TCAD-Based Design and Optimization of Flexible Organic/Si Tandem Solar Cells
Abstract
:1. Introduction
2. TCAD Simulation Methodology and Cell Structures
2.1. Silvaco Atlas Simulation Methodology
2.2. Calibration of Standalone Organic and Si Cells
2.3. Initial Configuration of 2-T Organic/Si Tandem Cell
3. Results and Discussions
3.1. Impact of Front Contact Work Function
3.2. Impact of Defect Density of the Top Organic Absorber
3.3. Impact of Thicknesses of the Two Absorber Layers
3.4. Current Matching Condition
3.5. State-of-the-Art Comparison
Front Cell | Rear Cell | Method | Jsc (mA/cm2) | Voc (V) | FF (%) | PCE (%) | Ref. |
---|---|---|---|---|---|---|---|
PBDB-T-2F:Y6 | Si | Exp. (2-T) | 15.81 | 1.08 | 55.57 | 8.32 | [36] |
PBDB-T:ITIC | Si | Exp. (4-T) | - | - | - | 15.25 | [36] |
Lead-based Perovskite | PBDB-T-2F:Y6:P71CBM | Exp. (2-T) | 14.56 | 2.13 | 75.60 | 23.40 | [51] |
Lead-based Perovskite | Si | Exp. (2-T) | 20.24 | 1.979 | 81.20 | 32.50 | [52] |
Sb2S3 | Si | Sim. (2-T) | 18.04 | 1.64 | 82.41 | 24.34 | [6] |
Lead-free Perovskite | Si | Sim. (2-T) | 16.01 | 1.76 | 86.70 | 24.40 | [53] |
PDTBTBz-2F:PC71BM | Si | Sim. (2-T) | 16.43 | 2.04 | 84.81 | 28.41 | [50] |
PBDB-TCl:AICT | Si | Sim. (2-T) | 19.28 | 1.81 | 79.31 | 27.60 | This work |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaheen, M.A.M.; Hasanien, H.M.; Turky, R.A.; Ćalasan, M.; Zobaa, A.F.; Abdel Aleem, S.H.E. OPF of Modern Power Systems Comprising Renewable Energy Sources Using Improved CHGS Optimization Algorithm. Energies 2021, 14, 6962. [Google Scholar] [CrossRef]
- Bouich, A.; Pradas, I.G.; Khan, M.A.; Khattak, Y.H. Opportunities, Challenges, and Future Prospects of the Solar Cell Market. Sustainability 2023, 15, 15445. [Google Scholar] [CrossRef]
- Zhang, M.; Lin, Z. Efficient interconnecting layers in monolithic all-perovskite tandem solar cells. Energy Environ. Sci. 2022, 15, 3152–3170. [Google Scholar] [CrossRef]
- Alanazi, T.I.; Eid, O.I.; Okil, M. Numerical study of flexible perovskite/Si tandem solar cell using TCAD simulation. Opt. Quantum Electron. 2023, 55, 1152. [Google Scholar] [CrossRef]
- Aydin, E.; Allen, T.G.; De Bastiani, M.; Razzaq, A.; Xu, L.; Ugur, E.; Liu, J.; De Wolf, S. Pathways toward commercial perovskite/silicon tandem photovoltaics. Science 2024, 383, eadh3849. [Google Scholar] [CrossRef] [PubMed]
- Okil, M.; Shaker, A.; Ahmed, I.S.; Abdolkader, T.M.; Salem, M.S. Design and analysis of Sb2S3/Si thin film tandem solar cell. Sol. Energy Mater. Sol. Cells 2023, 253, 112210. [Google Scholar] [CrossRef]
- Jošt, M.; Köhnen, E.; Al-Ashouri, A.; Bertram, T.; Tomšič, Š.; Magomedov, A.; Kasparavicius, E.; Kodalle, T.; Lipovšek, B.; Getautis, V.; et al. Perovskite/CIGS Tandem Solar Cells: From Certified 24.2% toward 30% and beyond. ACS Energy Lett. 2022, 7, 1298–1307. [Google Scholar] [CrossRef]
- Priyanka, E.; Muchahary, D. Performance improvement of perovskite/CIGS tandem solar cell using barium stannate charge transport layer and achieving PCE of 39% numerically. Sol. Energy 2024, 267, 112218. [Google Scholar] [CrossRef]
- Alanazi, T.I.; El Sabbagh, M. Proposal and Design of Flexible All-Polymer/CIGS Tandem Solar Cell. Polymers 2023, 15, 1823. [Google Scholar] [CrossRef]
- Mailoa, J.P.; Lee, M.; Peters, I.M.; Buonassisi, T.; Panchula, A.; Weiss, D.N. Energy-yield prediction for II–VI-based thin-film tandem solar cells. Energy Environ. Sci. 2016, 9, 2644–2653. [Google Scholar] [CrossRef]
