Prevention of Crystal Agglomeration: Mechanisms, Factors, and Impact of Additives
Abstract
:1. Introduction
2. Crystal Agglomeration during Crystallization Process
2.1. Agglomeration Mechanism
2.2. Control Method
2.2.1. Crystallization Conditions
2.2.2. Solvents
2.2.3. Ultrasound
2.2.4. Additives
3. Caking of Crystalline Products
3.1. Caking Mechanism
3.2. Factors Affecting Caking
3.3. Anti-Caking Agents
4. Crystal Aggregation in Pharmaceutical Preparations
4.1. Stabilizers in Nanosuspension
4.2. Excipients of Solid Dispersions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brunsteiner, M.; Jones, A.G.; Pratola, F.; Price, S.L.; Simons, S.J.R. Toward a Molecular Understanding of Crystal Agglomeration. Cryst. Growth Des. 2005, 5, 3–16. [Google Scholar] [CrossRef]
- Li, K.; Li, J.; Peng, H.; Liu, Y.; Wei, X.; Shen, R.; Xu, S.; Yu, C.; Chen, M.; Zhou, L.; et al. Study on agglomeration mechanism of ammonium paratungstate pentahydrate and controllable preparation of pure monodisperse crystals. Powder Technol. 2024, 438, 119572. [Google Scholar] [CrossRef]
- Terdenge, L.M.; Wohlgemuth, K. Effect of drying method on agglomeration degree of crystalline products. Chem. Eng. Sci. 2017, 167, 88–97. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, Y.; Zhang, L.; Wang, Q.; Zhang, D. Stability of nanosuspensions in drug delivery. J. Control. Release 2013, 172, 1126–1141. [Google Scholar] [CrossRef]
- Yang, W.; Zhou, L.; Dai, J.; Zhou, L.; Zhang, M.; Xie, C.; Hao, H.; Hou, B.; Bao, Y.; Yin, Q. Crystallization of Lithium Carbonate from Aqueous Solution: New Insights into Crystal Agglomeration. Ind. Eng. Chem. Res. 2019, 58, 18448–18455. [Google Scholar] [CrossRef]
- Théodon, L.; Debayle, J.; Coufort-Saudejaud, C. Morphological characterization of aggregates and agglomerates by image analysis: A systematic literature review. Powder Technol. 2023, 430, 119033. [Google Scholar] [CrossRef]
- Faria, N.; Pons, M.N.; de Azevedo, S.F.; Rocha, F.A.; Vivier, H. Quantification of the Morphology of Sucrose Crystals by Image Analysis. Powder Technol. 2003, 133, 54–67. [Google Scholar] [CrossRef]
- Terdenge, L.M.; Wohlgemuth, K. Impact of agglomeration on crystalline product quality within the crystallization process chain. Cryst. Res. Technol. 2016, 51, 513–523. [Google Scholar] [CrossRef]
- Löbnitz, L.; Böser, M.; Nirschl, H. Influence of Filtration on the Agglomeration Degree of Two Crystalline Amino Acids. Chem. Ing. Tech. 2017, 90, 464–471. [Google Scholar] [CrossRef]
- Chang, S.-M.; Kim, J.-M.; Kim, I.-H.; Shin, D.-M.; Kim, W.-S. Agglomeration Control of l-Ornithine Aspartate Crystals by Operating Variables in Drowning-out Crystallization. Ind. Eng. Chem. Res. 2006, 45, 1631–1635. [Google Scholar] [CrossRef]
- Omar, W. Experimental investigations of adipic acid agglomeration behavior under different operating conditions using image analysis technique QICPIC software. Part. Sci. Technol. 2020, 38, 740–746. [Google Scholar] [CrossRef]
- Pouretedal, H.R.; Damiri, S.; Zandi, A. Study the operating conditions on agglomeration of RDX particles in anti-solvent crystallization by using statistical optimization. Def. Technol. 2019, 15, 233–240. [Google Scholar] [CrossRef]
- Sun, Z.; Quon, J.L.; Papageorgiou, C.D.; Benyahia, B.; Rielly, C.D. Use of Wet Milling Combined with Temperature Cycling to Minimize Crystal Agglomeration in a Sequential Antisolvent—Cooling Crystallization. Cryst. Growth Des. 2022, 22, 4730–4744. [Google Scholar] [CrossRef] [PubMed]
- Malwade, C.R.; Qu, H. Cooling Crystallization of Indomethacin: Effect of Supersaturation, Temperature, and Seeding on Polymorphism and Crystal Size Distribution. Org. Process Res. Dev. 2018, 22, 697–706. [Google Scholar] [CrossRef]
- Jiang, X.; Li, G.; Lu, D.; Xiao, W.; Ruan, X.; Li, X.; He, G. Hybrid Control Mechanism of Crystal Morphology Modification for Ternary Solution Treatment via Membrane Assisted Crystallization. Cryst. Growth Des. 2018, 18, 934–943. [Google Scholar] [CrossRef]
- Maghsoodi, M. Role of Solvents in Improvement of Dissolution Rate of Drugs: Crystal Habit and Crystal Agglomeration. Adv. Pharm. Bull. 2015, 5, 13–18. [Google Scholar]
- Li, P.; He, G.; Lu, D.; Xu, X.; Chen, S.; Jiang, X. Crystal Size Distribution and Aspect Ratio Control for Rodlike Urea Crystal via Two-Dimensional Growth Evaluation. Ind. Eng. Chem. Res. 2017, 56, 2573–2581. [Google Scholar] [CrossRef]
- Aprile, G.; Szakter, K.; Andersen, M.B.; Wu, H.; Sin, G.; Skovby, T.; Dam-Johansen, K.; Vetter, T. Continuous Spherical Crystallization of Escitalopram Oxalate without Additives. Org. Process Res. Dev. 2024, 28, 532–542. [Google Scholar] [CrossRef]
