Density Functional Investigation of [001] and [111] SiNWs and the Effect of Doping with Boron and Phosphorus
Abstract
:1. Introduction
2. Model Systems
3. Quantum Computational Methods
3.1. Total Energy Method
3.2. Computational Methods
4. Results and Discussion
4.1. Structural Properties
4.2. Band Structures of Bulk Si, Undoped SiNWs, and Doped SiNWs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Georgiev, Y.M.; Petkov, N.; Yu, R.; Nightingale, A.M.; Buitrago, E.; Lotty, O.; deMello, J.C.; Ionescu, A.; Holmes, J.D. Detection of ultra-low protein concentrations with the simplest possible field effect transistor. Nanotechnology 2019, 30, 324001. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K. Nanowires: Applications, Chemistry, Materials, and Technologies; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Nabet, B. Photodetectors: Materials, Devices and Applications; Woodhead Publishing: Sawston, UK, 2023. [Google Scholar]
- Thomas, S.; Kalarikkal, N.; Abraham, A.R. Applications of Multifunctional Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Singh, V.N. Chemical Methods for Processing Nanomaterials; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Ng, M.F.; Zhou, L.; Yang, S.W.; Sim, L.Y.; Tan, V.B.; Wu, P. Theoretical investigation of silicon nanowires: Methodology, geometry, surface modification, and electrical conductivity using a multiscale approach. Phys. Rev. B 2007, 76, 155435. [Google Scholar] [CrossRef]
- Jang, M.; Park, Y.; Jun, M.; Hyun, Y.; Choi, S.J.; Zyung, T. The characteristics of Seebeck coefficient in silicon nanowires manufactured by CMOS compatible process. Nanoscale Res. Lett. 2010, 5, 1654–1657. [Google Scholar] [CrossRef] [PubMed]
- Stern, E.; Klemic, J.F.; Routenberg, D.A.; Wyrembak, P.N.; Turner-Evans, D.B.; Hamilton, A.D.; LaVan, D.A.; Fahmy, T.M.; Reed, M.A. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 2007, 445, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Lieber, C.M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001, 291, 851–853. [Google Scholar] [CrossRef] [PubMed]
- Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol. 2004, 22, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Wei, Q.; Park, H.; Lieber, C.M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.U.; Chen, C.; Lin, K.H.; Fang, Y.; Lieber, C.M. Label-free detection of small-molecule–protein interactions by using nanowire nanosensors. Proc. Natl. Acad. Sci. USA 2005, 102, 3208–3212. [Google Scholar] [CrossRef] [PubMed]
- Hahm, J.I.; Lieber, C.M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 2004, 4, 51–54. [Google Scholar] [CrossRef]
- Patolsky, F.; Zheng, G.; Hayden, O.; Lakadamyali, M.; Zhuang, X.; Lieber, C.M. Electrical detection of single viruses. Proc. Natl. Acad. Sci. USA 2004, 101, 14017–14022. [Google Scholar] [CrossRef]
- Zheng, G.; Patolsky, F.; Cui, Y.; Wang, W.U.; Lieber, C.M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294–1301. [Google Scholar] [CrossRef] [PubMed]
- Santana, J.E.; García, K.J.; De Santiago, F.; Miranda, Á.; Pérez-Figueroa, S.E.; González, J.E.; Pérez, L.A.; Cruz-Irisson, M. Selective sensing of DNA/RNA nucleobases by metal-functionalized silicon nanowires: A DFT approach. Surfaces Interfaces 2023, 36, 102529. [Google Scholar] [CrossRef]
- Leu, P.W.; Shan, B.; Cho, K. Surface chemical control of the electronic structure of silicon nanowires: Density functional calculations. Phys. Rev. B 2006, 73, 195320. [Google Scholar] [CrossRef]
