Garcia, I.L.; Durón-Torres, S.M. Electrochemical performance of a Sb-doped SnO2 support synthesized by coprecipitation for oxygen reactions. J. Appl. Electrochem. 2015, 45, 1175–1185. [Google Scholar] [CrossRef]
- Ma, Y.; Cui, B.; He, L.; Tian, K.; Zhang, Z.; Wang, M. A novel support for platinum electrocatalyst based on mesoporous carbon embedded with bimetallic SnTi oxide as a bifunctional electrocatalyst. J. Electroanal. Chem. 2019, 850, 113435. [Google Scholar] [CrossRef]
- Ozouf, G.; Cognard, G.; Maillard, F.; Chatenet, M.; Guétaz, L.; Heitzmann, M.; Jacques, P.A.; Beauger, C. Sb-Doped SnO2 Aerogels Based Catalysts for Proton Exchange Membrane Fuel Cells: Pt Deposition Routes, Electrocatalytic Activity and Durability. J. Electrochem. Soc. 2018, 165, F3036–F3044. [Google Scholar] [CrossRef]
- Kakati, N.; Maiti, J.; Jee, S.H.; Lee, S.H.; Yoon, Y.S. Hydrothermal Synthesis of PtRu on CNT/SnO2 Composite as Anode Catalyst for Methanol Oxidation Fuel Cell. J. Alloys Compd. 2011, 509, 5617–5622. [Google Scholar] [CrossRef]
- Tsukatsune, T.; Takabatake, Y.; Noda, Z.; Daio, T.; Zaitsu, A.; Lyth, S.M.; Hayashi, A.; Sasaki, K. Platinum-Decorated Tin Oxide and Niobium-Doped Tin Oxide PEFC Electrocatalysts: Oxygen Reduction Reaction Activity. J. Electrochem. Soc. 2014, 161, F1208–F1213. [Google Scholar] [CrossRef]
- Ozouf, G.; Cognard, G.; Maillard, F.; Guetaz, L.; Heitzmann, M.; Beauger, C. SnO2 Aerogels: Towards Performant and Stable PEMFC Catalyst Supports. ECS Trans. 2015, 69, 1207–1220. [Google Scholar] [CrossRef]
- Dou, M.; Hou, M.; Liang, D.; Lu, W.; Shao, Z.; Yi, B. SnO2 Nanocluster Supported Pt Catalyst with High Stability for Proton Exchange Membrane Fuel Cells. Electrochim. Acta 2013, 92, 468–473. [Google Scholar] [CrossRef]
- Cognard, G.; Ozouf, G.; Beauger, C.; Berthomé, G.; Riassetto, D.; Dubau, L.; Chattot, R.; Chatenet, M.; Maillard, F. Benefits and Limitations of Pt Nanoparticles Supported on Highly Porous Antimony-Doped Tin Dioxide Aerogel as Alternative Cathode Material for Proton-Exchange Membrane Fuel Cells. Appl. Catal. B 2017, 201, 381–390. [Google Scholar] [CrossRef]
- Takasaki, F.; Matsuie, S.; Takabatake, Y.; Noda, Z.; Hayashi, A.; Shiratori, Y.; Ito, K.; Sasaki, K. Carbon-Free Pt Electrocatalysts Supported on SnO2 for Polymer Electrolyte Fuel Cells: Electrocatalytic Activity and Durability. J. Electrochem. Soc. 2011, 158, B1270–B1275. [Google Scholar] [CrossRef]
- Cognard, G.; Ozouf, G.; Beauger, C.; Dubau, L.; López-Haro, M.; Chatenet, M.; Maillard, F. Insights into the Stability of Pt Nanoparticles Supported on Antimony-Doped Tin Oxide in Different Potential Ranges. Electrochim. Acta 2017, 245, 993–1004. [Google Scholar] [CrossRef]
- Fabbri, E.; Rabis, A.; Kötz, R.; Schmidt, T.J. Pt nanoparticles supported on Sb-doped SnO2 porous structures: Developments and issues. Phys. Chem. Chem. Phys. 2014, 16, 13672. [Google Scholar] [CrossRef] [PubMed]