- Yu, S.; Wang, Z.; Ma, Y.; Xue, F. Effect of natural polymer additives on crystal form and morphology of clozapine anhydrate and monohydrate. J. Mol. Liq. 2022, 364, 119985. [Google Scholar] [CrossRef]
- Simone, E.; Cenzato, M.V.; Nagy, Z.K. A study on the effect of the polymeric additive HPMC on morphology and polymorphism of ortho-aminobenzoic acid crystals. J. Cryst. Growth 2016, 446, 50–59. [Google Scholar] [CrossRef]
- Kuznetsov, V.A.; Okhrimenko, T.M.; Rak, M. Growth promoting effect of organic impurities on growth kinetics of KAP and KDP crystals. J. Cryst. Growth 1998, 193, 164–173. [Google Scholar] [CrossRef]
- David, R.; Marchal, P.; Marcant, B. Modelling of agglomeration in industrial crystallization from solution. Chem. Eng. Technol. 1995, 18, 302–309. [Google Scholar] [CrossRef]
- Dalvi, S.V.; Dave, R.N. Controlling Particle Size of a Poorly Water-Soluble Drug Using Ultrasound and Stabilizers in Antisolvent Precipitation. Ind. Eng. Chem. Res. 2009, 48, 7581–7593. [Google Scholar] [CrossRef]
- Chen, M.; Wu, S.; Xu, S.; Yu, B.; Shilbayeh, M.; Liu, Y.; Zhu, X.; Wang, J.; Gong, J. Caking of crystals: Characterization, mechanisms and prevention. Powder Technol. 2018, 337, 51–67. [Google Scholar] [CrossRef]
- Martynek, D.; Němeček, J.; Ridvan, L.; Němeček, J.; Šoóš, M. Impact of crystallization conditions and filtration cake washing on the clustering of metformin hydrochloride crystals. Powder Technol. 2022, 405, 117522. [Google Scholar] [CrossRef]
- Shi, J.L.; Gao, J.H.; Lin, Z.X.; Yan, D.S. Effect of agglomerates in ZrO2 powder compacts on microstructural development. J. Mater. Sci. 1993, 28, 342–348. [Google Scholar] [CrossRef]
- Tanahashi, M.; Watanabe, Y.; Kawaguchi, Y.; Takeda, K. Surface conditions of nano-sized inorganic particles and pore structure control of their agglomerates. J. Jpn. Inst. Met. 2006, 70, 365–373. [Google Scholar] [CrossRef]
- Presores, J.B.; Swift, J.A. Adhesion Properties of Uric Acid Crystal Surfaces. Langmuir 2012, 28, 7401–7406. [Google Scholar] [CrossRef]
- Schmok, K. Modelling of mechanism of agglomeration of KCL crystallization. Cryst. Res. Technol. 2010, 23, 967–972. [Google Scholar] [CrossRef]
- da Costa, L.M.; Stoyanov, S.R.; Gusarov, S.; Seidl, P.R.; Carneiro, J.W.D.; Kovalenko, A. Computational Study of the Effect of Dispersion Interactions on the Thermochemistry of Aggregation of Fused Polycyclic Aromatic Hydrocarbons as Model Asphaltene Compounds in Solution. J. Phys. Chem. A 2014, 118, 896–908. [Google Scholar] [CrossRef]
- Bickel, K.R.; Timm, A.E.; Nattland, D.; Schuster, R. Microcalorimetric Determination of the Entropy Change upon the Electrochemically Driven Surface Aggregation of Dodecyl Sulfate. Langmuir 2014, 30, 9085–9090. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Su, M. The Agglomeration of Niacin Crystals in the Cooling Crystallization Process. Cryst. Res. Technol. 2021, 56, 2000209. [Google Scholar] [CrossRef]
- Wu, S.; Shen, H.; Li, K.; Yu, B.; Xu, S.; Chen, M.; Gong, J.; Hou, B. Agglomeration Mechanism of Azithromycin Dihydrate in Acetone-Water Mixtures and Optimization of the Powder Properties. Ind. Eng. Chem. Res. 2016, 55, 4905–4910. [Google Scholar] [CrossRef]
- Jia, S.; Wan, X.; Yao, T.; Guo, S.; Gao, Z.; Wang, J.; Gong, J. Separation Performance and Agglomeration Behavior Analysis of Solution Crystallization in Food Engineering. Food Chem. 2023, 419, 136051. [Google Scholar] [CrossRef]
- Zumstein, R.C.; Rousseau, R.W. Agglomeration of copper sulfate pentahydrate crystals within well-mixed crystallizers. Chem. Eng. Sci. 1989, 44, 2149–2155. [Google Scholar] [CrossRef]
- Jia, L.; Wu, D.; Cui, P.; Zhou, L.; Yin, Q. Design and mechanism of agglomeration of aspirin crystals in pure solvents. Particuology 2023, 82, 146–156. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, M.; Wu, F.; Chen, J.; Xue, C.; Zhao, H. Supersaturation controlled morphology and aspect ratio changes of benzoic acid crystals. Comput. Chem. Eng. 2017, 99, 296–303. [Google Scholar] [CrossRef]
- Jim, K.M.; Kim, K.-J.; Jang, Y.-N. Effect of Supersaturation on the Particle Size of Ammonium Sulfate in Semibatch Evaporative Crystallization. Ind. Eng. Chem. Res. 2013, 52, 11151–11158. [Google Scholar] [CrossRef]
- Sung, M.-H.; Choi, I.-S.; Kim, J.-S.; Kim, W.-S. Agglomeration of yttrium oxalate particles produced by reaction precipitation in semi-batch reactor. Chem. Eng. Sci. 2000, 55, 2173–2184. [Google Scholar] [CrossRef]
- Hounslow, M.J.; Mumtaz, H.S.; Collier, A.P.; Barrick, J.P.; Bramley, A.S. A micro-mechanical model for the rate of aggregation during precipitation from solution. Chem. Eng. Sci. 2001, 56, 2543–2552. [Google Scholar] [CrossRef]
- Tang, J.; Feng, L.; Zhang, C.; Sun, Y.; Wang, L.; Zhou, Y.; Fang, D.; Liu, Y. The Influences of Stirring on the Recrystallization of Ammonium Perrhenate. Appl. Sci. 2020, 10, 656. [Google Scholar] [CrossRef]