- Guo, Z.; Arachchige, L.J.; Qiu, S.; Zhang, X.; Xu, Y.; Langford, S.J.; Sun, C. p-Block element-doped silicon nanowires for nitrogen reduction reaction: A DFT study. Nanoscale 2021, 13, 14935–14944. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.; Deng, X.H.; Gu, X.; He, Y.; Hu, G.; Huang, P.; Li, J.; Lin, B.C.; Lu, D.; Lu, Y.; et al. Noisy intermediate-scale quantum computers. Front. Phys. 2023, 18, 21308. [Google Scholar]
- Joseph, T.; Fuchs, F.; Schuster, J. Electronic structure simulation of thin silicon layers: Impact of orientation, confinement, and strain. Phys. E Low-Dimens. Syst. Nanostruct. 2023, 146, 115522. [Google Scholar] [CrossRef]
- Lu, A.J.; Zhang, R.; Lee, S.T. Tunable electronic band structures of hydrogen-terminated [112] silicon nanowires. Appl. Phys. Lett. 2008, 92, 203109. [Google Scholar] [CrossRef]
- Svizhenko, A.; Leu, P.W.; Cho, K. Effect of growth orientation and surface roughness on electron transport in silicon nanowires. Phys. Rev. B 2007, 75, 125417. [Google Scholar] [CrossRef]
- Neophytou, N.; Paul, A.; Lundstrom, M.S.; Klimeck, G. Bandstructure effects in silicon nanowire electron transport. IEEE Trans. Electron Devices 2008, 55, 1286–1297. [Google Scholar] [CrossRef]
- Ng, M.F.; Sullivan, M.B.; Tong, S.W.; Wu, P. First-principles study of silicon nanowire approaching the bulk limit. Nano Lett. 2011, 11, 4794–4799. [Google Scholar] [CrossRef]
- Fuchs, F.; Gemming, S.; Schuster, J. Radially resolved electronic structure and charge carrier transport in silicon nanowires. Phys. E Low-Dimens. Syst. Nanostruct. 2019, 108, 181–186. [Google Scholar] [CrossRef]
- Tran, F.; Blaha, P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 2009, 102, 226401. [Google Scholar] [CrossRef]
- Ma, D.; Lee, C.; Au, F.; Tong, S.; Lee, S. Small-diameter silicon nanowire surfaces. Science 2003, 299, 1874–1877. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, F.; Khan, M.B.; Deb, D.; Pohl, D.; Schuster, J.; Weber, W.M.; Mühle, U.; Löffler, M.; Erbe, A.; Gemming, S. Formation and crystallographic orientation of NiSi2–Si interfaces. J. Appl. Phys. 2020, 128, 085301. [Google Scholar] [CrossRef]
- Holmes, J.D.; Johnston, K.P.; Doty, R.C.; Korgel, B.A. Control of thickness and orientation of solution-grown silicon nanowires. Science 2000, 287, 1471–1473. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Cui, Y.; Huynh, L.; Barrelet, C.J.; Bell, D.C.; Lieber, C.M. Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 2004, 4, 433–436. [Google Scholar] [CrossRef]
- Gonze, X.; Amadon, B.; Anglade, P.M.; Beuken, J.M.; Bottin, F.; Boulanger, P.; Bruneval, F.; Caliste, D.; Caracas, R.; Côté, M.; et al. ABINIT: First-principles approach to material and nanosystem properties. Comput. Phys. Commun. 2009, 180, 2582–2615. [Google Scholar] [CrossRef]
- Hochbaum, A.I.; Yang, P. Semiconductor nanowires for energy conversion. Chem. Rev. 2010, 110, 527–546. [Google Scholar] [CrossRef]
- Wang, Q.; Meng, T.; Li, Y.; Yang, J.; Huang, B.; Ou, S.; Meng, C.; Zhang, S.; Tong, Y. Consecutive chemical bonds reconstructing surface structure of silicon anode for high-performance lithium-ion battery. Energy Storage Mater. 2021, 39, 354–364. [Google Scholar] [CrossRef]
- Zhang, F.; Zhu, W.; Li, T.; Yuan, Y.; Yin, J.; Jiang, J.; Yang, L. Advances of synthesis methods for porous silicon-based anode materials. Front. Chem. 2022, 10, 889563. [Google Scholar] [CrossRef]
- Cui, Y.; Duan, X.; Hu, J.; Lieber, C.M. Doping and electrical transport in silicon nanowires. J. Phys. Chem. B 2000, 104, 5213–5216. [Google Scholar] [CrossRef]