- Spasov, D.D.; Ivanova, N.A.; Pushkarev, A.S.; Pushkareva, I.V.; Presnyakova, N.N.; Chumakov, R.G.; Presnyakov, M.Y.; Grigoriev, S.A.; Fateev, V.N. On the Influence of Composition and Structure of Carbon-Supported Pt-SnO2 Hetero-Clusters onto Their Electrocatalytic Activity and Durability in PEMFC. Catalysts 2019, 9, 803. [Google Scholar] [CrossRef]
- Manikandan, M.; Ramesh, G.V.; Tanabe, T.; Dakshnamoorthy, A.; Ariga, K.; Abe, H. Hierarchical SnO2 Nanostructure with High Energy {113} Facet as Pt-Support for Improved Oxygen Reduction Reaction. J. Nanosci. Nanotechnol. 2017, 17, 2929. [Google Scholar] [CrossRef]
- Du, C.; Chen, M.; Cao, X.; Yin, G.; Shi, P. A novel CNT@SnO2 core–sheath nanocomposite as a stabilizing support for catalysts of proton exchange membrane fuel cells. Electrochem. Commun. 2009, 11, 496–498. [Google Scholar] [CrossRef]
- Yatheendran, A.; Rajan, R.; Sandhyarani, N. Synergistic Effect of Oxygen Vacancy-Rich SnO2 and AgCl in the Augmentation of Sustained Oxygen Reduction Reaction. Langmuir 2023, 39, 11708–11719. [Google Scholar] [CrossRef]
- Kakinuma, K.; Uchida, M.; Kamino, T.; Uchida, H.; Watanabe, M. Synthesis and Electrochemical Characterization of Pt Catalyst Supported on Sn0.96Sb0.04O2-δ with a Network Structure. Electrochim. Acta 2011, 56, 2881–2887. [Google Scholar] [CrossRef]
- Kakinuma, K.; Chino, Y.; Senoo, Y.; Uchida, M.; Kamino, T.; Uchida, H.; Deki, S.; Watanabe, M. Characterization of Pt Catalysts on Nb-Doped and Sb-Doped SnO2-δ Support Materials with Aggregated Structure by Rotating Disk Electrode and Fuel Cell Measurements. Electrochim. Acta 2013, 110, 316–324. [Google Scholar] [CrossRef]
- Shi, G.; Hashimoto, T.; Tryk, D.A.; Tano, T.; Iiyama, A.; Uchida, M.; Kakinuma, K. Enhanced Oxygen Reduction Electrocatalysis on PtCoSn Alloy Nanocatalyst Mediated by Ta-Doped SnO2 Support for Polymer Electrolyte Fuel Cells. Electrochim. Acta 2021, 390, 138894. [Google Scholar] [CrossRef]
- Shi, G.; Tano, T.; Tryk, D.A.; Iiyama, A.; Uchida, M.; Kakinuma, K. Temperature Dependence of Oxygen Reduction Activity at Pt/Nb-Doped SnO2 Catalysts with Varied Pt Loading. ACS Catal. 2021, 11, 5222–5230. [Google Scholar] [CrossRef]
- Kakinuma, K.; Hayashi, M.; Hashimoto, T.; Iiyama, A.; Uchida, M. Enhancement of the Catalytic Activity and Load Cycle Durability of a PtCo Alloy Cathode Catalyst Supported on Ta-Doped SnO2 with a Unique Fused Aggregated Network Microstructure for Polymer Electrolyte Fuel Cells. ACS Appl. Energy Mater. 2020, 3, 6922–6928. [Google Scholar] [CrossRef]
- Kakinuma, K.; Suda, K.; Kobayashi, R.; Tano, T.; Arata, C.; Amemiya, I.; Watanabe, S.; Matsumoto, M.; Imai, H.; Iiyama, A.; et al. Electronic States and Transport Phenomena of Pt Nanoparticle Catalysts Supported on Nb-Doped SnO2 for Polymer Electrolyte Fuel Cells. ACS Appl. Mater. Interfaces 2019, 11, 34957–34963. [Google Scholar] [CrossRef]