- Zein, W.; Alanazi, T.I.; Saeed, A.; Salah, M.M.; Mousa, M. Proposal and design of organic/CIGS tandem solar cell: Unveiling optoelectronic approaches for enhanced photovoltaic performance. Optik 2024, 302, 171719. [Google Scholar] [CrossRef]
- He, R.; Ren, S.; Chen, C.; Yi, Z.; Luo, Y.; Lai, H.; Wang, W.; Zeng, G.; Hao, X.; Wang, Y.; et al. Wide-bandgap organic–inorganic hybrid and all-inorganic perovskite solar cells and their application in all-perovskite tandem solar cells. Energy Environ. Sci. 2021, 14, 5723–5759. [Google Scholar] [CrossRef]
- Lim, J.; Park, N.-G.; Seok, S.I.; Saliba, M. All-perovskite tandem solar cells from fundamentals to technological progress. Energy Environ. Sci. 2024. [Google Scholar] [CrossRef]
- Zhou, J.; Fu, S.; Zhou, S.; Huang, L.; Wang, C.; Guan, H.; Pu, D.; Cui, H.; Wang, C.; Wang, T.; et al. Mixed tin-lead perovskites with balanced crystallization and oxidation barrier for all-perovskite tandem solar cells. Nat. Commun. 2024, 15, 2324. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Gao, K.; Wan, X.; Zhang, Q.; Kan, B.; Xia, R.; Liu, F.; Yang, X.; Feng, H.; Ni, W.; et al. Solution-processed organic tandem solar cells with power conversion efficiencies > 12%. Nat. Photonics 2017, 11, 85–90. [Google Scholar] [CrossRef]
- Ullah, F.; Chen, C.-C.; Choy, W.C.H. Recent Developments in Organic Tandem Solar Cells toward High Efficiency. Adv. Energy Sustain. Res. 2021, 2, 2000050. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Siefer, G.; Hao, X. Solar cell efficiency tables (Version 63). Prog. Photovolt. Res. Appl. 2024, 32, 3–13. [Google Scholar] [CrossRef]
- Schultz-Wittmann, O.; Schulze, P.S.C.; Er-Raji, O.; Efinger, R.; Kabakli, Ö.S.; Heydarian, M.; Mc Mullin, K.; Fischer, O.; Bett, A.J.; Erath, D.; et al. Upscaling of Perovskite-Silicon Tandem Solar Cells. In Proceedings of the 8th World Conference on Photovoltaic Energy Conversion, Milan, Italy, 26–30 September 2022; pp. 354–357. [Google Scholar]
- Yu, Z.J.; Carpenter, J.V.; Holman, Z.C. Techno-economic viability of silicon-based tandem photovoltaic modules in the United States. Nat. Energy 2018, 3, 747–753. [Google Scholar] [CrossRef]
- Essig, S.; Allebé, C.; Remo, T.; Geisz, J.F.; Steiner, M.A.; Horowitz, K.; Barraud, L.; Ward, J.S.; Schnabel, M.; Descoeudres, A.; et al. Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions. Nat. Energy 2017, 2, 17144. [Google Scholar] [CrossRef]
- Shi, Y.; Berry, J.J.; Zhang, F. Perovskite/Silicon Tandem Solar Cells: Insights and Outlooks. ACS Energy Lett. 2024, 9, 1305–1330. [Google Scholar] [CrossRef]
- Yi, J.; Zhang, G.; Yu, H.; Yan, H. Advantages, challenges and molecular design of different material types used in organic solar cells. Nat. Rev. Mater. 2023, 9, 46–62. [Google Scholar] [CrossRef]
- Lemercier, T.; Planès, E.; Flandin, L.; Berson, S.; Perrin, L. Toward Semitransparent PIN-type Perovskite Solar Cells with Sputtered ITO Electrode: Architecture and Process Optimizations. ACS Appl. Energy Mater. 2023, 6, 9938–9950. [Google Scholar] [CrossRef]
- Tang, H.; Bai, Y.; Zhao, H.; Qin, X.; Hu, Z.; Zhou, C.; Huang, F.; Cao, Y. Interface Engineering for Highly Efficient Organic Solar Cells. Adv. Mater. 2024, 36, 2212236. [Google Scholar] [CrossRef]
