Completing the Ba–As Compositional Space: Synthesis and Characterization of Three New Binary Zintl Arsenides, Ba3As4, Ba5As4, and Ba16As11
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
CAUTION! Arsenic and arsenic-containing compounds are highly hazardous. Proper personal protective equipment should be utilized when handling arsenic-containing compounds. Arsenic sublimes at 614 °C, which is significantly below the synthetic temperatures for these materials. As arsane gas can form from the slow hydrolysis of arsenide-bearing compounds, reactions must be performed in contained, well-ventilated areas, and crucibles and lab equipment may not be cleaned with water prior to slow oxidation. Arsenic may react with niobium at high temperatures with the formation of unadvertised side products.
2.2. Structural Characterization
2.3. Electronic Structure Calculations
3. Results and Discussion
3.1. Synthesis
3.2. Crystal Structure and Bonding
3.2.1. Crystal Structure of Ba3As4
3.2.2. Crystal Structure of Ba5As4
3.2.3. Crystal Structure of Ba16As11
3.2.4. Structural Relationships and Charge Balance Considerations
3.3. Electronic Structure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nesper, R. The Zintl-Klemm concept—A historical survey. Z. Anorg. Allg. Chem. 2014, 640, 2639–2648. [Google Scholar] [CrossRef]
- Kauzlarich, S.M. Zintl Phases: From Curiosities to Impactful Materials. Chem. Mater. 2023, 35, 7355–7362. [Google Scholar] [CrossRef] [PubMed]
- Baranets, S.; Ovchinnikov, A.; Bobev, S. Structural diversity of the Zintl pnictides with rare-earth metals. In Handbook on the Physics and Chemistry of Rare Earths; Elsevier: Amsterdam, The Netherlands, 2021; Volume 60, pp. 227–324. [Google Scholar]
- Islam, M.M.; Kauzlarich, S.M. The Potential of Arsenic-based Zintl Phases as Thermoelectric Materials: Structure & Thermoelectric Properties. Z. Anorg. Allg. Chem. 2023, 649, e202300149. [Google Scholar]
- Liu, K.-F.; Xia, S.-Q. Recent progresses on thermoelectric Zintl phases: Structures, materials and optimization. J. Solid State Chem. 2019, 270, 252–264. [Google Scholar] [CrossRef]
- Akopov, G.; Mark, J.; Viswanathan, G.; Lee, S.J.; McBride, B.C.; Won, J.; Perras, F.A.; Paterson, A.L.; Yuan, B.; Sen, S. Third time’s the charm: Intricate non-centrosymmetric polymorphism in LnSiP3 (Ln = La and Ce) induced by distortions of phosphorus square layers. Dalton Trans. 2021, 50, 6463–6476. [Google Scholar] [CrossRef] [PubMed]
- Ishtiyak, M.; Samarakoon, S.G.K.; Don, T.K.; Watts, S.R.; Baranets, S. Novel ternary Zintl phosphide halides Ba3P5X (X = Cl, Br) with 1D helical phosphorus chains: Synthesis, crystal and electronic structure. Nanoscale 2024, 16, 7916–7925. [Google Scholar] [CrossRef] [PubMed]
- Gascoin, F.; Sevov, S.C. Synthesis and Characterization of the “Metallic Salts” A5Pn4 (A = K, Rb, Cs and Pn = As, Sb, Bi) with Isolated Zigzag Tetramers of Pn44− and an Extra Delocalized Electron. Inorg. Chem. 2001, 40, 5177–5181. [Google Scholar] [CrossRef]
