Enhanced Supercapacitor Performance by Harnessing Carbon Nanoparticles and Colloidal SnO2 Quantum Dots
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hossain, E.; Faruque, H.M.R.; Sunny, M.S.H.; Mohammad, N.; Nawar, N. A Comprehensive Review on Energy Storage Systems: Types, Comparison, Current Scenario, Applications, Barriers, and Potential Solutions, Policies, and Future Prospects. Energies 2020, 13, 3651. [Google Scholar] [CrossRef]
- Yadlapalli, R.T.; Alla, R.R.; Kandipati, R.; Kotapati, A. Super capacitors for energy storage: Progress, applications and challenges. J. Energy Storage 2022, 49, 104194. [Google Scholar] [CrossRef]
- Kumar, N.; Kim, S.-B.; Lee, S.-Y.; Park, S.-J. Recent Advanced Supercapacitor: A Review of Storage Mechanisms, Electrode Materials, Modification, and Perspectives. Nanomaterials 2022, 12, 3708. [Google Scholar] [CrossRef] [PubMed]
- Tatrari, G.; Karakoti, M.; Tewari, C.; Pandey, S.; Bohra, B.S.; Dandapat, A.; Sahoo, N.G. Solid waste-derived carbon nanomaterials for supercapacitor applications: A recent overview. Mater. Adv. 2021, 2, 1454–1484. [Google Scholar] [CrossRef]
- Yadav, S.; Daniel, S. Green synthesis of zero-dimensional carbon nanostructures in energy storage applications—A review. Energy Storage 2024, 6, e500. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, F.-G.; Liu, L.-N.; Xu, Z.-W.; Xie, G.; Li, J.; Gao, T.; Li, W.; Li, W.-S. Carbon Nanomaterials-Enabled High-Performance Supercapacitors: A Review. Adv. Energy Sustain. Res. 2023, 4, 2200152. [Google Scholar] [CrossRef]
- Xu, Q.; Niu, Y.; Li, J.; Yang, Z.; Gao, J.; Ding, L.; Ni, H.; Zhu, P.; Liu, Y.; Tang, Y.; et al. Recent progress of quantum dots for energy storage applications. Carbon Neutrality 2022, 1, 13. [Google Scholar] [CrossRef]
- Liao, S.-Y.; Chen, J.; Cui, S.-F.; Shang, J.-Q.; Li, Y.-Z.; Cheng, W.-X.; Liu, Y.-D.; Cui, T.-T.; Shu, X.-G.; Min, Y.-G. CoS2 enhanced SnO2@rGO heterostructure quantum dots for advanced lithium-ion battery anode. J. Power Sources 2023, 553, 232265. [Google Scholar] [CrossRef]
- Yadav, M.S. Metal oxides nanostructure-based electrode materials for supercapacitor application. J. Nanoparticle Res. 2020, 22, 367. [Google Scholar] [CrossRef]
- Abou-Elyazed, A.S.; Hassan, S.; Ashry, A.G.; Hegazy, M. Facile, Efficient, and Cheap Electrode based on SnO2/Activated Carbon Waste for Supercapacitor and Capacitive Deionization Applications. ACS Omega 2022, 7, 19714–19720. [Google Scholar] [CrossRef]
- Wang, B.; Guan, D.; Gao, Z.; Wang, J.; Li, Z.; Yang, W.; Liu, L. Preparation of graphene nanosheets/SnO2 composites by pre-reduction followed by in-situ reduction and their electrochemical performances. Mater. Chem. Phys. 2013, 141, 1–8. [Google Scholar] [CrossRef]
- Kumar, R.; Nekouei, R.K.; Sahajwalla, V. In-situ carbon-coated tin oxide (ISCC-SnO2) for micro-supercapacitor applications. Carbon Lett. 2020, 30, 699–707. [Google Scholar] [CrossRef]
- Selvan, R.K.; Perelshtein, I.; Perkas, N.; Gedanken, A. Synthesis of Hexagonal-Shaped SnO2 Nanocrystals and SnO2@C Nanocomposites for Electrochemical Redox Supercapacitors. J. Phys. Chem. C 2008, 112, 1825–1830. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, S.; Song, X.; Guo, Y.; Si, D.; Jing, H.; Ma, S.; Hao, C.; Ji, M. Sn@SnO2 attached on carbon spheres as additive-free electrode for high-performance pseudocapacitor. Electrochim. Acta 2016, 209, 350–359. [Google Scholar] [CrossRef]