- Li, D.; Zhang, H.; Cui, X.; Chen, Y.; Wei, N.; Ran, G.; Lu, H.; Chen, S.; Zhang, W.; Li, C.; et al. Halogenated Nonfused Ring Electron Acceptor for Organic Solar Cells with a Record Efficiency of over 17%. Adv. Mater. 2024, 36, 2310362. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Mao, H.; Zhang, L.; Zhang, J.; Qin, Z.; Tan, L.; Chen, Y. Achieving Desired Pseudo-Planar Heterojunction Organic Solar Cells via Binary-Dilution Strategy. Adv. Mater. 2024, 36, 2308159. [Google Scholar] [CrossRef] [PubMed]
- Alkarsifi, R.; Ackermann, J.; Margeat, O. Hole transport layers in organic solar cells: A review. J. Met. Mater. Miner. 2022, 32, 1–22. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, Q.; Zhang, Z.; Gao, Z.; Xiao, C.; Wei, Y.; Li, W. NiO x Nanoparticles Hole-Transporting Layer Regulated by Ionic Radius-Controlled Doping and Reductive Agent for Organic Solar Cells with Efficiency of 19.18%. Adv. Mater. 2024, 36, 2310630. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yu, B.; Yu, H. An Efficient and Stable Inverted Structure Organic Solar Cell Using ZnO Modified by 2D ZrSe2 as a Composite Electron Transport Layer. Adv. Funct. Mater. 2024, 2402128. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhang, S.; Zhang, J.; Qin, Y.; Li, W.; Yu, R.; Wei, Z.; Hou, J. Over 11% Efficiency in Tandem Polymer Solar Cells Featured by a Low-Band-Gap Polymer with Fine-Tuned Properties. Adv. Mater. 2016, 28, 5133–5138. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Ying, L.; Yip, H.-L.; Huang, F.; Cao, Y. Toward Efficient Tandem Organic Solar Cells: From Materials to Device Engineering. ACS Appl. Mater. Interfaces 2020, 12, 39937–39947. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Qin, S.; Meng, L.; Ma, Q.; Angunawela, I.; Zhang, J.; Li, X.; He, Y.; Lai, W.; Li, N.; et al. High performance tandem organic solar cells via a strongly infrared-absorbing narrow bandgap acceptor. Nat. Commun. 2021, 12, 178. [Google Scholar] [CrossRef]
- Meng, L.; Liang, H.; Song, G.; Li, M.; Huang, Y.; Jiang, C.; Zhang, K.; Huang, F.; Yao, Z.; Li, C.; et al. Tandem organic solar cells with efficiency over 19% via the careful subcell design and optimization. Sci. China Chem. 2023, 66, 808–815. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, Z.; Bi, P.; Chen, Z.; Wang, Y.; Liu, X.; Zhang, S.; Hao, X.; Zhang, M.; Li, Y.; et al. Tandem organic solar cells with 20.6% efficiency enabled by reduced voltage losses. Natl. Sci. Rev. 2023, 10, nwad085. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wu, S.M.; Liang, Y.; Xu, W.; Liu, H. Organic/amorphous silicon hybrid tandem solar cell with PDPP3T as organic active layer. Microelectron. J. 2021, 113, 105098. [Google Scholar] [CrossRef]
- Park, H.; Park, S.H.; Lee, S.; Kang, Y.; Kim, D.; Son, H.J.; Lee, H.-S. Novel Polymer-Based Organic/c-Si Monolithic Tandem Solar Cell: Enhanced Efficiency using Interlayer and Transparent Top Electrode Engineering. Macromol. Rapid Commun. 2021, 42, 2100305. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, Z.; Wan, X.; Chen, Y. Recent progress in flexible organic solar cells. eScience 2023, 3, 100085. [Google Scholar] [CrossRef]
- Sai, H.; Oku, T.; Sato, Y.; Tanabe, M.; Matsui, T.; Matsubara, K. Potential of very thin and high-efficiency silicon heterojunction solar cells. Prog. Photovolt. Res. Appl. 2019, 27, 1061–1070. [Google Scholar] [CrossRef]
- Atlas User’s Manual; Silvaco Inc.: Santa Clara, CA, USA. Available online: https://silvaco.com/products/tcad/device_simulation/atlas/atlas.html (accessed on 1 September 2023).