- Ma, D.; Lee, C.; Lee, S. Scanning tunneling microscopic study of boron-doped silicon nanowires. Appl. Phys. Lett. 2001, 79, 2468–2470. [Google Scholar] [CrossRef]
- Sharma, D.; Fagas, G. A study of atomic orbital basis sets for doped silicon nanowires. In Proceedings of the Journal of Physics: Conference Series; IOP Publishing: Bristol, USA, 2012; Volume 367, p. 012003. [Google Scholar]
- Ng, M.F.; Tong, S.W. Chemically doped radial junction characteristics in silicon nanowires. Nano Lett. 2012, 12, 6133–6138. [Google Scholar] [CrossRef]
- Fukata, N. Impurity doping in silicon nanowires. Adv. Mater. 2009, 21, 2829–2832. [Google Scholar] [CrossRef]
- Fujii, M.; Yamaguchi, Y.; Takase, Y.; Ninomiya, K.; Hayashi, S. Control of photoluminescence properties of Si nanocrystals by simultaneously doping n-and p-type impurities. Appl. Phys. Lett. 2004, 85, 1158–1160. [Google Scholar] [CrossRef]
- Ghosh, S.; Chava, P.; Watanabe, K.; Taniguchi, T.; Prucnal, S.; Hübner, R.; Mikolajick, T.; Erbe, A.; Georgiev, Y.M. Novel Mixed-Dimensional hBN-Passivated Silicon Nanowire Reconfigurable Field Effect Transistors: Fabrication and Characterization. ACS Appl. Mater. Interfaces 2023, 15, 40709. [Google Scholar] [CrossRef]
- König, D.; Hiller, D.; Gutsch, S.; Zacharias, M.; Smith, S. Modulation Doping of Silicon using Aluminium-induced Acceptor States in Silicon Dioxide. Sci. Rep. 2017, 7, 46703. [Google Scholar] [CrossRef]
- Pang, Q.; Zahng, J.M.; Zhang, Y.; Ji, V.; Xu, K.W. Properties of the bare, passivated and doped germanium nanowire: A density-functional theory study. Comp. Mater. Sci. 2010, 49, 682. [Google Scholar] [CrossRef]
- Masoumifard, R.; Oftadeh, M.; Eskandari, K. Investigation of Quantum Conductance in Silicon Nanowire Doped with Boron in the Presence and Absence of (3-Aminopropyl) Triethoxysilane Molecule. Iran. J. Sci. 2023, 47, 1145–1154. [Google Scholar] [CrossRef]
- Gueorguiev, G.K.; Stafström, S.; Hultman, L. Nano-wire formation by self-assembly of silicon–metal cage-like molecules. Chem. Phys. Lett. 2008, 458, 170–174. [Google Scholar] [CrossRef]
- Oliveira, M.; Rivelino, R.; de Brito Mota, F.; Gueorguiev, G.K. Optical properties and quasiparticle band gaps of transition-metal atoms encapsulated by silicon cages. J. Phys. Chem. C 2014, 118, 5501–5509. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric, and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Kaduk, J. Crystallographic databases and powder diffraction. Int. Tables Crystallogr. 2019, H, 304. [Google Scholar]
- Hohenberg, P.; Kohn, W. Density functional theory (DFT). Phys. Rev. 1964, 136, B864. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133. [Google Scholar] [CrossRef]
- Gonze, X.; Beuken, J.M.; Caracas, R.; Detraux, F.; Fuchs, M.; Rignanese, G.M.; Sindic, L.; Verstraete, M.; Zerah, G.; Jollet, F.; et al. First-principles computation of material properties: The ABINIT software project. Comput. Mater. Sci. 2002, 25, 478–492. [Google Scholar] [CrossRef]
- Nolan, M.; O’Callaghan, S.; Fagas, G.; Greer, J.C.; Frauenheim, T. Silicon nanowire band gap modification. Nano Lett. 2007, 7, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.B.; Deb, D.; Kerbusch, J.; Fuchs, F.; Löffler, M.; Banerjee, S.; Mühle, U.; Weber, W.M.; Gemming, S.; Schuster, J.; et al. Towards Reconfigurable Electronics: Silicidation of Top-Down Fabricated Silicon Nanowires. Appl. Sci. 2019, 9, 3462. [Google Scholar] [CrossRef]
- Miranda, A.; De Santiago, F.; Pérez, L.; Cruz-Irisson, M. Silicon nanowires as potential gas sensors: A density functional study. Sens. Actuators B Chem. 2017, 242, 1246–1250. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed]