- Kedara Shivasharma, T.; Sahu, R.; Rath, M.C.; Keny, S.J.; Sankapal, B.R. Exploring tin oxide based materials: A critical review on synthesis, characterizations and supercapacitive energy storage. Chem. Eng. J. 2023, 477, 147191. [Google Scholar] [CrossRef]
- Wang, L.; He, Y.; Liu, D.; Liu, L.; Chen, H.; Hu, Q.; Liu, X.; Zhou, A. SnO2 Quantum Dots Interspersed d-Ti3C2Tx MXene Heterostructure with Enhanced Performance for Lithium Ion Battery. J. Electrochem. Soc. 2020, 167, 116522. [Google Scholar] [CrossRef]
- Neelakanta Reddy, I.; Akkinepally, B.; Siva Kumar, N.; Asif, M.; Shim, J.; Bai, C. SnO2 nanoparticles anchored on carbon spheres for enhanced charge generation and potentiodynamic effects. J. Electroanal. Chem. 2023, 937, 117411. [Google Scholar] [CrossRef]
- Geng, J.; Ma, C.; Zhang, D.; Ning, X. Facile and fast synthesis of SnO2 quantum dots for high performance solid-state asymmetric supercapacitor. J. Alloys Compd. 2020, 825, 153850. [Google Scholar] [CrossRef]
- Vargheese, S.; Kumar, R.S.; Kumar, R.T.R.; Shim, J.J.; Haldorai, Y. Binary metal oxide (MnO2/SnO2) nanostructures supported triazine framework-derived nitrogen-doped carbon composite for symmetric supercapacitor. J. Energy Storage 2023, 68, 9. [Google Scholar] [CrossRef]
- Veeresh, S.; Ganesha, H.; Nagaraju, Y.S.; Vijeth, H.; Devendrappa, H. Activated carbon incorporated graphene oxide with SnO2 and TiO2-Zn nanocomposite for supercapacitor application. J. Alloys Compd. 2023, 952, 11. [Google Scholar] [CrossRef]
- Babu, B.; Babu Eadi, S.; Yoo, J.; Lee, H.-D.; Yoo, K. Core@shell nanorods for enhancing supercapacitor performance: ZnWO4 nanorods decorated with colloidal SnO2 quantum dots. Mater. Lett. 2023, 343, 134389. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, Z.; Zhang, Z.; Zhang, L.; Xue, Y.; Yang, J.; Peng, C. Rational construction of well-defined hollow double shell SnO2/mesoporous carbon spheres heterostructure for supercapacitors. J. Alloys Compd. 2021, 873, 159810. [Google Scholar] [CrossRef]
- Ren, S.; Yang, Y.; Xu, M.; Cai, H.; Hao, C.; Wang, X. Hollow SnO2 microspheres and their carbon-coated composites for supercapacitors. Colloids Surf. A Physicochem. Eng. Asp. 2014, 444, 26–32. [Google Scholar] [CrossRef]
- He, C.; Xiao, Y.; Dong, H.; Liu, Y.; Zheng, M.; Xiao, K.; Liu, X.; Zhang, H.; Lei, B. Mosaic-Structured SnO2@C Porous Microspheres for High-Performance Supercapacitor Electrode Materials. Electrochim. Acta 2014, 142, 157–166. [Google Scholar] [CrossRef]
- Mu, J.; Chen, B.; Guo, Z.; Zhang, M.; Zhang, Z.; Shao, C.; Liu, Y. Tin oxide (SnO2) nanoparticles/electrospun carbon nanofibers (CNFs) heterostructures: Controlled fabrication and high capacitive behavior. J. Colloid Interface Sci. 2011, 356, 706–712. [Google Scholar] [CrossRef] [PubMed]
- Tovar-Martinez, E.; Sanchez-Rodriguez, C.E.; Sanchez-Vasquez, J.D.; Reyes-Reyes, M.; López-Sandoval, R. Synthesis of carbon spheres from glucose using the hydrothermal carbonization method for the fabrication of EDLCs. Diam. Relat. Mater. 2023, 136, 110010. [Google Scholar] [CrossRef]