- Brinkmann, K.O.; Becker, T.; Zimmermann, F.; Kreusel, C.; Gahlmann, T.; Theisen, M.; Haeger, T.; Olthof, S.; Tückmantel, C.; Günster, M.; et al. Perovskite–organic tandem solar cells with indium oxide interconnect. Nature 2022, 604, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jia, Z.; Chen, Z.; Jiang, T.; Bai, L.; Tao, F.; Chen, J.; Chen, X.; Liu, T.; Xu, X.; et al. Efficient and Reproducible Monolithic Perovskite/Organic Tandem Solar Cells with Low-Loss Interconnecting Layers. Joule 2020, 4, 1594–1606. [Google Scholar] [CrossRef]
- Alanazi, T.I.; Shaker, A.; Gad, M.; Okil, M. Optimization of all-polymer/Sb2Se3 tandem solar cells for enhanced efficiency: A comprehensive TCAD modeling approach. Phys. Scr. 2024, 99, 065516. [Google Scholar] [CrossRef]
- Okil, M.; Shaker, A.; Ahmed, I.S.; Abdolkader, T.M.; Salem, M.S. Evaluation of a proposed barium di-silicide tandem solar cell using TCAD numerical simulation. Opt. Quantum Electron. 2023, 55, 475. [Google Scholar] [CrossRef]
- Saif, O.M.; Shaker, A.; Abouelatta, M.; Zekry, A.; Elogail, Y. Numerical Simulation and Design of All-Thin-Film Homojunction Perovskite/c-Si Tandem Solar Cells. Silicon 2023, 16, 2005–2021. [Google Scholar] [CrossRef]
- Wu, Z.; Sun, C.; Dong, S.; Jiang, X.-F.; Wu, S.; Wu, H.; Yip, H.-L.; Huang, F.; Cao, Y. n-Type Water/Alcohol-Soluble Naphthalene Diimide-Based Conjugated Polymers for High-Performance Polymer Solar Cells. J. Am. Chem. Soc. 2016, 138, 2004–2013. [Google Scholar] [CrossRef]
- Salem, M.S.; Okil, M.; Shaker, A.; Abouelatta, M.; Aledaily, A.N.; Al-dhlan, K.A.; Alshammari, M.T.; Salah, M.M.; Sabbagh, M. El Optimizing Transport Carrier Free All-Polymer Solar Cells for Indoor Applications: TCAD Simulation under White LED Illumination. Polymers 2024, 16, 1412. [Google Scholar] [CrossRef] [PubMed]
- Elbar, M.; Tobbeche, S.; Merazga, A. Effect of top-cell CGS thickness on the performance of CGS/CIGS tandem solar cell. Sol. Energy 2015, 122, 104–112. [Google Scholar] [CrossRef]
- Yang, J.; Li, H.; Yang, J.; Sun, B.; Bao, Q.; Tang, Z.; Ma, Z. ITO Electrode with a Tunable Work Function for Organic Photovoltaic Devices. ACS Appl. Electron. Mater. 2022, 4, 4104–4112. [Google Scholar] [CrossRef]
- Whitcher, T.J.; Yeoh, K.H.; Ng, Y.B.C.; Talik, N.A.; Chua, C.L.; Woon, K.L.; Chanlek, N.; Nakajima, H.; Saisopa, T.; Songsiriritthigul, P.; et al. Enhancement of the work function of indium tin oxide by surface modification using caesium fluoride. J. Phys. D Appl. Phys. 2013, 46, 475102. [Google Scholar] [CrossRef]
- Okil, M.; Shaker, A.; Salah, M.M.; Abdolkader, T.M.; Ahmed, I.S. Investigation of Polymer/Si Thin Film Tandem Solar Cell Using TCAD Numerical Simulation. Polymers 2023, 15, 2049. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Siefer, G.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Hao, X. Solar cell efficiency tables (Version 61). Prog. Photovolt. Res. Appl. 2023, 31, 3–16. [Google Scholar] [CrossRef]
- Best Research-Cell Efficiency Chart Provided by NREL. Available online: https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.pdf (accessed on 22 January 2023).