- Lejaeghere, K.; Bihlmayer, G.; Björkman, T.; Blaha, P.; Blügel, S.; Blum, V.; Caliste, D.; Castelli, I.E.; Clark, S.J.; Dal Corso, A.; et al. Reproducibility in density functional theory calculations of solids. Science 2016, 351, aad3000. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, W. Comment on “Generalized gradient approximation made simple”. Phys. Rev. Lett. 1998, 80, 890. [Google Scholar] [CrossRef]
- Hammer, B.; Hansen, L.B.; Nørskov, J.K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 1999, 59, 7413. [Google Scholar] [CrossRef]
- Gonze, X.; Jollet, F.; Araujo, F.A.; Adams, D.; Amadon, B.; Applencourt, T.; Audouze, C.; Beuken, J.M.; Bieder, J.; Bokhanchuk, A.; et al. Recent developments in the ABINIT software package. Comput. Phys. Commun. 2016, 205, 106–131. [Google Scholar] [CrossRef]
- Malica, C.; Dal Corso, A. Quasi-harmonic temperature-dependent elastic constants: Applications to silicon, aluminum, and silver. J. Physics Condens. Matter 2020, 32, 315902. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, O.; Martin, R.M. Stresses in semiconductors: Ab initio calculations on Si, Ge, and GaAs. Phys. Rev. B 1985, 32, 3792. [Google Scholar] [CrossRef]
- Zhao, J.; Winey, J.; Gupta, Y. First-principles calculations of second-and third-order elastic constants for single crystals of arbitrary symmetry. Phys. Rev. B 2007, 75, 094105. [Google Scholar] [CrossRef]
- Råsander, M.; Moram, M. On the accuracy of commonly used density functional approximations in determining the elastic constants of insulators and semiconductors. J. Chem. Phys. 2015, 143. [Google Scholar] [CrossRef]
- McSkimin, H. Measurement of elastic constants at low temperatures by means of ultrasonic waves–data for silicon and germanium single crystals, and for fused silica. J. Appl. Phys. 1953, 24, 988–997. [Google Scholar] [CrossRef]
- Ashcroft, N.W. Solid State Physics (HR&W) Google Scholar NW Ashcroft and ND Mermin 1979. Solid State Phys. 1976, 1, 2. [Google Scholar]
- Kumarasinghe, C.; Bowler, D.R. DFT study of undoped and As-doped Si nanowires approaching the bulk limit. J. Phys. Condens. Matter 2019, 32, 035304. [Google Scholar] [CrossRef] [PubMed]
- Mukhanov, V.A.; Courac, A.; Solozhenko, V.L. The effect of doping on the lattice parameter and properties of cubic boron nitride. J. Superhard Mater. 2020, 42, 377–387. [Google Scholar] [CrossRef]
- Dass, D. Metallic-semiconducting transition of silicon nanowires by surface passivation. Results Surfaces Interfaces 2021, 3, 100009. [Google Scholar] [CrossRef]
- Rurali, R. Colloquium: Structural, electronic, and transport properties of silicon nanowires. Rev. Mod. Phys. 2010, 82, 427. [Google Scholar] [CrossRef]
- Ramstad, A.; Brocks, G.; Kelly, P. Theoretical study of the Si (100) surface reconstruction. Phys. Rev. B 1995, 51, 14504. [Google Scholar] [CrossRef] [PubMed]
- Rurali, R.; Lorente, N. Metallic and semimetallic silicon< 100> nanowires. Phys. Rev. Lett. 2005, 94, 026805. [Google Scholar]
- Durgun, E.; Akman, N.; Ataca, C.; Ciraci, S. Atomic and electronic structures of doped silicon nanowires: A first-principles study. Phys. Rev. B 2007, 76, 245323. [Google Scholar] [CrossRef]
- Durgun, E.; Akman, N.; Ciraci, S. Functionalization of silicon nanowires with transition metal atoms. Phys. Rev. B 2008, 78, 195116. [Google Scholar] [CrossRef]