- Rehr, A.; Kauzlarich, S.M. Sr11Sb10. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1994, 50, 1859–1861. [Google Scholar] [CrossRef]
- Liang, Y.; Cardoso-Gil, R.; Schnelle, W.; Zhao, J.-T.; Grin, Y. Synthesis, crystal structure and physical properties of Yb11Bi10−xSnx. Solid State Sci. 2013, 18, 127–130. [Google Scholar] [CrossRef]
- Hu, Y.; Cerretti, G.; Wille, E.L.K.; Bux, S.K.; Kauzlarich, S.M. The remarkable crystal chemistry of the Ca14AlSb11 structure type, magnetic and thermoelectric properties. J. Solid State Chem. 2019, 271, 88–102. [Google Scholar] [CrossRef]
- Ovchinnikov, A.; Bobev, S. Zintl phases with group 15 elements and the transition metals: A brief overview of pnictides with diverse and complex structures. J. Solid State Chem. 2019, 270, 346–359. [Google Scholar] [CrossRef]
- Dolyniuk, J.-A.; He, H.; Ivanov, A.S.; Boldyrev, A.I.; Bobev, S.; Kovnir, K. Ba and Sr binary phosphides: Synthesis, crystal structures, and bonding analysis. Inorg. Chem. 2015, 54, 8608–8616. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, A.V.; Hlukhyy, V.; Fässler, T.F. Crystal structure of undecacalcium decaarsenide, Ca11As10. Z. Für Krist. New Cryst. Struct. 2023, 238, 1–3. [Google Scholar] [CrossRef]
- Baranets, S.; Ovchinnikov, A.; Samarakoon, S.G.K.; Bobev, S. Synthesis, crystal and electronic structure of the Zintl phase Ba16Sb11. A case study uncovering greater structural complexity via monoclinic distortion of the tetragonal Ca16Sb11 structure type. Z. Anorg. Und Allg. Chem. 2023, 649, e202300148. [Google Scholar] [CrossRef]
- Samarakoon, S.G.K.; Ovchinnikov, A.; Baranets, S.; Bobev, S. Ba5Sb8: The Highest Homologue of the Family of Binary Semiconducting Barium Antimonides BanSb2n−2 (n ≥ 2). Inorganics 2023, 12, 3. [Google Scholar] [CrossRef]
- Dobrokhotova, Z.V.; Zaitsev, A.; Zemchenko, M.; Litvina, A.; Mogutnov, B.; Yaschenko, S. Thermodynamic properties of calcium and barium phosphides. J. Therm. Anal. 1992, 38, 1113–1122. [Google Scholar] [CrossRef]
- Hoffmann, A.V.; Hlukhyy, V.; Fässler, T.F. Ca4As3—A new binary calcium arsenide. Acta Crystallogr. Sect. E Crystallogr. Commun. 2015, 71, 1548–1550. [Google Scholar] [CrossRef]
- Baranets, S.; Darone, G.M.; Bobev, S. Structural diversity among multinary pnictide oxides: A minireview focused on semiconducting and superconducting heteroanionic materials. Z. Für Krist. Cryst. Mater. 2022, 237, 1–26. [Google Scholar] [CrossRef]
- Shen, J.; Hegde, V.I.; He, J.; Xia, Y.; Wolverton, C. High-throughput computational discovery of ternary mixed-anion oxypnictides. Chem. Mater. 2021, 33, 9486–9500. [Google Scholar] [CrossRef]
- Rahim, W.; Skelton, J.M.; Scanlon, D.O. Ca4Sb2O and Ca4Bi2O: Two promising mixed-anion thermoelectrics. J. Mater. Chem. A 2021, 9, 20417–20435. [Google Scholar] [CrossRef]
- SAINT; BrukerAXS Inc.: Fitchburg, WI, USA, 2014.
- SADABS; BrukerAXS Inc.: Fitchburg, WI, USA, 2014.