- Takei, C.; Kobayashi, R.; Mizushita, Y.; Hiramitsu, Y.; Kakinuma, K.; Uchida, M. Platinum Anti-Dissolution Mechanism of Pt/Nb-SnO2 Cathode Catalyst Layer during Load Cycling in the Presence of Oxygen for Polymer Electrolyte Fuel Cells. J. Electrochem. Soc. 2018, 165, F1300–F1311. [Google Scholar] [CrossRef]
- Chino, Y.; Kakinuma, K.; Tryk, D.A.; Watanabe, M.; Uchida, M. Influence of Pt Loading and Cell Potential on the HF Ohmic Resistance of an Nb-Doped SnO2 -Supported Pt Cathode for PEFCs. J. Electrochem. Soc. 2016, 163, F97–F105. [Google Scholar] [CrossRef]
- Kakinuma, K.; Kobayashi, R.; Iiyama, A.; Uchida, M. Influence of Ionomer Content on Both Cell Performance and Load Cycle Durability for Polymer Electrolyte Fuel Cells Using Pt/Nb-SnO2 Cathode Catalyst Layers. J. Electrochem. Soc. 2018, 165, J3083–J3089. [Google Scholar] [CrossRef]
- Chino, Y.; Taniguchi, K.; Senoo, Y.; Kakinuma, K.; Hara, M.; Watanabe, M.; Uchida, M. Effect of Added Graphitized CB on Both Performance and Durability of Pt/Nb-SnO2 Cathodes for PEFCs. J. Electrochem. Soc. 2015, 162, F736–F743. [Google Scholar] [CrossRef]
- Senoo, Y.; Taniguchi, K.; Kakinuma, K.; Uchida, M.; Uchida, H.; Deki, S.; Watanabe, M. Cathodic Performance and High Potential Durability of Ta-SnO2-δ-Supported Pt Catalysts for PEFC Cathodes. Electrochem. Commun. 2015, 51, 37–40. [Google Scholar] [CrossRef]
- Senoo, Y.; Kakinuma, K.; Uchida, M.; Uchida, H.; Deki, S.; Watanabe, M. Improvements in Electrical and Electrochemical Properties of Nb-Doped SnO2-δ Supports for Fuel Cell Cathodes Due to Aggregation and Pt Loading. RSC Adv. 2014, 4, 32180–32188. [Google Scholar] [CrossRef]
- Mohamed, R.; Binninger, T.; Kooyman, P.J.; Hoell, A.; Fabbri, E.; Patru, A.; Heinritz, A.; Schmidt, T.J.; Levecque, P. Facile Deposition of Pt Nanoparticles on Sb-Doped SnO2 Support with Outstanding Active Surface Area for the Oxygen Reduction Reaction. Catal. Sci. Technol. 2018, 8, 2672–2685. [Google Scholar] [CrossRef]
- Jimenez-Morales, I.; Haidar, F.; Cavaliere, S.; Jones, D.; Roziere, J. Strong Interaction between Platinum Nanoparticles and Tantalum-Doped Tin Oxide Nanofibers and Its Activation and Stabilization Effects for Oxygen Reduction Reaction. ACS Catal. 2020, 10, 10399–10411. [Google Scholar] [CrossRef]
- Cavaliere, S.; Subianto, S.; Savych, I.; Tillard, M.; Jones, D.; Roziere, J. Dopant-Driven Nanostructured Loose-Tube SnO2 Architectures: Alternative Electrocatalyst Supports for Proton Exchange Membrane Fuel Cells. J. Phys. Chem. C. 2013, 117, 18298–18307. [Google Scholar] [CrossRef]