- Yu, Z.; Tan, R.B.H.; Chow, P.S. Effects of operating conditions on agglomeration and habit of paracetamol crystals in anti-solvent crystallization. J. Cryst. Growth 2005, 279, 477–488. [Google Scholar] [CrossRef]
- Kumaresan, T.; Joshi, J.B. Effect of impeller design on the flow pattern and mixing in stirred tanks. Chem. Eng. J. 2006, 115, 173–193. [Google Scholar] [CrossRef]
- Bakker, A.; Myers, K.J.; Ward, R.W.; Lee, C.K. The laminar and turbulent flow pattern of a pitched blade turbine. Trans IChemE 1996, 74, 485–491. [Google Scholar]
- Akrap, M.; Kuzmanić, N.; Kardum, J.P. Impeller geometry effect on crystallization kinetics of borax decahydrate in a batch cooling crystallizer. Chem. Eng. Res. Des. 2012, 90, 793–802. [Google Scholar] [CrossRef]
- Ćosić, M.; Kaćunić, A.; Kuzmanić, N. The Investigation of the Influence of Impeller Blade Inclination on Borax Nucleation and Crystal Growth Kinetics. Chem. Eng. Commun. 2016, 203, 1497–1506. [Google Scholar] [CrossRef]
- Chen, C.; Lee, H.; Yeh, K.; Lee, T. Effects of Scale-Up and Impeller Types on Spherical Agglomeration of Dimethyl Fumarate. Ind. Eng. Chem. Res. 2021, 60, 11555–11567. [Google Scholar] [CrossRef]
- Kaćunić, A.; Akrap, M.; Kuzmanić, N. Effect of impeller type and position in a batch cooling crystallizer on the growth of borax decahydrate crystals. Chem. Eng. Res. Des. 2013, 91, 274–285. [Google Scholar] [CrossRef]
- Thai, D.K.; Mayra, Q.P.; Kim, W.S. Agglomeration of Ni-rich hydroxide crystals in Taylor vortex flow. Powder Technol. 2015, 274, 5–13. [Google Scholar] [CrossRef]
- Kim, W.-S.; Kim, W.-S.; Kim, K.-S.; Kim, J.-S.; Ward, M.D. Crystal agglomeration of europium oxalate in reaction crystallization using double-jet semi-batch reactor. Mater. Res. Bull. 2004, 39, 283–296. [Google Scholar] [CrossRef]
- Kim, J.-M.; Chang, S.-M.; Chang, J.H.; Kim, W.-S. Agglomeration of nickel/cobalt/manganese hydroxide crystals in Couette-Taylor crystallizer. Colloids Surf. A Physicochem. Eng. Asp. 2011, 384, 31–39. [Google Scholar] [CrossRef]
- Li, B.; Yao, T.; Tao, T.; Han, D.; Yang, H.; Gao, Z.; Gong, J. Enhancement and Regulation of Peptide Crystallization with the Application of Taylor Vortex: A Case Study of Vancomycin. Ind. Eng. Chem. Res. 2023, 62, 21760–21769. [Google Scholar] [CrossRef]
- Wang, Y.; Su, M.; Bai, Y. Mechanism of Glycine Crystal Adhesion and Clogging in a Continuous Tubular Crystallizer. Ind. Eng. Chem. Res. 2020, 59, 25–33. [Google Scholar] [CrossRef]
- Yu, Z.Q.; Chow, P.S.; Tan, R.B. Seeding and Constant-Supersaturation Control by ATR-FTIR in Anti-Solvent Crystallization. Org. Process Res. Dev. 2006, 10, 717–722. [Google Scholar] [CrossRef]
- Funakoshi, K.; Takiyama, H.; Matsuoka, M. Influences of seed crystals on agglomeration phenomena and product purity of m-chloronitrobenzene crystals in batch crystallization. Chem. Eng. J. 2001, 81, 307–312. [Google Scholar] [CrossRef]
- Kardum, J.P.; Hrkovac, M.; Leskovac, M. Adjustment of Process Conditions in Seeded Batch Cooling Crystallization. Chem. Eng. Technol. 2013, 36, 1347–1354. [Google Scholar] [CrossRef]
- Ulrich, J.; Jones, M.J. Seeding Technique in Batch Crystallization. In Industrial Crystallization Process Monitoring and Control; Kramer, H.J.M., Ed.; Wiley: Hoboken, NJ, USA, 2012; pp. 127–138. (In Chianese) [Google Scholar]
- Parambil, J.V.; Heng, J.Y.Y. Seeding in Crystallisation. In Engineering Crystallography: From Molecule to Crystal to Functional Form; Roberts, K., Docherty, R., Tamura, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 235–245. [Google Scholar]
- Zhang, F.; Shan, B.; Wang, Y.; Zhu, Z.; Yu, Z.; Ma, C. Progress and Opportunities for Utilizing Seeding Techniques in Crystallization Processes. Org. Process Res. Dev. 2021, 25, 1496–1511. [Google Scholar] [CrossRef]
- Unno, J.; Hirasawa, I. Partial Seeding Policy for Controlling the Crystal Quality in Batch Cooling Crystallization. Chem. Eng. Technol. 2020, 43, 1065–1071. [Google Scholar] [CrossRef]
- Li, J.; Jin, S.; Lan, G.; Xu, Z.; Wu, N.; Chen, S.; Li, L. The effect of solution conditions on the crystal morphology of β-HMX by molecular dynamics simulations. J. Cryst. Growth 2019, 507, 38–45. [Google Scholar] [CrossRef]
- Li, C.; Choi, P. Molecular Dynamics Study on the Effect of Solvent Adsorption on the Morphology of Glycothermally Produced α-Al2O3 Particles. J. Phys. Chem. C 2008, 112, 10145–10152. [Google Scholar] [CrossRef]
- Parambil, J.V.; Poornachary, S.K.; Tan, R.B.H.; Heng, J.Y.Y. Influence of solvent polarity and supersaturation on template-induced nucleation of carbamazepine crystal polymorphs. J. Cryst. Growth 2017, 469, 84–90. [Google Scholar] [CrossRef]