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. XPREP; Bruker AXS Inc.: Madison, WI, USA, 2018. [Google Scholar]
- Gelato, L.; Parthé, E. STRUCTURE TIDY—A computer program to standardize crystal structure data. J. Appl. Crystallogr. 1987, 20, 139–143. [Google Scholar] [CrossRef]
- Krier, G.; Jepsen, O.; Burkhardt, A.; Andersen, O. The TB-LMTO-ASA Program; Max-Planck-Institut für Festkörperforschung: Stuttgart, Germany, 1995. [Google Scholar]
- Von Barth, U.; Hedin, L. A local exchange-correlation potential for the spin polarized case. i. J. Phys. C Solid State Phys. 1972, 5, 1629. [Google Scholar] [CrossRef]
- Dronskowski, R.; Bloechl, P.E. Crystal orbital Hamilton populations (COHP): Energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 1993, 97, 8617–8624. [Google Scholar] [CrossRef]
- Hermann, F.S. Pnictogenide and Chalcogenide Zintl Phases via Solid State and Solvothermal Syntheses; Universitäts-und Landesbibliothek Bonn: Bonn, Germany, 2022. [Google Scholar]
- Leon-Escamilla, E.A.; Hurng, W.-M.; Peterson, E.S.; Corbett, J.D. Synthesis, structure, and properties of Ca16Sb11, a complex Zintl phase. Twelve other isotypic compounds formed by divalent metals and pnictogens. Inorg. Chem. 1997, 36, 703–710. [Google Scholar] [CrossRef]
- Li, B.; Mudring, A.-V.; Corbett, J.D. Valence compounds versus metals. Synthesis, characterization, and electronic structures of cubic Ae4Pn3 phases in the systems Ae = Ca, Sr, Ba, Eu; Pn = As, Sb, Bi. Inorg. Chem. 2003, 42, 6940–6945. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef]
- Jain, A.; Hautier, G.; Ong, S.P.; Moore, C.J.; Fischer, C.C.; Persson, K.A.; Ceder, G. Formation enthalpies by mixing GGA and GGA + U calculations. Phys. Rev. B 2011, 84, 045115. [Google Scholar] [CrossRef]
- Ong, S.P.; Wang, L.; Kang, B.; Ceder, G. Li−Fe−P−O2 phase diagram from first principles calculations. Chem. Mater. 2008, 20, 1798–1807. [Google Scholar] [CrossRef]
- Emmerling, F.; Petri, D.; Röhr, C. Neue Arsenide mit As−-Ketten und-Ringen: BaAs2 und AIBa2As5 (AI = K, Rb). Z. Anorg. Allg. Chem. 2004, 630, 2490–2501. [Google Scholar] [CrossRef]
- Bauhofer, W.; Wittmann, M.; Schnering, H. Structure, electrical and magnetic properties of CaAs3, SrAs3, BaAs3 and EuAs3. J. Phys. Chem. Solids 1981, 42, 687–695. [Google Scholar] [CrossRef]
- Schmettow, W.; von Schnering, H.G. Ba3As14, The First Compound with the Cluster Anion As. Angew. Chem. Int. Ed. Engl. 1977, 16, 857. [Google Scholar] [CrossRef]
- Saal, J.E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C. Materials design and discovery with high-throughput density functional theory: The open quantum materials database (OQMD). Jom 2013, 65, 1501–1509. [Google Scholar] [CrossRef]
- Kirklin, S.; Saal, J.E.; Meredig, B.; Thompson, A.; Doak, J.W.; Aykol, M.; Rühl, S.; Wolverton, C. The Open Quantum Materials Database (OQMD): Assessing the accuracy of DFT formation energies. npj Comput. Mater. 2015, 1, 15010. [Google Scholar] [CrossRef]