- He, C.; Wang, X.; Sankarasubramanian, S.; Yadav, A.; Bhattacharyya, K.; Liang, X.; Ramani, V. Highly Durable and Active Pt/Sb-Doped SnO2 Oxygen Reduction Reaction Electrocatalysts Produced by Atomic Layer Deposition. ACS Appl. Energy Mater. 2020, 3, 5774–5783. [Google Scholar] [CrossRef]
- Min, H.; Lee, D.Y.; Kim, J.; Kim, G.; Lee, K.S.; Kim, J.; Paik, M.J.; Kim, Y.K.; Kim, K.S.; Kim, M.G.; et al. Perovskite Solar Cells with Atomically Coherent Interlayers on SnO2 Electrodes. Nature 2021, 598, 444–450. [Google Scholar] [CrossRef]
- Isono, T.; Fukuda, T.; Nakagawa, K.; Usui, R.; Satoh, R.; Morinaga, E.; Mihara, Y. Highly Conductive SnO2 Thin Films for Flat-Panel Displays. J. Soc. Inf. Disp. 2007, 15, 161. [Google Scholar] [CrossRef]
- Wei, B.Y.; Hsu, M.C.; Su, P.G.; Lin, H.M.; Wu, R.J.; Lai, H.J. A Novel SnO2 Gas Sensor Doped with Carbon Nanotubes Operating at Room Temperature. Sens. Actuators B Chem. 2004, 101, 81–89. [Google Scholar] [CrossRef]
- Iimura, K.; Ando, S.; Kikuchi, T.; Fujita, Y.; Satone, H.; Suzuki, M. Synthesis of SnO2 Quantum Dots via Ozone Assisted Process. J. Soc. Powder Technol. Jpn. 2017, 54, 609–615. [Google Scholar] [CrossRef]
- Lekshmy, S.S.; Daniel, G.P.; Joy, K. Microstructure and Physical Properties of Sol Gel Derived SnO2: Sb Thin Films for Optoelectronic Applications. Appl. Surf. Sci. 2013, 274, 95–100. [Google Scholar] [CrossRef]
- Peters, K.; Zeller, P.; Stefanic, G.; Skoromets, V.; Němec, H.; Kužel, P.; Fattakhova-Rohlfing, D. Water-Dispersible Small Monodisperse Electrically Conducting Antimony Doped Tin Oxide Nanoparticles. Chem. Mater. 2015, 27, 1090–1099. [Google Scholar] [CrossRef]
- Orfanidi, A.; Daletou, M.K.; Neophytides, S.G. Preparation and Characterization of Pt on Modified Multi-Wall Carbon Nanotubes to be used as Electrocatalysts for High Temperature Fuel Cell Applications. Appl. Catal. B 2011, 106, 379–389. [Google Scholar] [CrossRef]
- Nbelayim, P.; Ashida, Y.; Maegawa, K.; Kawamura, G.; Muto, H.; Matsuda, A. Preparation and Characterization of Stable and Active Pt@TiO2 Core-Shell Nanoparticles as Electrocatalyst for Application in PEMFCs. ACS Appl. Energy Mater. 2020, 3, 3269–3281. [Google Scholar] [CrossRef]
- Xu, J.M.; Li, L.; Wang, S.; Ding, H.L.; Zhang, Y.X.; Li, G.H. Influence of Sb Doping on the Structural and Optical Properties of Tin Oxide Nanocrystals. CrystEngCom. 2013, 15, 3296–3300. [Google Scholar] [CrossRef]
- Tauster, S.J.; Fung, S.C.; Garten, R.L. Strong Metal-Support Interactions. Group 8 Noble Metals Supported on TiO2. J. Am. Chem. Soc. 1978, 100, 170–175. [Google Scholar] [CrossRef]