- Ouyang, J.; Chen, J.; Rosbottom, I.; Chen, W.; Guo, M.; Heng, J.Y.Y. Supersaturation and solvent dependent nucleation of carbamazepine polymorphs during rapid cooling crystallization. CrystEngComm 2021, 23, 813–823. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, Z. Solvent effects on the crystal growth structure and morphology of the pharmaceutical dirithromycin. J. Cryst. Growth 2017, 480, 18–27. [Google Scholar] [CrossRef]
- Du, W.; Yin, Q.; Gong, J.; Bao, Y.; Zhang, X.; Sun, X.; Ding, S.; Xie, C.; Zhang, M.; Hao, H. Effects of Solvent on Polymorph Formation and Nucleation of Prasugrel Hydrochloride. Cryst. Growth Des. 2014, 14, 4519–4525. [Google Scholar] [CrossRef]
- Ålander, E.M.; Rasmuson, Å.C. Mechanisms of Crystal Agglomeration of Paracetamol in Acetone-Water Mixtures. Ind. Eng. Chem. Res. 2005, 44, 5788–5794. [Google Scholar] [CrossRef]
- Ålander, E.M.; Uusi-Penttilä, M.S.; Rasmuson, Å.C. Agglomeration of Paracetamol during Crystallization in Pure and Mixed Solvents. Ind. Eng. Chem. Res. 2004, 43, 629–637. [Google Scholar] [CrossRef]
- TÅlander, E.M.; Rasmuson, Å.C. Agglomeration and adhesion free energy of paracetamol crystals in organic solvents. AlChE J. 2007, 53, 2590–2605. [Google Scholar] [CrossRef]
- Jin, S.; Chen, M.; Li, Z.; Wu, S.; Du, S.; Xu, S.; Rohani, S.; Gong, J. Design and mechanism of the formation of spherical KCl particles using cooling crystallization without additives. Powder Technol. 2018, 329, 455–462. [Google Scholar] [CrossRef]
- Kim, H.N.; Suslick, K. The Effects of Ultrasound on Crystals: Sonocrystallization and Sonofragmentation. Crystals 2018, 8, 280. [Google Scholar] [CrossRef]
- Shang, Z.; Li, M.; Hou, B.; Zhang, J.; Wang, K.; Hu, W.; Deng, T.; Gong, J.; Wu, S. Ultrasound assisted crystallization of cephalexin monohydrate: Nucleation mechanism and crystal habit control. Chin. J. Chem. Eng. 2022, 41, 430–440. [Google Scholar] [CrossRef]
- Chen, F.; Tang, W.; Wu, S.; Wang, J.; Gao, Z.; Gong, J. Ultrasound-assisted intensified crystallization of L-glutamic acid: Crystal nucleation and polymorph transformation. Ultrason. Sonochem. 2020, 68, 105227. [Google Scholar]
- Sánchez-García, Y.I.; Ashokkumar, M.; Mason, T.J.; Gutiérrez-Méndez, N. Influence of ultrasound frequency and power on lactose nucleation. J. Food Eng. 2019, 249, 34–39. [Google Scholar] [CrossRef]
- Kim, J.-M.; Chang, S.-M.; Kim, K.-S.; Chung, M.-K.; Kim, W.-S. Acoustic influence on aggregation and agglomeration of crystals in reaction crystallization of cerium carbonate. Colloids Surf. A Physicochem. Eng. Asp. 2011, 375, 193–199. [Google Scholar] [CrossRef]
- Cheng, X.; Huang, X.; Tian, B.; Wang, T.; Hao, H. Behaviors and physical mechanism of ceftezole sodium de-agglomeration driven by ultrasound. Ultrason. Sonochem. 2021, 74, 105570. [Google Scholar] [CrossRef] [PubMed]
- Batghare, A.H.; Roy, K.; Moholkar, V.S. Investigations in physical mechanism of ultrasound-assisted antisolvent batch crystallization of lactose monohydrate from aqueous solutions. Ultrason. Sonochem. 2020, 67, 105127. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, M.; Li, H.; Wang, J.; Kougoulos, E. Effect of ultrasound on anti-solvent crystallization process. J. Cryst. Growth 2005, 273, 555–563. [Google Scholar] [CrossRef]
- Narducci, O.; Jones, A.G.; Kougoulos, E. Continuous crystallization of adipic acid with ultrasound. Chem. Eng. Sci. 2011, 66, 1069–1076. [Google Scholar] [CrossRef]
- Hatkar, U.N.; Gogate, P.R. Process intensification of anti-solvent crystallization of salicylic acid using ultrasonic irradiations. Chem. Eng. Process. Process Intensif. 2012, 57, 16–24. [Google Scholar] [CrossRef]
- Gielen, B.; Jordens, J.; Thomassen, L.C.J.; Braeken, L.; Van Gerven, T. Agglomeration Control during Ultrasonic Crystallization of an Active Pharmaceutical Ingredient. Crystals 2017, 7, 40. [Google Scholar] [CrossRef]
- Chavan, R.B.; Thipparaboina, R.; Kumar, D.; Shastri, N.R. Evaluation of the inhibitory potential of HPMC, PVP and HPC polymers on nucleation and crystal growth. RSC Adv. 2016, 6, 77569. [Google Scholar] [CrossRef]
- Bellucci, M.A.; Marx, A.; Wang, B.; Fang, L.; Zhou, Y.; Greenwell, C.; Li, Z.; Becker, A.; Sun, G.; Brandenburg, J.G.; et al. Effect of Polymer Additives on the Crystal Habit of Metformin HCl. Small Methods 2023, 7, 2201692. [Google Scholar] [CrossRef] [PubMed]
- Hatcher, L.E.; Li, W.; Payne, P.; Benyahia, B.; Rielly, C.D.; Wilson, C.C. Tuning Morphology in Active Pharmaceutical Ingredients: Controlling the Crystal Habit of Lovastatin through Solvent Choice and Non-Size-Matched Polymer Additives. Cryst. Growth Des. 2020, 20, 5854–5862. [Google Scholar] [CrossRef]