- Amri, K.; Belghouthi, R.; Aillerie, M.; Gharbi, R. Device Optimization of a Lead-Free Perovskite/Silicon Tandem Solar Cell with 24.4% Power Conversion Efficiency. Energies 2021, 14, 3383. [Google Scholar] [CrossRef]
- Green, M.A. Improved silicon optical parameters at 25 °C, 295 K and 300 K including temperature coefficients. Prog. Photovolt. Res. Appl. 2022, 30, 164–179. [Google Scholar] [CrossRef]
- Holman, Z.C.; Descoeudres, A.; Barraud, L.; Fernandez, F.Z.; Seif, J.P.; De Wolf, S.; Ballif, C. Current Losses at the Front of Silicon Heterojunction Solar Cells. IEEE J. Photovolt. 2012, 2, 7–15. [Google Scholar] [CrossRef]
- Aeberhard, U.; Schiller, A.; Masson, Y.; Zeder, S.J.; Blülle, B.; Ruhstaller, B. Analysis and Optimization of Organic Tandem Solar Cells by Full Opto-Electronic Simulation. Front. Photonics 2022, 3, 891565. [Google Scholar] [CrossRef]
- Abdelaziz, W.; Shaker, A.; Abouelatta, M.; Zekry, A. Possible efficiency boosting of non-fullerene acceptor solar cell using device simulation. Opt. Mater. 2019, 91, 239–245. [Google Scholar] [CrossRef]
- Abega, F.X.A.; Ngoupo, A.T.; Ndjaka, J.M.B. Numerical Design of Ultrathin Hydrogenated Amorphous Silicon-Based Solar Cell. Int. J. Photoenergy 2021, 2021, 7506837. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, X.; Hou, Y.; Wang, K.; Ye, T.; Yoon, J.; Wu, C.; Sanghadasa, M.; Frank, S.; Priya, S. 28.3%-efficiency perovskite/silicon tandem solar cell by optimal transparent electrode for high efficient semitransparent top cell. Nano Energy 2021, 84, 105934. [Google Scholar] [CrossRef]
- Luo, J.; Tang, L.; Wang, S.; Yan, H.; Wang, W.; Chi, Z.; Gong, J.; Li, J.; Xiao, X. Manipulating Ga growth profile enables all-flexible high-performance single-junction CIGS and 4 T perovskite/CIGS tandem solar cells. Chem. Eng. J. 2023, 455, 140960. [Google Scholar] [CrossRef]
- Cai, Z.; Sun, J.; Cai, H.; Gu, Y.; Tang, R.; Zhu, C.; Luo, P.; Chen, T. Sb2Se3 as a bottom cell material for efficient perovskite/Sb2Se3 tandem solar cells. Energy Mater. Devices 2024, 2, 9370027. [Google Scholar] [CrossRef]
- Yoon, W.; Scheiman, D.; Ok, Y.W.; Song, Z.; Chen, C.; Jernigan, G.; Rohatgi, A.; Yan, Y.; Jenkins, P. Sputtered indium tin oxide as a recombination layer formed on the tunnel oxide/poly-Si passivating contact enabling the potential of efficient monolithic perovskite/Si tandem solar cells. Sol. Energy Mater. Sol. Cells. 2020, 210, 110482. [Google Scholar] [CrossRef]
- Mousa, M.; Salah, M.M.; Amer, F.Z.; Saeed, A.; Mubarak, R.I. High Efficiency Tandem Perovskite/CIGS Solar Cell. In Proceedings of the 2020 2nd International Conference on Smart Power & Internet Energy Systems (SPIES), Bangkok, Thailand, 15–18 September 2020; pp. 224–227. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, S.; Mohammed, M.K.A.; Shalan, A.E. Computational Modelling of Two Terminal CIGS/Perovskite Tandem Solar Cells with Power Conversion Efficiency of 23.1%. Eur. J. Inorg. Chem. 2021, 2021, 4959–4969. [Google Scholar] [CrossRef]
- Bacha, M.; Saadoune, A.; Youcef, I.; Terghini, O. Design and numerical investigation of Perovskite/Silicon tandem solar cell. Opt. Mater. 2022, 131, 112671. [Google Scholar] [CrossRef]