- Chien, P.J.; Wei, T.C.; Chen, C.Y. High-speed and direction-controlled formation of silicon nanowire arrays assisted by electric field. Nanoscale Res. Lett. 2020, 15, 25. [Google Scholar] [CrossRef]
- Leu, P.W.; Svizhenko, A.; Cho, K. Ab initio calculations of the mechanical and electronic properties of strained Si nanowires. Phys. Rev. B 2008, 77, 235305. [Google Scholar] [CrossRef]
- Zhao, X.; Wei, C.; Yang, L.; Chou, M. Quantum confinement and electronic properties of silicon nanowires. Phys. Rev. Lett. 2004, 92, 236805. [Google Scholar] [CrossRef] [PubMed]
- Delley, B.; Steigmeier, E. Size dependence of band gaps in silicon nanostructures. Appl. Phys. Lett. 1995, 67, 2370–2372. [Google Scholar] [CrossRef]
- Barbagiovanni, E.G.; Lockwood, D.J.; Simpson, P.J.; Goncharova, L.V. Quantum confinement in Si and Ge nanostructures: Theory and experiment. Appl. Phys. Rev. 2014, 1, 011302. [Google Scholar] [CrossRef]
a0 | Ref. | Δg | Ref. | ||
---|---|---|---|---|---|
GGA | 5.46 | our work | GGA | 0.607 | our work |
LDA | 5.41 | [60] | BLYP | 1.39 | [6] |
LDA | 5.4 | [61] | PW91PW91 | 1.13 | [6] |
LDA | 5.38 | [62] | BPW91 | 1.15 | [6] |
PBE | 5.47 | [63] | BPBE | 1.13 | [6] |
Exp. | 5.43 | [64] | B3LYP | 2.02 | [6] |
LSDA | 0.95 | [6] | |||
GGA | 0.59 | [6] | |||
Exp. | ∼1.17 | [65] |
Lattice Constants | |||
---|---|---|---|
a (Å) | b (Å) | c (Å) | |
SiNWs[001] | 20.43 | 20.43 | 5.43 |
SiNWs[001]-B | 20.43 | 20.43 | 5.43 |
SiNWs[001]-P | 20.43 | 20.43 | 5.43 |
SiNWs[111] | 18.84 | 21.65 | 9.40 |
SiNWs[111]-B(a) | 18.84 | 21.65 | 9.40 |
SiNWs[111]-B(b) | 18.84 | 21.65 | 9.40 |
SiNWs[111]-B(c) | 18.84 | 21.65 | 9.40 |
SiNWs[111]-P(a) | 18.84 | 21.65 | 9.40 |
SiNWs[111]-P(b) | 18.84 | 21.65 | 9.40 |
SiNWs[111]-P(c) | 18.84 | 21.65 | 9.40 |
Bond Lengths | ||||||
---|---|---|---|---|---|---|
Å | Å | Å | Å | Å | Å | |
SiNWs[001] | 2.430 | 2.457 | 2.463 | 2.381 | 2.381 | 2.452 |
SiNWs[001]-B | 2.101 | 2.117 | 2.118 | 2.046 | 2.046 | 2.108 |
SiNWs[001]-P | 2.796 | 2.951 | 2.406 | 2.271 | 2.271 | 2.364 |
SiNWs[111] | 2.397 | 2.397 | 2.410 | 2.464 | - | - |
SiNWs[111]-B(a) | 1.957 | 1.957 | 1.954 | 2.106 | - | - |
SiNWs[111]-B(b) | 2.031 | 2.054 | 2.054 | 2.065 | - | - |
SiNWs[111]-B(c) | 1.890 | 1.910 | - | - | - | - |
SiNWs[111]-P(a) | 2.237 | 2.237 | 2.259 | 2.288 | - | - |
SiNWs[111]-P(b) | 2.317 | 2.317 | 2.294 | 2.302 | - | - |
SiNWs[111]-P(c) | 2.189 | 2.200 | - | - | - | - |
Band Gap (e.V) | |
---|---|
SiNWs[111] | 0.0852 direct band gap |
SiNWs[111]-B(a) | 0.102 indirect band gap |
SiNWs[111]-B(b) | 0.086 |
SiNWs[111]-B(c) | 0.015 |
SiNWs[111]-P(a) | 0.0 metallic |
SiNWs[111]-P(b) | 0.024 |
SiNWs[111]-P(c) | 0.0 metallic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Nuaimi, N.A.M.; Hilser, F.; Gemming, S. Density Functional Investigation of [001] and [111] SiNWs and the Effect of Doping with Boron and Phosphorus. Crystals 2024, 14, 585. https://doi.org/10.3390/cryst14070585
Al-Nuaimi NAM, Hilser F, Gemming S. Density Functional Investigation of [001] and [111] SiNWs and the Effect of Doping with Boron and Phosphorus. Crystals. 2024; 14(7):585. https://doi.org/10.3390/cryst14070585
Chicago/Turabian StyleAl-Nuaimi, Nedhal Ali Mahmood, Florian Hilser, and Sibylle Gemming. 2024. "Density Functional Investigation of [001] and [111] SiNWs and the Effect of Doping with Boron and Phosphorus" Crystals 14, no. 7: 585. https://doi.org/10.3390/cryst14070585
APA StyleAl-Nuaimi, N. A. M., Hilser, F., & Gemming, S. (2024). Density Functional Investigation of [001] and [111] SiNWs and the Effect of Doping with Boron and Phosphorus. Crystals, 14(7), 585. https://doi.org/10.3390/cryst14070585