- Jung, T.; Kim, W.-S.; Choi, C.K. Crystal structure and morphology control of calcium oxalate using biopolymeric additives in crystallization. J. Cryst. Growth 2005, 279, 154–162. [Google Scholar] [CrossRef]
- Shi, P.; Xu, S.; Yang, H.; Wu, S.; Tang, W.; Wang, J.; Gong, J. Use of additives to regulate solute aggregation and direct conformational polymorph nucleation of pimelic acid. Int. Union. Crystallogr. J. 2021, 8, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Yu, B.; Liu, Y.; Du, S.; Rohani, S.; Zhang, T.; Liu, S.; Shi, P.; Wang, H.; Zhou, L.; et al. Effects of Additives on the Morphology of Thiamine Nitrate: The Great Difference of Two Kinds of Similar Additives. Cryst. Growth Des. 2018, 18, 775–785. [Google Scholar] [CrossRef]
- Han, Y.; Yang, P.; Liu, Y.; Wu, S.; Gong, J. Effects of polymers on the regulation of p-aminobenzoic acid crystal habit. J. Mol. Liq. 2023, 380, 121748. [Google Scholar] [CrossRef]
- Jitkar, S.; Thipparaboina, R.; Chavan, R.B.; Shastri, N.R. Spherical Agglomeration of Platy Crystals: Curious Case of Etodolac. Cryst. Growth Des. 2016, 16, 4034–4042. [Google Scholar] [CrossRef]
- Hansen, J.; Kleinebudde, P. Improving flowability and reducing storage agglomeration of metformin hydrochloride through QESD crystallization. Eur. J. Pharm. Biopharm. 2021, 159, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Kedia, K.; Wairkar, S. Improved micromeritics, packing properties and compressibility of high dose drug, Cycloserine, by spherical crystallization. Powder Technol. 2019, 344, 665–672. [Google Scholar] [CrossRef]
- Wang, Y.; Du, S.; Wang, X.; Sun, M.; Yang, Y.; Gong, J. Spherulitic growth and morphology control of lithium carbonate: The stepwise evolution of core-shell structures. Powder Technol. 2019, 355, 617–628. [Google Scholar] [CrossRef]
- Xing, X.; Ouyang, J.; Guo, S.; Chen, M.; Gao, Z.; He, F.; Zhou, L.; Xie, Z. Spherical particles design of vanillin via crystallization method: Preparation, characterization and mechanism. Sep. Purif. Technol. 2023, 314, 123622. [Google Scholar] [CrossRef]
- Zhu, Y.; Lu, M.; Gao, F.; Zhou, C.; Jia, C.; Wang, J. Role of Tailor-Made Additives in Crystallization from Solution: A Review. Ind. Eng. Chem. Res. 2023, 62, 4800–4816. [Google Scholar] [CrossRef]
- Olafson, K.N.; Li, R.; Alamani, B.G.; Rimer, J.D. Engineering Crystal Modifiers: Bridging Classical and Nonclassical Crystallization. Chem. Mater. 2016, 28, 8453–8465. [Google Scholar] [CrossRef]
- Prasad, R.; Dalvi, S.V. Understanding Morphological Evolution of Griseofulvin Particles into Hierarchical Microstructures during Liquid Antisolvent Precipitation. Cryst. Growth Des. 2019, 19, 5836–5849. [Google Scholar] [CrossRef]
- Klapwijk, A.R.; Simone, E.; Nagy, Z.K.; Wilson, C.C. Tuning Crystal Morphology of Succinic Acid Using a Polymer Additive. Cryst. Growth Des. 2016, 16, 4349–4359. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, L.; Yang, W.; Xie, C.; Wang, Z.; Hou, B.; Hao, H.; Zhou, L.; Bao, Y.; Yin, Q. An Investigation into the Morphology Evolution of Ethyl Vanillin with the Presence of a Polymer Additive. Cryst. Growth Des. 2020, 20, 609–1617. [Google Scholar] [CrossRef]
- Billings, S.W.; Bronlund, J.E.; Paterson, A.H.J. Effects of capillary condensation on the caking of bulk sucrose. J. Food Eng. 2006, 77, 887–895. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, D.; Dong, W.; Luo, Z.; Kang, C.; Li, H.; Wang, G.; Gong, J. Amorphous and humidity caking: A review. Chin. J. Chem. Eng. 2019, 27, 1429–1438. [Google Scholar] [CrossRef]
- Christakis, N.; Wang, J.; Patel, M.K.; Bradley, M.S.A.; Leaper, M.C.; Cross, M. Aggregation and caking processes of granular materials: Continuum model and numerical simulation with application to sugar. Adv. Powder Technol. 2006, 17, 543–565. [Google Scholar] [CrossRef]
- Chen, M.; Lin, L.; Zhang, Y.; Wu, S.; Liu, E.; Wang, K.; Wang, J.; Gong, J. Mechanism and inhibition of trisodium phosphate particle caking: Effect of particle shape and solubility. Particuology 2016, 27, 115–121. [Google Scholar] [CrossRef]
- Langlet, M.; Benali, M.; Pezron, I.; Saleh, K.; Guigon, P.; Metlas-Komunjer, L. Caking of sodium chloride: Role of ambient relative humidity in dissolution and recrystallization process. Chem. Eng. Sci. 2013, 86, 78–86. [Google Scholar] [CrossRef]
- Mauer, L.J.; Taylor, L.S. Water-solids interactions: Deliquescence. Annu. Rev. Food Sci. Technol. 2010, 1, 41–63. [Google Scholar] [CrossRef] [PubMed]
- Rutland, D.W. Fertilizer caking: Mechanisms, influential factors, and methods of prevention. Fertil. Res. 1991, 30, 99–114. [Google Scholar] [CrossRef]
- Carpin, M.; Bertelsen, H.; Dalberg, A.; Roiland, C.; Risbo, J.; Schuck, P.; Jeantet, R. Impurities enhance caking in lactose powder. J. Food Eng. 2017, 198, 91–97. [Google Scholar] [CrossRef]