- Alanazi, T.I.; Alanazi, A.; Touti, E.; Agwa, A.M.; Kraiem, H.; Alanazi, M.; Alanazi, A.M.; El Sabbagh, M. Proposal and Numerical Analysis of Organic/Sb2Se3 All-Thin-Film Tandem Solar Cell. Polymers 2023, 15, 2578. [Google Scholar] [CrossRef] [PubMed]
- Dahmardeh, Z.; Saadat, M. Exploring the potential of standalone and tandem solar cells with Sb2S3 and Sb2Se3 absorbers: A simulation study. Sci. Rep. 2023, 13, 22632. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Srivastava, S.; Singh, A.K.; Chauhan, M.S.; Patel, S.P.; Singh, R.S. Theoretical study of highly efficient all-inorganic Sb2S3-on-Si monolithically integrated (2-T) and mechanically stacked (4-T) tandem solar cells using SCAPS-1D. Environ. Sci. Pollut. Res. 2023, 30, 98747–98759. [Google Scholar] [CrossRef] [PubMed]
- Hajjiah, A. Modeling a tandem solar cell based on Sb2S3 and Sb2Se3 absorber layers. Mater. Sci. Eng. B 2024, 303, 117302. [Google Scholar] [CrossRef]
- Salem, M.S.; Shaker, A.; Aledaily, A.N.; Alanazi, A.; Al-Dhlan, K.A.; Okil, M. Comprehensive design and analysis of thin film Sb2S3/CIGS tandem solar cell: TCAD simulation approach. Phys. Scr. 2024, 99, 075511. [Google Scholar] [CrossRef]
- Zhang, J.; Lian, W.; Yin, Y.; Wang, X.; Tang, R.; Qian, C.; Hao, X.; Zhu, C.; Chen, T. All Antimony Chalcogenide Tandem Solar Cell. Sol. RRL 2020, 4, 2000048. [Google Scholar] [CrossRef]
PV Parameters | JSC (mA/cm2) | VOC (V) | FF (%) | PCE (%) | |
---|---|---|---|---|---|
Organic cell | Experimental [34] | 14.00 | 1.09 | 72.60 | 11.10 |
This work | 14.04 | 1.09 | 72.68 | 11.11 | |
Thin Si cell | Experimental [38] | 38.20 | 0.743 | 79.80 | 22.60 |
This work | 38.20 | 0.746 | 79.62 | 22.69 |
PV Parameters | JSC (mA/cm2) | VOC (V) | FF (%) | PCE (%) | |
---|---|---|---|---|---|
Interlayer | Top sub-cell | 14.15 | 1.08 | 72.26 | 11.01 |
Bottom sub-cell | 22.34 | 0.73 | 80.48 | 13.20 | |
Tandem cell | 14.22 | 1.81 | 77.75 | 20.03 | |
Tunnel junction | Top sub-cell | 14.32 | 1.08 | 72.23 | 11.14 |
Bottom sub-cell | 23.51 | 0.74 | 80.37 | 13.93 | |
Tandem cell | 14.13 | 1.84 | 77.95 | 20.20 |
PV Parameters | JSC (mA/cm2) | VOC (V) | FF (%) | PCE (%) |
---|---|---|---|---|
Top sub-cell | 19.28 | 1.08 | 79.01 | 16.41 |
Bottom sub-cell | 19.28 | 0.73 | 80.65 | 11.30 |
Tandem cell | 19.28 | 1.81 | 79.31 | 27.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salem, M.S.; Okil, M.; Shaker, A.; Abouelatta, M.; Salah, M.M.; Al-Dhlan, K.A.; Gad, M. TCAD-Based Design and Optimization of Flexible Organic/Si Tandem Solar Cells. Crystals 2024, 14, 584. https://doi.org/10.3390/cryst14070584
Salem MS, Okil M, Shaker A, Abouelatta M, Salah MM, Al-Dhlan KA, Gad M. TCAD-Based Design and Optimization of Flexible Organic/Si Tandem Solar Cells. Crystals. 2024; 14(7):584. https://doi.org/10.3390/cryst14070584
Chicago/Turabian StyleSalem, Marwa S., Mohamed Okil, Ahmed Shaker, Mohamed Abouelatta, Mostafa M. Salah, Kawther A. Al-Dhlan, and Michael Gad. 2024. "TCAD-Based Design and Optimization of Flexible Organic/Si Tandem Solar Cells" Crystals 14, no. 7: 584. https://doi.org/10.3390/cryst14070584
APA StyleSalem, M. S., Okil, M., Shaker, A., Abouelatta, M., Salah, M. M., Al-Dhlan, K. A., & Gad, M. (2024). TCAD-Based Design and Optimization of Flexible Organic/Si Tandem Solar Cells. Crystals, 14(7), 584. https://doi.org/10.3390/cryst14070584