- von Schnering, H.-G.; Wittmann, M.; Sommer, D. Zur Chemie und Strukturchemie der Phosphide und Polyphosphide. 35 [1]. Z. Für Anorg. Und Allg. Chem. 1984, 510, 61–71. [Google Scholar] [CrossRef]
- Derrien, G.; Tillard, M.; Manteghetti, A.; Belin, C. Phosphorus Oligomerization in Zintl Phases: Synthesis, Crystal Structure, and Bonding Analysis of Mixed Alkali and Alkaline-Earth Metal Phosphides. Z. Anorg. Allg. Chem. 2003, 629, 1601–1609. [Google Scholar] [CrossRef]
- Deller, K.; Eisenmann, B. Die Kristallstruktur des Sr3As4. Z. Fuer Naturforschung Teil B Anorg. Chem. Org. Chem. Biochem. Biophys. Biol. 1977, 32, 1368–1370. [Google Scholar]
- Wang, Y.; Calvert, L.; Gabe, E.; Taylor, J. Structure of europium arsenide Eu5As4: A more symmetrical version of the Sm5Ge4-type structure. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1978, 34, 1962–1965. [Google Scholar] [CrossRef]
- Wang, Y.; Calvert, L.; Smart, M.; Taylor, J.; Gabe, E. The structure of trieuropium tetraarsenide. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1979, 35, 2186–2188. [Google Scholar] [CrossRef]
- Derrien, G.; Monconduit, L.; Tillard, M.; Belin, C. Pentabarium tetraantimonide, β-Ba5Sb4: A more symmetrical arrangement for the Ba5Sb4 compound. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1999, 55, 1044–1046. [Google Scholar] [CrossRef]
- Brechtel, E.; Cordier, G.; Schäfer, H. Ba5Sb4-das erste Erdalkalipnictid mit GdsSi4-Struktur/Ba5Sb4-The First Alkaline Earth Pnictide with the Gd5Si4 Structure Type. Z. Für Naturforschung B 1981, 36, 1341–1342. [Google Scholar] [CrossRef]
- von Schnering, H.; Wittmann, M.; Sommer, D. Eu3P4, Sr3P4 Und Ba3P4, Polyphosphide Mit P46−-Ketten in Einer α-ThSi2-Defektstruktur. Z. Anorg. Allg. Chem. 1984, 510, 61–71. [Google Scholar] [CrossRef]
- Zagorac, D.; Müller, H.; Ruehl, S.; Zagorac, J.; Rehme, S. Recent developments in the Inorganic Crystal Structure Database: Theoretical crystal structure data and related features. J. Appl. Crystallogr. 2019, 52, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Cordero, B.; Gómez, V.; Platero-Prats, A.E.; Revés, M.; Echeverría, J.; Cremades, E.; Barragán, F.; Alvarez, S. Covalent radii revisited. Dalton Trans. 2008, 21, 2832–2838. [Google Scholar] [CrossRef] [PubMed]
- Childs, A.B.; Baranets, S.; Bobev, S. Five new ternary indium-arsenides discovered. Synthesis and structural characterization of the Zintl phases Sr3In2As4, Ba3In2As4, Eu3In2As4, Sr5In2As6 and Eu5In2As6. J. Solid State Chem. 2019, 278, 120889. [Google Scholar] [CrossRef]
- Deyoung, D. 57Fe Mössbauer study of some M2 (M’) B2 borides. J. Phys. Chem. Solids 1973, 34, 139–140. [Google Scholar] [CrossRef]
- Kapfenberger, C.; Albert, B.; Pöttgen, R.; Huppertz, H. Structure refinements of iron borides Fe2B and FeB. Z. Kristallogr. Cryst. Mater. 2006, 221, 477–481. [Google Scholar] [CrossRef]
- Chan, J.Y.; Olmstead, M.M.; Hope, H.; Kauzlarich, S.M. Synthesis, Structure, and Properties of Eu16Sb11 and Eu16Bi11. J. Solid State Chem. 2000, 155, 168–176. [Google Scholar] [CrossRef]