- Fu, X.; Huck, D.; Makein, L.; Armstrong, B.; Willen, U.; Freeman, T. Effect of particle shape and size on flow properties of lactose powders. Particuology 2012, 10, 203–208. [Google Scholar] [CrossRef]
- Carpin, M.; Bertelsen, H.; Dalberg, A.; Bech, J.K.; Risbo, J.; Schuck, P.; Jeantet, R. How does particle size influence caking in lactose powder? J. Food Eng. 2017, 209, 61–67. [Google Scholar] [CrossRef]
- Mathlouthi, M.; Rogé, B. Water vapour sorption isotherms and the caking of food powders. Food Chem. 2003, 82, 61–71. [Google Scholar] [CrossRef]
- Stoklosa, A.M.; Lipasek, R.A.; Taylor, L.S.; Mauer, L.J. Effects of storage conditions, formulation, and particle size on moisture sorption and flowability of powders: A study of deliquescent ingredient blends. Food Res. Int. 2012, 49, 783–791. [Google Scholar] [CrossRef]
- Lipasek, R.A.; Ortiz, J.C.; Taylor, L.S.; Mauer, L.J. Effects of anticaking agents and storage conditions on the moisture sorption, caking, and flowability of deliquescent ingredients. Food Res. Int. 2012, 45, 369–380. [Google Scholar] [CrossRef]
- Bode, A.A.C.; Jiang, S.; Meijer, J.A.M.; Enckevort, W.J.P.V.; Vlieg, E. Growth Inhibition of Sodium Chloride Crystals by Anticaking Agents: In Situ Observation of Step Pinning. Cryst. Growth Des. 2012, 12, 5889–5896. [Google Scholar] [CrossRef]
- Lipasek, R.A.; Taylor, L.S.; Mauer, L.J. Effects of Anticaking Agents and Relative Humidity on the Physical and Chemical Stability of Powdered Vitamin C. Food Chem. 2011, 76, 1062–1074. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-L.; Chou, J.-Y. Selection of anti-caking agents through crystallization. Powder Technol. 1993, 77, 1–6. [Google Scholar] [CrossRef]
- Fu, Y.; Luo, F.; Ma, L.; Dai, H.; Wang, H.; Chen, H.; Zhu, H.; Yu, Y.; Hou, Y.; Zhang, Y. The moisture adsorption, caking, and flowability of silkworm pupae peptide powders: The impacts of anticaking agents. Food Chem. 2023, 419, 135989. [Google Scholar] [CrossRef]
- Mauriaucourt, M.; Jiang, S.; Soare, A.; Nenburg, A.Z.; Shahidzadeh, N. Multiscale Study on the Mechanism of a Bio-Based Anticaking Agent for NaCl Crystals. ACS Omega 2020, 5, 31575–31583. [Google Scholar] [CrossRef] [PubMed]
- Merisko-Liversidge, E.M.; Liversidge, G.G. Drug nanoparticles: Formulating poorly water-soluble compounds. Toxicol. Pathol. 2008, 36, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Meena, A.K.; Sharma, K.; Kandaswamy, M.; Rajagopal, S.; Mullangi, R. Formulation development of an albendazole self-emulsifying drug delivery system (SEDDS) with enhanced systemic exposure. Acta Pharm. 2012, 62, 563–580. [Google Scholar] [PubMed]
- Kumar, R.; Dalvi, S.V.; Siril, P.F. Nanoparticle-Based Drugs and Formulations: Current Status and Emerging Applications. ACS Appl. Nano Mater. 2020, 3, 4944–4961. [Google Scholar] [CrossRef]
- Malik, J.; Khatkar, A.; Nanda, A. A Comprehensive Insight on Pharmaceutical Co-crystals for Improvement of Aqueous Solubility. Curr. Drug Targets 2023, 24, 157–170. [Google Scholar] [PubMed]
- Ouyang, J.; Liu, L.; Li, Y.; Chen, M.; Zhou, L.; Liu, Z.; Xu, L.; Shehzad, H. Cocrystals of carbamazepine: Structure, mechanical properties, fluorescence properties, solubility, and dissolution rate. Particuology 2024, 90, 20–30. [Google Scholar] [CrossRef]
- Al-Kassas, R.; Bansal, M.; Shaw, J. Nanosizing techniques for improving bioavailability of drugs. J. Control. Release 2017, 260, 202–212. [Google Scholar] [CrossRef]
- Da Silva, F.L.O.; Marques, M.B.D.F.; Kato, K.C.; Carneiro, G. Nanonization techniques to overcome poor water-solubility with drugs. Expert. Opin. Drug Discov. 2020, 15, 853–864. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Wang, Y.; Luo, J.; Yang, H. Freeze-Dissolving Method: A Fast Green Technology for Producing Nanoparticles and Ultrafine Powder. ACS Sustain. Chem. Eng. 2022, 10, 7825–7832. [Google Scholar] [CrossRef] [PubMed]
- Iskandar, F.; Nandiyanto, A.B.D.; Widiyastuti, W.; Young, L.S.; Okuyama, K.; Gradon, L. Production of morphology-controllable porous hyaluronic acid particles using a spray-drying method. Acta Biomater. 2009, 5, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Dong, Z.; Ma, Z.; Liu, Y. W-Y2O3 composite nanopowders prepared by hydrothermal synthesis method: Co-deposition mechanism and low temperature sintering characteristics. J. Alloys Compd. 2020, 821, 153461. [Google Scholar] [CrossRef]
- Das, H.; Debnath, N.; Toda, A.; Kawaguchi, T.; Sakamoto, N.; Hoque, S.M.; Shinozaki, K.; Suzuki, H.; Wakiya, N. Controlled synthesis of dense MgFe2O4 nanospheres by ultrasonic spray pyrolysis technique: Effect of ethanol addition to precursor solvent. Adv. Powder Technol. 2018, 29, 283–288. [Google Scholar] [CrossRef]