- Phattharasupakun, N.; Wutthiprom, J.; Suktha, P.; Iamprasertkun, P.; Chanlek, N.; Shepherd, C.; Hadzifejzovic, E.; Moloney, M.; Foord, J.S.; Sawangphruk, M. High-performance supercapacitors of carboxylate-modified hollow carbon nanospheres coated on flexible carbon fibre paper: Effects of oxygen-containing group contents, electrolytes and operating temperature. Electrochim. Acta 2017, 238, 64–73. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, J.; Zhang, Y.; Lu, L.; Chai, Y.; Yuan, R.; Yang, X. Ion exchange for synthesis of porous CuxO/SnO2/ZnSnO3 microboxes as a high-performance lithium-ion battery anode. New J. Chem. 2018, 42, 12008–12012. [Google Scholar] [CrossRef]
- Wu, Y.; Lin, Y.; Xu, J. Synthesis of Ag–Ho, Ag–Sm, Ag–Zn, Ag–Cu, Ag–Cs, Ag–Zr, Ag–Er, Ag–Y and Ag–Co metal organic nanoparticles for UV-Vis-NIR wide-range bio-tissue imaging. Photochem. Photobiol. Sci. 2019, 18, 1081–1091. [Google Scholar] [CrossRef]
- Cao, Y.; He, T.; Zhao, L.; Wang, E.; Yang, W.; Cao, Y. Structure and phase transition behavior of Sn4+-doped TiO2 nanoparticles. J. Phys. Chem. C 2009, 113, 18121–18124. [Google Scholar] [CrossRef]
- Sahu, B.K.; Das, A. Significance of oxygen defects in SnO2 quantum dots as hybrid electrochemical capacitors. J. Phys. Chem. Solids 2019, 129, 293–297. [Google Scholar] [CrossRef]
- Asaithambi, S.; Sakthivel, P.; Karuppaiah, M.; Sankar, G.U.; Balamurugan, K.; Yuvakkumar, R.; Thambidurai, M.; Ravi, G. Investigation of electrochemical properties of various transition metals doped SnO2 spherical nanostructures for supercapacitor applications. J. Energy Storage 2020, 31, 101530. [Google Scholar] [CrossRef]
- Babu, B.; Harish, V.V.N.; Koutavarapu, R.; Shim, J.; Yoo, K. Enhanced visible-light-active photocatalytic performance using CdS nanorods decorated with colloidal SnO2 quantum dots: Optimization of core–shell nanostructure. J. Ind. Eng. Chem. 2019, 76, 476–487. [Google Scholar] [CrossRef]
- Thirumal, V.; Rajkumar, P.; Babu, B.; Kim, J.-H.; Yoo, K. Performance of asymmetric hybrid supercapacitor device based on antimony-titanium carbide MXene composite. J. Alloys Compd. 2024, 982, 173598. [Google Scholar] [CrossRef]
- Babu, B.; Kim, J.; Yoo, K. Improved solar light-driven photoelectrochemical performance of cadmium sulfide-tin oxide quantum dots core-shell nanorods. Mater. Lett. 2020, 274, 128005. [Google Scholar] [CrossRef]
- Xiao, X.; Han, B.; Chen, G.; Wang, L.; Wang, Y. Preparation and electrochemical performances of carbon sphere@ZnO core-shell nanocomposites for supercapacitor applications. Sci. Rep. 2017, 7, 40167. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salunkhe, T.T.; Bathula, B.; Kim, I.T.; Thirumal, V.; Yoo, K. Enhanced Supercapacitor Performance by Harnessing Carbon Nanoparticles and Colloidal SnO2 Quantum Dots. Crystals 2024, 14, 482. https://doi.org/10.3390/cryst14060482
Salunkhe TT, Bathula B, Kim IT, Thirumal V, Yoo K. Enhanced Supercapacitor Performance by Harnessing Carbon Nanoparticles and Colloidal SnO2 Quantum Dots. Crystals. 2024; 14(6):482. https://doi.org/10.3390/cryst14060482
Chicago/Turabian StyleSalunkhe, Tejaswi Tanaji, Babu Bathula, Il Tae Kim, Vediyappan Thirumal, and Kisoo Yoo. 2024. "Enhanced Supercapacitor Performance by Harnessing Carbon Nanoparticles and Colloidal SnO2 Quantum Dots" Crystals 14, no. 6: 482. https://doi.org/10.3390/cryst14060482
APA StyleSalunkhe, T. T., Bathula, B., Kim, I. T., Thirumal, V., & Yoo, K. (2024). Enhanced Supercapacitor Performance by Harnessing Carbon Nanoparticles and Colloidal SnO2 Quantum Dots. Crystals, 14(6), 482. https://doi.org/10.3390/cryst14060482