- Tappe, F.; Schappacher, F.M.; Langer, T.; Schellenberg, I.; Pöttgen, R. Solid Solutions RE16Rh11−xZx (RE = La, Ce, Pr, Nd, Sm; Z = Ga, Zn, Cd, In, Sn, Sb, Pb, Bi)—Centrosymmetric n = 2 Variants of Parthé’s Homologous Series A5n+6B3n+5. Z. Naturforsch. B 2012, 67, 594–604. [Google Scholar] [CrossRef]
- Martinez-Ripoll, M.; Brauer, G. The crystal structure of Sr5Sb3. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1973, 29, 2717–2720. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- He, H.; Tyson, C.; Saito, M.; Bobev, S. Synthesis and structural characterization of the ternary Zintl phases AE3Al2Pn4 and AE3Ga2Pn4 (AE = Ca, Sr, Ba, Eu; Pn = P, As). J. Solid State Chem. 2012, 188, 59–65. [Google Scholar] [CrossRef]
- Pauling, L. The Nature of the Chemical Bond: And the Structure of Molecules and Crystals: Introduction to Modern Structural Chemistry; Cornell University Press: Ithaca, NY, USA, 1960. [Google Scholar]
Ba3As4 | Ba5As4 | Ba16As11.07(2) b | |
---|---|---|---|
Space Group | Fdd2 | Cmce | |
Structure Type | Eu3As4 | Eu5As4 | Ca16Sb11 |
fw/g mol−1 | 711.70 | 986.38 | 3027.18 |
a/Å | 15.3680(20) Å | 16.8820(30) Å | 12.8944(12) Å |
b/Å | 18.7550(30) Å | 8.5391(16) Å | a |
c/Å | 6.2816(10) Å | 8.6127(16) Å | 11.8141(17) Å |
V/Å3 | 1810.526 Å3 | 1241.582 Å3 | 1964.278 Å3 |
Z | 8 | 4 | 2 |
ρcalc/g cm−3 | 5.22 | 5.28 | 5.12 |
μ/mm−1 | 27.32 (MoKα) | 26.14 (MoKα) | 13.11 (AgKα) |
Collected/Independent Reflections | 5225/1035 | 5566/815 | 38,038/3160 |
R1 (I > 2σ(I)) a | 0.0257 | 0.0482 | 0.0380 |
wR2 (I > 2σ(I)) a | 0.0409 | 0.0663 | 0.0737 |
R1 (all data) a | 0.0313 | 0.0688 | 0.0410 |
wR2 (all data) a | 0.0423 | 0.0703 | 0.0749 |
Δρmax,min/e− Å−3 | 1.27/−2.01 | 2.08/−2.15 | 2.00/−2.22 |
CCDC Deposition Number | 2353584 | 2353585 | 2353586 |
Structure | Bond | Bond Length |
---|---|---|
Ba3As4 | As1–As1 | 2.548 Å |
As1–As2 | 2.468 Å | |
Ba5As4 | As1–As1 | 2.551 Å |
Ba16As11 | As1A–As1A | 2.462 Å |
As6A–As6A | 2.597 Å |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watts, S.R.; Wingate, L.M.; Bobev, S.; Baranets, S. Completing the Ba–As Compositional Space: Synthesis and Characterization of Three New Binary Zintl Arsenides, Ba3As4, Ba5As4, and Ba16As11. Crystals 2024, 14, 570. https://doi.org/10.3390/cryst14060570
Watts SR, Wingate LM, Bobev S, Baranets S. Completing the Ba–As Compositional Space: Synthesis and Characterization of Three New Binary Zintl Arsenides, Ba3As4, Ba5As4, and Ba16As11. Crystals. 2024; 14(6):570. https://doi.org/10.3390/cryst14060570
Chicago/Turabian StyleWatts, Spencer R., Lindsey M. Wingate, Svilen Bobev, and Sviatoslav Baranets. 2024. "Completing the Ba–As Compositional Space: Synthesis and Characterization of Three New Binary Zintl Arsenides, Ba3As4, Ba5As4, and Ba16As11" Crystals 14, no. 6: 570. https://doi.org/10.3390/cryst14060570
APA StyleWatts, S. R., Wingate, L. M., Bobev, S., & Baranets, S. (2024). Completing the Ba–As Compositional Space: Synthesis and Characterization of Three New Binary Zintl Arsenides, Ba3As4, Ba5As4, and Ba16As11. Crystals, 14(6), 570. https://doi.org/10.3390/cryst14060570