- Jakubowska, E.; Lulek, J. The application of freeze-drying as a production method of drug nanocrystals and solid dispersions-A review. J. Drug Deliv. Sci. Technol. 2021, 62, 102357. [Google Scholar] [CrossRef]
- Han, M.-J.; Zou, Z.Z. Enabling a novel solvent method on Albendazole solid dispersion to improve the in vivo bioavailability. Eur. J. Pharm. Sci. 2024, 196, 106751. [Google Scholar] [CrossRef]
- Gigliobianco, M.R.; Casadidio, C.; Censi, R.; Di Martino, P. Nanocrystals of Poorly Soluble Drugs: Drug Bioavailability and Physicochemical Stability. Pharmaceutics 2018, 10, 134. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.S.; York, P.; Blagden, N. Preparation of hydrocortisone nanosuspension through a bottom-up nanoprecipitation technique using microfluidic reactors. Int. J. Pharm. 2009, 375, 107–113. [Google Scholar] [CrossRef]
- Sinha, B.; Müller, R.H.; Möschwitzer, J.P. Bottom-up approaches for preparing drug nanocrystals: Formulations and factors affecting particle size. Int. J. Pharm. 2013, 453, 126–141. [Google Scholar] [CrossRef]
- Dhapte, V.; Pokharkar, V. Polyelectrolyte Stabilized Antimalarial Nanosuspension Using Factorial Design Approach. J. Biomed. Nanotechnol. 2011, 7, 139–141. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, I.; Bose, S.; Vippagunta, R.; Harmon, F. Nanosuspension for improving the bioavailability of a poorly soluble drug and screening of stabilizing agents to inhibit crystal growth. Int. J. Pharm. 2011, 409, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Kim, H.; Jung, S.; Seo, H.; Nida, S.K.; Yoo, S.Y.; Lee, J. Pharmaceutical Strategies for Stabilizing Drug Nanocrystals. Curr. Pharm. Des. 2018, 24, 2362–2374. [Google Scholar] [CrossRef]
- Verma, S.; Huey, B.D.; Burgess, D.J. Scanning Probe Microscopy Method for Nanosuspension Stabilizer Selection. Langmuir 2009, 25, 12481–12487. [Google Scholar] [CrossRef] [PubMed]
- Mauludin, R.; Müller, R.H.; Keck, C.M. Development of an oral rutin nanocrystal formulation. Int. J. Pharm. 2009, 370, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Rong, X.; Laru, J.; van Veen, B.; Kiesvaara, J.; Hirvonen, J.; Laaksonen, T.; Peltonen, L. Nanosuspensions of poorly soluble drugs: Preparation and development by wet milling. Int. J. Pharm. 2011, 411, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.Y.; Yoo, J.Y.; Kwak, H.S.; Nam, B.U.; Lee, J. Role of polymeric stabilizers for drug nanocrystal dispersions. Cur. Appl. Phys. 2005, 5, 472–474. [Google Scholar] [CrossRef]
- Quan, P.; Shi, K.; Piao, H.Z.; Piao, H.Y.; Liang, N.; Xia, D.N.; Cui, F.D. A novel surface modified nitrendipine nanocrystals with enhancement of bioavailability and stability. Int. J. Pharm. 2012, 430, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Latham, A.P.; Levy, E.S.; Sellers, B.D.; Leung, D.H. Utilizing Molecular Simulations to Examine Nanosuspension Stability. Pharmaceutics 2024, 16, 50. [Google Scholar] [CrossRef]
- Mishra, B.; Sahoo, J.; Dixit, P.K. Formulation and process optimization of naproxen nanosuspensions stabilized by hydroxy propyl methyl cellulose. Carbohydr. Polym. 2015, 127, 300–308. [Google Scholar] [CrossRef]
- Yue, P.; Li, Y.; Wan, J.; Yang, M.; Zhu, W.; Wang, C. Study on formability of solid nanosuspensions during nanodispersion and solidification: I. Novel role of stabilizer/drug property. Int. J. Pharm. 2013, 454, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Huang, L.; Liu, F. Understanding the structure and stability of paclitaxel nanocrystals. Int. J. Pharm. 2010, 390, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.; Lee, S.-J.; Choi, J.-Y.; Yoo, J.K.; Ahn, C.-K. Amphiphilic amino acid copolymers as stabilizers for the preparation of nanocrystal dispersion. Eur. J. Pharm. Sci. 2005, 24, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.K.; Kim, S.; Ahn, C.-H.; Lee, J. Hydrophilic and hydrophobic amino acid copolymers for nano-comminution of poorly soluble drugs. Int. J. Pharm. 2010, 384, 173–180. [Google Scholar] [CrossRef]
- Lo, C.-L.; Lin, S.-J.; Tsai, H.-C.; Chan, W.-H.; Tsai, C.-H.; Cheng, C.-H.D.; Hsiue, G.H. Mixed micelle systems formed from critical micelle concentration and temperature sensitive diblock copolymers for doxorubicin delivery. Biomaterials 2009, 30, 3961–3970. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Lu, Y.; Qi, J.; Chen, L.; Hu, F.; Wu, W. Food proteins as novel nanosuspension stabilizers for poorly water-soluble drugs. Int. J. Pharm. 2013, 441, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Leuner, C.; Dressman, J. Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 2000, 50, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.C.; Zhang, G.G.Z.; Zemlyanov, D.Y.; Purohit, H.S.; Taylor, L.S. Drug Release from Surfactant-Containing Amorphous Solid Dispersions: Mechanism and Role of Surfactant in Release Enhancement. Pharm. Res. 2023, 40, 2817–2845. [Google Scholar] [CrossRef] [PubMed]