- Smiljanić, M.; Panić, S.; Bele, M.; Ruiz-Zepeda, F.; Pavko, L.; Gašparič, L.; Kokalj, A.; Gaberšček, M.; Hodnik, N. Improving the HER Activity and Stability of Pt Nanoparticlesby Titanium Oxynitride Support. ACS Catal. 2022, 12, 13021–13033. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Gao, W.; Shan, H.; Chen, W.; Shang, W.; Tao, P.; Song, C.; Addiego, C.; Deng, T.; Pan, X.; et al. Platinum-Based Nanowires as Active Catalysts toward Oxygen Reduction Reaction: In Situ Observation of Surface Diffusion-Assisted, Solid-State Oriented Attachment. Adv. Mater. 2017, 29, 1703460. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhao, Z.; Cheng, T.; Fortunelli, A.; Chen, C.-Y.; Yu, R.; Zhang, Q.; Gu, L.; Merinov, B.V.; Lin, Z.; et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419. [Google Scholar] [CrossRef]
Sample | Sn/Sb Ratio/at.% | |
---|---|---|
Sn | Sb | |
5 at.% Sb-SnO2 | 95.0 | 5.01 |
10 at.% Sb-SnO2 | 92.1 | 7.94 |
Sb Synthesizing Concentration (at.%) | Crystallite Size from XRD/nm | Average Particle Size from TEM/nm | Crystal/Shape Size Ratio |
---|---|---|---|
Ozone SnO2 | 1.44 | 3.99 | 0.361 |
Ozone-hydrothermal SnO2 | 8.56 | 11.19 | 0.765 |
Ozone-hydrothermal 5 at.%-Sb-SnO2 | 5.86 | 6.63 | 0.884 |
Ozone-hydrothermal 10 at.%-Sb-SnO2 | 4.30 | 4.85 | 0.887 |
Sb Synthesizing Concentration (at.%) | Sb Concentration by XRF (at.%) | Sheet Resistance (Ω·sq−1) | Film Thickness (nm) | Conductivity (S·cm−1) |
---|---|---|---|---|
0 | - | >107 (over range) | 939 ± 54 | - |
5 | 5.01 | 4.03 ± 2.8 × 104 | 1150 ± 231 | 0.25 ± 0.12 |
10 | 7.94 | 1.68 ± 0.8 × 105 | 950 ± 31 | 0.11 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fukuda, T.; Iimura, K.; Yamamoto, T.; Tsuji, R.; Tanabe, M.; Nakashima, S.; Fukumuro, N.; Ito, S. Ozone-Assisted Hydrothermal Synthesis Method of Sb-Doped SnO2 Conductive Nanoparticles for Carbon-Free Oxygen-Reduction-Reaction Catalysts of Proton-Exchange-Membrane Hydrogen Fuel Cells. Crystals 2024, 14, 462. https://doi.org/10.3390/cryst14050462
Fukuda T, Iimura K, Yamamoto T, Tsuji R, Tanabe M, Nakashima S, Fukumuro N, Ito S. Ozone-Assisted Hydrothermal Synthesis Method of Sb-Doped SnO2 Conductive Nanoparticles for Carbon-Free Oxygen-Reduction-Reaction Catalysts of Proton-Exchange-Membrane Hydrogen Fuel Cells. Crystals. 2024; 14(5):462. https://doi.org/10.3390/cryst14050462
Chicago/Turabian StyleFukuda, Takeshi, Kenji Iimura, Takanori Yamamoto, Ryuki Tsuji, Maito Tanabe, Seiji Nakashima, Naoki Fukumuro, and Seigo Ito. 2024. "Ozone-Assisted Hydrothermal Synthesis Method of Sb-Doped SnO2 Conductive Nanoparticles for Carbon-Free Oxygen-Reduction-Reaction Catalysts of Proton-Exchange-Membrane Hydrogen Fuel Cells" Crystals 14, no. 5: 462. https://doi.org/10.3390/cryst14050462
APA StyleFukuda, T., Iimura, K., Yamamoto, T., Tsuji, R., Tanabe, M., Nakashima, S., Fukumuro, N., & Ito, S. (2024). Ozone-Assisted Hydrothermal Synthesis Method of Sb-Doped SnO2 Conductive Nanoparticles for Carbon-Free Oxygen-Reduction-Reaction Catalysts of Proton-Exchange-Membrane Hydrogen Fuel Cells. Crystals, 14(5), 462. https://doi.org/10.3390/cryst14050462