- Indulkar, A.S.; Lou, X.C.; Zhang, G.G.Z.; Taylor, L.S. Role of Surfactants on Release Performance of Amorphous Solid Dispersions of Ritonavir and Copovidone. Pharm. Res. 2022, 39, 381–397. [Google Scholar] [CrossRef]
- Serajuddin, A.T.M. Solid dispersion of poorly water-soluble drugs: Early promises, subsequent problems, and recent breakthroughs. J. Pharm. Sci. 1999, 88, 1058–1066. [Google Scholar] [CrossRef]
- Dohrn, R.; Bertakis, E.; Behrend, O.; Voutsas, E.; Tassios, D. Melting point depression by using supercritical CO2 for a novel melt dispersion micronization process. J. Mol. Liq. 2007, 131, 53–59. [Google Scholar] [CrossRef]
- Vasconcelos, T.; Costa, P. Development of a rapid dissolving ibuprofen solid dispersion. Pharm. Res. 2007, 16, 676–681. [Google Scholar]
- Vasconcelos, T.; Sarmento, B.; Costa, P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov. Today 2007, 12, 1068–1075. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, A.H.; Gibaldi, M.; Kanig, J.L.; Mayersohn, M. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures IV: Chloramphenicol-urea system. J. Pharm. Sci. 1966, 55, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-J.; Lee, H.-K.; Na, Y.-G.; Bang, K.-H.; Lee, H.-J.; Wang, M.; Huh, H.-W.; Cho, C.-W. A novel composition of ticagrelor by solid dispersion technique for increasing solubility and intestinal permeability. Int. J. Pharm. 2019, 555, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Asati, A.V.; Salunkhe, K.S.; Chavan, M.J.; Chintamani, R.B.; Singh, R.P. Solubility Enhancement of BCS Classified II/IV Drug—Solid Dispersion of Apixaban by Solvent Evaporation. Int. J. Pharm. Investig. 2020, 10, 430–436. [Google Scholar]
- Lee, J.; Lee, J.-J.; Lee, S.; Dinh, L.; Oh, H.; Abuzar, S.M.; Ahn, J.-H.; Hwang, S.-J. Preparation of Apixaban Solid Dispersion for the Enhancement of Apixaban Solubility and Permeability. Pharmaceutics 2023, 15, 907. [Google Scholar] [CrossRef]
- Khatri, P.; Shah, M.K.; Patel, N.; Jain, S.; Vora, N.; Lin, S. Preparation and characterization of pyrimethamine solid dispersions and an evaluation of the physical nature of pyrimethamine in solid dispersions. J. Drug Deliv. Sci. Technol. 2018, 45, 110–123. [Google Scholar] [CrossRef]
- Viciosa, M.T.; Ramos, J.J.M.; Diogo, H.P. The Slow Relaxation Dynamics in the Amorphous Pharmaceutical Drugs Cimetidine, Nizatidine, and Famotidine. J. Pharm. Sci. 2016, 105, 3573–3584. [Google Scholar] [CrossRef]
- Kalaiselvan, R.; Mohanta, G.P.; Manna, P.K.; Manavalan, R. Inhibition of albendazole crystallization in poly (vinylpyrrolidone) solid molecular dispersions. Die Pharm.—Int. J. Pharm. Sci. 2006, 61, 618–624. [Google Scholar]
- Li, J.; Fan, N.; Wang, X.; Li, C.; Sun, M.; Wang, J.; Fu, Q.; He, Z. Interfacial interaction track of amorphous solid dispersions established by water-soluble polymer and indometacin. Eur. J. Pharm. Sci. 2017, 106, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Ueda, H.; Aikawa, S.; Kashima, Y.; Kikuchi, J.; Ida, Y.; Tanino, T.; Kadota, K.; Tozuka, Y. Anti-plasticizing effect of amorphous indomethacin induced by specific intermolecular interactions with PVA Copolymer. J. Pharm. Sci. 2014, 103, 2829–2838. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Xiang, T.-X.; Anderson, B.D.; Munson, E.J. Hydrogen Bonding Interactions in Amorphous Indomethacin and Its Amorphous Solid Dispersions with Poly (vinylpyrrolidone) and Poly (vinylpyrrolidone-co-vinyl acetate) Studied Using 13C Solid-State NMR. Mol. Pharmaceut. 2015, 12, 4518–4528. [Google Scholar] [CrossRef] [PubMed]
- Nie, H.; Mo, H.; Zhang, M.; Song, Y.; Fang, K.; Taylor, L.S.; Li, T.L.; Byrn, S.R. Investigating the Interaction Pattern and Structural Elements of a Drug-Polymer Complex at the Molecular Level. Mol. Pharmaceut. 2015, 12, 2459–2468. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Du, S.; Wang, Y.; Xue, F. Prevention of Crystal Agglomeration: Mechanisms, Factors, and Impact of Additives. Crystals 2024, 14, 676. https://doi.org/10.3390/cryst14080676
Zhang H, Du S, Wang Y, Xue F. Prevention of Crystal Agglomeration: Mechanisms, Factors, and Impact of Additives. Crystals. 2024; 14(8):676. https://doi.org/10.3390/cryst14080676
Chicago/Turabian StyleZhang, Huixiang, Shichao Du, Yan Wang, and Fumin Xue. 2024. "Prevention of Crystal Agglomeration: Mechanisms, Factors, and Impact of Additives" Crystals 14, no. 8: 676. https://doi.org/10.3390/cryst14080676
APA StyleZhang, H., Du, S., Wang, Y., & Xue, F. (2024). Prevention of Crystal Agglomeration: Mechanisms, Factors, and Impact of Additives. Crystals, 14(8), 676. https://doi.org/10.3390/cryst14080676